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SPECTRAL APPROXIMATIONS FOR
WIENER-HOPF OPERATORS II

P.M. ANSELONE AND I.H. SLOAN

ABSTRACT. The comparison of spectral properties of op-
erators

Kf(s) =

∫ ∞

0

κ(s − t)f(t) dt,

Kβf(s) =

∫ β

0

κ(s − t)f(t) dt,

with κ ∈ L1(R), which was initiated in [3], is extended here
in several directions. In [3], the operators were defined on the
space of bounded continuous functions on the half-line. Now
they are studied on L2(R+). The spectra are unchanged.
Particular attention is paid to the self-adjoint case. There
is a very close relationship between spectral properties of K
and Kβ as β → ∞. Under further restrictions, σ(Kβ) is
asymptotically dense in σ(K) as β → ∞. The proofs are
based directly on properties of the operators. This enables
us to avoid extraneous hypotheses which Fourier transform
methods often require.

1. Introduction. In [3] we investigated the relationship between
the spectrum of a Wiener-Hopf operator

Kf(s) =
∫ ∞

0

κ(s − t)f(t) dt, s ∈ R+ = [0,∞],

and the spectra of the corresponding finite-section operators

Kβf(s) =
∫ β

0

κ(s − t)f(t) dt, s ∈ R+, β ∈ R+,

where κ ∈ L1(R) and f ∈ X+, the space of bounded, continuous, real
or complex functions on R+ with ||f || = sup |f(t)|. To avoid trivialities,
assume that ||κ||1 �= 0. Then K �= 0 and the operator K is not compact.
However, the operators Kβ are compact.

We proved in [3] that every neighborhood of σ(K) contains σ(Kβ)
for β sufficiently large and that every point in σ(K) is an asymptotic
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eigenvalue of Kβ as β → ∞. The main purpose of this paper is to
clarify further the relationship between spectral properties of K and
Kβ . The spectra of K and Kβ, acting on the space X+, are denoted
by σ(K) and σ(Kβ).

We say that σ(Kβ) is asymptotically dense in σ(K) as β → ∞ if, for
any ε > 0, the ε-neighborhood of σ(Kβ) contains σ(K) for β sufficiently
large. This is true for the Picard kernel κ(u) = e−|u|. See [3] for the
details. However, it is not true in general. Two counterexamples are
given in [3], with σ(K) a disc and σ(Kβ) = {0} in each case.

If σ(Kβ) is asymptotically dense in σ(K) as β → ∞, then σ(Kβ) →
σ(K) as β → ∞ in the sense of the Hausdorff semi-metric for the
distance between two sets.

The Fourier transform of κ,

κ̂(p) =
∫ ∞

−∞
eipuκ(u) du, p ∈ R,

plays an important role in the spectral theory for K. Since κ ∈ L1(R),
κ̂ is continuous and κ̂(p) → 0 as p → ±∞. The set

Γ = {κ̂(p) : p ∈ R} ∪ {0}
forms a continuous closed curve in the complex plane C. From Krein
[7], σ(K) consists of Γ and the points λ ∈ C for which the winding
number of λ with respect to Γ is nonzero.

In this paper we consider the operators K and Kβ acting on L2(R+)
in place of X+. The spectra are unchanged. For σ(K) this was proved
by Krein [7]. For σ(Kβ) it is proved in Section 2 below. The advantage
of L2(R+) is that Hilbert space properties and results can be used.
Section 2 concludes with a brief discussion of an example for which the
spectrum of Kβ is neither trivial nor asymptotically dense in σ(K).

It is shown in Section 3 that K and Kβ have certain asymptotic
properties which are reminiscent of properties of self-adjoint operators.
Let

ϕβp(t) =

{
1√
β
e−ipt, 0 ≤ t ≤ β,

0, β < t < ∞,
β ∈ R+, p ∈ R.

Then ϕβp ∈ L2(R+), ||ϕβp||2 = 1, and

(ϕβp, ϕβq) → 0 as β → ∞ for p �= q.
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We prove that

||κ̂(p)ϕβp − Kϕβp||2 → 0 as β → ∞, p ∈ R,

||κ̂(p)ϕβp − Kβϕβp||2 → 0 as β → ∞, p ∈ R.

In other words, each κ̂(p) is an asymptotic eigenvalue of K and of Kβ

as β → ∞, with asymptotic eigenfunctions ϕβp. This result for K gives
a direct argument, without analytic function theory, that κ̂(p) ∈ σ(K)
for p ∈ R.

In Section 4 it is assumed that κ ∈ L1(R) and κ(−u) = κ(u). Then
K and Kβ are self-adjoint and the spectra σ(K) and σ(Kβ) are real.
Let

m = min σ(K), M = max σ(K),
mβ = min σ(Kβ), Mβ = max σ(Kβ).

Then
σ(K) = [m, M ], σ(Kβ) ⊂ [mβ , Mβ].

Moreover, m ≤ 0 ≤ M and m < M . We prove that

[mβ, Mβ] ⊂ [m, M ],
mβ → m and Mβ → M as β → ∞,

#σ(Kβ) → ∞ as β → ∞,

where #σ(Kβ), which may be finite or infinite, is the number of nonzero
eigenvalues of Kβ . Also, we show that the number of eigenvalues of Kβ

in any neighborhood of M is unbounded if M > 0, and we give a lower
bound for the sum of the positive eigenvalues of Kβ.

Finally, in Section 5, it is proved under more restrictive assumptions
on the kernel function κ that σ(Kβ) is asymptotically dense in σ(K)
as β → ∞. The analysis is based on results from the book on Toeplitz
forms by Grenander and Szegö [4].

The convolution inequality (see [10])

κ ∈ L1(R), g ∈ L2(R), h(s) =
∫ ∞

−∞
κ(s − t)g(t) dt

⇒ h ∈ L2(R) and ||h||2 ≤ ||κ||1||g||2
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will be used on several occasions.

2. General properties of K and Kβ. For convenience, the
definitions of K and Kβ are repeated:

Kf(s) =
∫ ∞

0

κ(s − t)f(t) dt,

Kβf(s) =
∫ β

0

κ(s − t)f(t) dt,

where κ ∈ L1(R). By standard arguments (see [2])

K : X+ → X+ with ||K|| = ||κ||1.

The convolution inequality yields

K : L2(R+) → L2(R+) with ||K|| ≤ ||κ||1.

By similar reasoning,

Kβ : X+ → X+ with ||Kβ || ≤ ||κ||L1(−β,∞),

Kβ : L2(R+) → L2(R+) with ||Kβ || ≤ ||κ||L1(−β,∞).

It is convenient to consider Kβ also on C[0, β] and L2(0, β). Then

Kβ : C[0, β] → C[0, β] with ||Kβ || ≤ ||κ||L1(−β,β),

Kβ : L2[0, β] → L2[0, β] with ||Kβ || ≤ ||κ||L1(−β,β).

We show next that the operators Kβ are compact on each of the
four spaces X+, L2(R+), C[0, β], L2(0, β). For Kβ on X+ or C[0, β],
{Kβf : ||f || ≤ 1} is bounded and equicontinuous. For Kβ on X+ we
also have Kβf(s) → 0 as s → ∞, uniformly for ||f || ≤ 1. It follows
that Kβ is compact on X+ and C[0, β]. For more details, see [2]. Next,
consider Kβ on L2(0, β). There exist polynomials κβn(u), n = 1, 2, . . . ,
such that

||κβn − κ||L1(−β,β) → 0 as n → ∞.
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The corresponding operators Kβn have finite ranks, hence are compact,
and ||Kβn−Kβ || → 0 as n → ∞. Therefore, Kβ is compact on L2(0, β).
Finally, consider Kβ on L2(R+). Let

κm(u) =
{

κ(u), u ≤ m,
0, u > m.

Then ||κm − κ||1 → 0 as m → ∞. The corresponding operators Kβm

are compact, by an argument like the one given for Kβ on L2(0, β),
and ||Kβm − Kβ || → 0 as m → ∞. Hence, Kβ is compact on L2(R+).

We prove next that the spectrum of Kβ is the same for Kβ acting
on the four spaces. In all four cases, Kβ is a compact operator on an
infinite dimensional space, so that 0 is in the spectrum of Kβ, and every
nonzero element λ in the spectrum is an eigenvalue of Kβ with a finite
dimensional eigenmanifold N(λI − Kβ).

Fix λ �= 0. The associated eigenvalue problems for Kβ on X+ and
C[0, β] are related by

Kβf = λf, f ∈ X+, f �= 0

⇔
Kβfβ = λfβ , fβ ∈ C[0, β], fβ �= 0,

where fβ is the restriction of f to [0, β] and

f(s) =
1
λ

∫ β

0

κ(s − t)fβ(t) dt, s ∈ R+.

The eigenvalue problems for Kβ on L2(R+) and L2(0, β) are related in
the same way. The convolution inequality ensures that f ∈ L2(R+) if
fβ ∈ L2(0, β). These observations imply that

σ(Kβ)X+ = σ(Kβ)C[0,β], σ(Kβ)L2(R+) = σ(Kβ)L2(0,β).

We prove next that

σ(Kβ)C[0,β] = σ(Kβ)L2(0,β).

The argument (for which we are indebted to P. Hähner and R. Kress) is
based on the theory of dual systems given, for example, in the book by
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Kress [9]. See also Jörgens [5] and Wendland [13]. We summarize the
basic ideas. Let X and Y be linear spaces and let 〈x, y〉 be a bilinear
form on X × Y . Assume that 〈x, y〉 is nondegenerate; that is, for any
x ∈ X there exists y ∈ Y such that 〈x, y〉 �= 0, and for any y ∈ Y there
exists x ∈ X such that 〈x, y〉 �= 0. The linear spaces X and Y form a
dual system 〈X, Y 〉.

Let X = C[0, β] and Y = L2(0, β). Then 〈X, Y 〉 is a dual system
with 〈f, g〉 =

∫ β

0
f(s)g(s) ds, f ∈ X, g ∈ Y , and 〈Y, Y 〉 is a dual

system with 〈f, g〉 =
∫ β

0
f(s)g(s) ds, f, g ∈ Y . Define K ′

β : Y → Y

by K ′
βg(t) =

∫ β

0
κ(t − s)g(s) ds, g ∈ Y . Then 〈Kβf, g〉 = 〈f, K ′

βg〉 for
f ∈ X, g ∈ Y and for f, g ∈ Y . Hence, K ′

β is the adjoint of Kβ with
respect to both of the dual systems 〈X, Y 〉 and 〈Y, Y 〉. For λ �= 0, two
applications of the Fredholm alternative for dual systems ([9, Thm.
4.17]) yield

dim N(λI − Kβ)X = dim N(λI − K ′
β)Y = dim N(λI − Kβ)Y .

Since X = C[0, β] and Y = L2(0, β), we have established

dim N(λI − Kβ)C[0,β] = dimN(λI − Kβ)L2(0,β).

Since C[0, β] ⊂ L2(0, β) as sets,

N(λI − Kβ)C[0,β] ⊂ N(λI − Kβ)L2(0,β).

Therefore, the equality of the dimensions implies

N(λI − Kβ)C[0,β] = N(λI − Kβ)L2(0,β)

and
σ(Kβ)C[0,β] = σ(Kβ)L2(0,β).

It follows that the spectrum of Kβ is the same for Kβ on the four
spaces. Denote the common spectrum by σ(Kβ). Thus,

σ(Kβ) = σ(Kβ)X+ = σ(Kβ)L2(R+) = σ(Kβ)C[0,β] = σ(Kβ)L2(R+).

Another argument for the equivalence of the spectra, called to our
attention by the referee, is based on the following principle. Let X and
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Y be Banach spaces with Y dense in X. If A is a Fredholm operator
with the same index on X and Y , then the null spaces of A in X and
Y coincide.

The forgoing argument also shows that, for λ �= 0, the associated
eigenvalue problems for Kβ on the four spaces are essentially equivalent.
In particular,

N(λI − Kβ)X+ = N(λI − Kβ)L2(R+).

Henceforth, assume that K acts on L2(R+), and that Kβ acts on
L2(R+) or L2(0, β). The conclusions for Kβ are equally valid in both
cases.

We end this section with an example which illustrates known results
and which perhaps is rich enough to suggest some new ones.

Example 2.1. Let

κ(u) =
{

eu, u < 0
2e−u, u > 0.

The corresponding Wiener-Hopf operator is given by

Kf(s) = 2e−s

∫ s

0

etf(t) dt + es

∫ ∞

s

e−tf(t) dt.

The Fourier transform of κ is

κ̂(p) =
3 + ip

1 + p2
, −∞ < p < ∞.

Write κ̂ = x + iy to show that the curve Γ = {κ̂(p)}∪ {0} is the ellipse

(x − 3/2)2

(3/2)2
+

y2

(1/2)2
= 1

with center (3/2, 0), major axis 0 ≤ x ≤ 3, y = 0, and minor axis
−1/2 ≤ y ≤ 1/2, x = 3/2. As p increases, Γ is traced out in the
positive direction. The spectrum of K consists of all points λ on or
inside this ellipse.
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For this example, the operator Kβ is given by

Kβf(s) = 2e−s

∫ s

0

etf(t) dt + es

∫ β

s

e−tf(t) dt, 0 ≤ s ≤ β,

Kβf(s) = 2e−s

∫ β

0

etf(t) dt, s ≥ β.

The spectrum of Kβ consists of 0 and a point spectrum that may
be studied, for example, by observing that the eigenvalue problem
Kβf = λf is equivalent to a two-point boundary value problem

λf ′′(s) − f ′(s) + (3 − λ)f(s) = 0, 0 ≤ s ≤ β,

λf ′(0) = (1 − λ)f(0), λf ′(β) = (1 + λ)f(β).

We omit the technical details (which in fact are not easy), and merely
report the salient features of the spectrum of Kβ .

The eigenvalues of Kβ either lie on the real interval (0, 3/2 +
√

2) or
occur as complex conjugate pairs inside a circle of radius 1/12 centered
at (1/12, 0). The eigenvalue with maximum absolute value is real,
simple, and has a corresponding positive eigenfunction. This may be
seen as a consequence of the Perron theory, as generalized from positive
matrices to an abstract setting which includes integral operators with
nonnegative kernels by Krein and Rutman [8]. As β increases from 0,
that largest eigenvalue increases monotonically from 0 and approaches
3/2 +

√
2 as β → ∞. All other eigenvalues follow trajectories lying

off the real axis for small values of β, with complex conjugate pairs
eventually meeting at a point in the open interval (3/2−√

2, 3/2+
√

2),
then forming a real pair, one of which approaches 3/2 − √

2, and the
other approaches 3/2 +

√
2 as β → ∞.

As β → ∞, the spectrum of Kβ becomes asymptotically dense in
the interval [3/2 − √

2, 3/2 +
√

2]. Asymptotic density is believed
to occur also for the circle of radius 1/12 and center (0, 1/12). On
the other hand, the complex plane outside this circle and outside the
interval [3/2−√

2, 3/2+
√

2] remains totally unpopulated by eigenvalues
of Kβ for any β. Therefore, σ(Kβ) is not asymptotically dense in
σ(K) as β → ∞. Present theories, including that which follows, seem
inadequate to explain the richness of the behavior of σ(Kβ).
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3. Asymptotic spectral properties of K and Kβ. The operators
K and Kβ have certain asymptotic properties which are reminiscent of
properties of self-adjoint operators. The curve Γ = {κ̂(p)} ∪ {0} takes
on the role of the real spectrum of a self-adjoint operator. The functions

ϕβp(t) =

{
1√
β

e−ipt, 0 ≤ t ≤ β,

0, β < t < ∞,

behave asymptotically like orthonormal eigenfunctions. By easy calcu-
lations, ϕβp ∈ L2(R+), ||ϕβp||2 = 1, and (ϕβp, ϕβq) → 0 as β → ∞ for
p �= q, uniformly for |p − q| > δ with any δ > 0.

The following theorem shows that, for each p ∈ R, κ̂(p) is an
asymptotic eigenvalue of K with asymptotic eigenfunctions ϕβp.

Theorem 3.1.

(a) ||κ̂(p)ϕβp − Kϕβp||2 → 0 as β → ∞, uniformly for p ∈ R.

(b) (Kϕβp, ϕβp) → κ̂(p) as β → ∞, uniformly for p ∈ R.

Proof. Since (a) implies (b), it suffices to prove (a). Since κ ∈ L1(R),
for each ε > 0 there exists α = α(ε) > 0 such that

( ∫ −α

−∞
+

∫ ∞

α

)
|κ(u)| du < ε.

This will be used at two places in our analysis. Note that

Kϕβp(s) =
1√
β

∫ β

0

κ(s − t)e−ipt dt =
e−ips

√
β

∫ s

s−β

κ(u)eipu du.

Therefore, for 0 ≤ s ≤ β,

κ̂(p)ϕβp(s) − Kϕβp(s) =
e−ips

√
β

( ∫ s−β

−∞
+

∫ ∞

s

)
κ(u)eipu du,

|κ̂(p)ϕβp(s) − Kϕβp(s)| ≤ 1√
β

( ∫ s−β

−∞
+

∫ ∞

s

)
|κ(u)| du ≤ 1√

β
||κ||1.
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Fix ε > 0. Let β > 2α, where α = α(ε). Then 0 < α < β − α < β and

||κ̂(p)ϕβp − Kϕβp||2L2(0,α) ≤
α

β
||κ||21,

||κ̂(p)ϕβp − Kϕβp||2L2(α,β−α) ≤
β − 2α

β
ε2,

||κ̂(p)ϕβp − Kϕβp||2L2(β−α,β) ≤
α

β
||κ||21.

It follows that

||κ̂(p)ϕβp − Kϕβp||2L2(0,β) ≤
2α

β
||κ||21 + ε2,

||κ̂(p)ϕβp − Kϕβp||L2(0,β) → 0 as β → ∞, uniformly for p ∈ R.

It may be remarked that the last result is already enough to yield (b).

To complete the proof of (a), it remains to show that

||κ̂(p)ϕβp − Kϕβp||L2(β,∞) → 0 as β → ∞, uniformly for p ∈ R.

Since ϕβp(s) = 0 for s > β, this is equivalent to

||Kϕβp||L2(β,∞) → 0 as β → ∞, uniformly for p ∈ R.

First,

|Kϕβp(s)| ≤ 1√
β

∫ s

s−β

|κ(u)| du.

Then

||Kϕβp||2L2(β,∞) ≤
1
β

∫ ∞

β

( ∫ s

s−β

|κ(u)| du

)2

ds

=
1
β

∫ ∞

β

( ∫ s

s−β

|κ(u)| du

)(∫ s

s−β

|κ(v)| dv

)
ds

=
1
β

∫ ∞

β

( ∫ ∞

0

|κ(u)|χ[s−β,s](u) du

)

·
( ∫ ∞

0

|κ(v)|χ[s−β,s](v) dv

)
ds

=
1
β

∫ ∞

0

|κ(u)|
∫ ∞

0

|κ(v)|

·
∫ ∞

β

χ[s−β,s](u)χ[s−β,s](v) ds dv du.
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Let

Fβ(u, v) =
∫ ∞

β

χ[s−β,s](u)χ[s−β,s](v) ds.

Then

||Kϕβp||2L2(β,∞) ≤
1
β

∫ ∞

0

|κ(u)|
∫ ∞

0

|κ(v)|Fβ(u, v) dv du.

Since Fβ(u, v) = Fβ(v, u), the integrand is symmetric in u and v. So
the integrals with u ≤ v and v ≤ u are equal, and

||Kϕβp||2L2(β,∞) ≤
2
β

∫ ∞

0

|κ(u)|
∫ ∞

u

|κ(v)|Fβ(u, v) dv du.

Consider Fβ(u, v) for u ≤ v. Note that

χ[s−β,s](u) = χ[u,u+β](s), χ[s−β,s](v) = χ[v,v+β](s),

χ[s−β,s](u)χ[s−β,s](v) =
{χ[v,u+β](s) if u ≤ v ≤ u + β,

0 if v > u + β.

Hence,

Fβ(u, v) =
∫ ∞

β

χ[v,u+β](s) ds if u ≤ v ≤ u + β,

Fβ(u, v) = 0 if v > u + β.

The integral for Fβ(u, v) reduces to

Fβ(u, v) = u if u ≤ v ≤ β,

Fβ(u, v) = u + β − v if β ≤ v ≤ u + β.
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It follows that

||Kϕβp||2L2(β,∞) ≤
2
β

∫ β

0

|κ(u)|
∫ β

u

|κ(v)|u dv du

+
2
β

∫ β

0

|κ(u)|
∫ u+β

β

|κ(v)|(u + β − v) dv du

+
2
β

∫ ∞

β

|κ(u)|
∫ u+β

u

|κ(v)|(u + β − v) dv du,

||Kϕβp||2L2(β,∞) ≤
2
β

∫ β

0

|κ(u)|u
∫ u+β

u

|κ(v)| dv du

+ 2
∫ ∞

β

|κ(u)|
∫ u+β

u

|κ(v)| dv du,

||Kϕβp||2L2(β,∞) ≤ 2||κ||1
{

1
β

∫ β

0

|κ(u)|u du +
∫ ∞

β

|κ(u)| du

}
.

For β > α = α(ε),

1
β

∫ β

0

|κ(u)|u du ≤ α

β

∫ α

0

|κ(u)| du +
∫ β

α

|κ(u)| du

≤ α

β
||κ||1 + ε.

Hence,
1
β

∫ β

0

|κ(u)|u du → 0 as β → ∞.

It follows that

||Kϕβp||2L2(β,∞) → 0 as β → ∞, uniformly for p ∈ R,

which completes the proof.

Next, consider the operators Kβ on L2(R+). Since ϕβp(s) = 0 for
s > β, Kβϕβp = Kϕβp. An immediate consequence of Theorem 3.1 is

Theorem 3.2.

(a) ||κ̂(p)ϕβp − Kβϕβp||2 → 0 as β → ∞, uniformly for p ∈ R.
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(b) (Kβϕβp, ϕβp) → κ̂(p) as β → ∞, uniformly for p ∈ R.

Thus, for each p ∈ R, κ̂(p) is an asymptotic eigenvalue of Kβ as β → ∞,
with asymptotic eigenfunctions ϕβp. The forgoing conclusions remain
valid if the setting is L2(0, β) instead of L2(R+).

Example 3.1. Let pj = pβj = 2πj/β for j ∈ Z. Then (ϕβpj
, ϕβpk

) =
δjk. Since κ̂ is uniformly continuous, it follows from Theorem 3.2 that
{(Kβϕβpj

, ϕβpj
) : j ∈ Z} is asymptotically dense in Γ = {κ̂(p)}∪{0} as

β → ∞. It does not matter whether the setting is L2(R+) or L2(0, β).

4. Self-adjoint operators. Throughout this section, assume that

κ ∈ L1(R), ||κ||1 �= 0, κ(−u) = κ(u).

Then K �= 0 and K is self-adjoint on L2(R+). The spectrum of K is a
real interval: σ(K) = {κ̂(p)} ∪ {0} = [m, M ], where m ≤ 0 ≤ M and
m < M . Thus, M > 0 or m < 0 or both. If M > 0, then M = κ̂(p0)
for some p0 ∈ R and similarly if m < 0.

The operators Kβ are compact and self-adjoint on L2(R+) and on
L2(0, β). The spectrum of Kβ is the same in both cases. From now on,
unless otherwise indicated, we shall assume that Kβ acts on L2(0, β).
For simplicity, denote

||f || = ||f ||L2(0,β) for f ∈ L2(0, β).

Let
Mβ = maxσ(Kβ), mβ = min σ(Kβ).

Then
σ(Kβ) ⊂ [mβ , Mβ], mβ ≤ 0 ≤ Mβ .

Furthermore,

Mβ = sup
||f ||=1

(Kβf, f), mβ = inf
||f ||=1

(Kβf, f).

If Mβ > 0, then Mβ is the maximum of the quadratic form and Mβ

is the largest eigenvalue of Kβ . Similarly, if mβ < 0, then mβ is the
minimum of the quadratic form and mβ is the smallest eigenvalue of
Kβ .



478 P.M. ANSELONE AND I.H. SLOAN

Example 4.1. Let κ(u) = e−|u|, the Picard kernel. Then

k̂(p) =
2

1 + p2
, σ(K) = [0, 2],

and λ ∈ (0, 2) is an eigenvalue of Kβ if and only if

λ =
2

γ2 + 1
, tanβγ =

2γ

γ2 − 1
, γ > 0.

Thus, σ(Kβ) ⊂ σ(K). By a graphical argument, there is at least one
solution γ in almost every interval of length π/β, so that σ(Kβ) is
asymptotically dense in σ(K) as β → ∞. Hence,

Mβ → M and mβ → m as n → ∞.

See [2] for further details. The analysis is given there for K and Kβ

acting on X+. However, σ(K) and σ(Kβ) are the same as in the present
situation.

Conjecture. If κ ∈ L1(R), ||κ||1 �= 0, and κ(−u) = κ(u), then
σ(Kβ) is asymptotically dense in σ(K) as β → ∞.

We shall prove in the next section that the asymptotic density is
obtained under the additional condition κ̂ ∈ L1(R), which is satisfied
by Example 4.1. While the issue is not resolved for more general kernel
functions κ, some results in this direction are established below. The
number of eigenvalues of Kβ , counting multiplicities, tends to infinity
as β → ∞. Lower bounds are derived for leading eigenvalues and for
sums of eigenvalues of Kβ .

The following notation will be needed. Let

σ+(Kβ) = {λ ∈ σ(Kβ) : λ > 0}, σ−(Kβ) = {λ ∈ σ(Kβ) : λ < 0}.
Whenever these sets are nonvoid, let

σ+(Kβ) = {λβj : j = 1, 2, . . . }, σ−(Kβ) = {μβj : j = 1, 2, . . . },
where the eigenvalues λβk and μβk are repeated as to multiplicity, and

Mβ = λβ1 ≥ λβ2 ≥ · · · > 0, mβ = μβ1 ≤ μβ2 ≤ · · · < 0.
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The numbers of eigenvalues in σ+(Kβ) and σ−(Kβ) are denoted by
#σ+(Kβ) and #σ−(Kβ), either finite or infinite. If #σ+(Kβ) = ∞,
then λβj → 0 as j → ∞, since Kβ is compact. Similarly, μβj → 0 as
j → ∞ if #σ−(Kβ) = ∞. Finally, the number of nonzero eigenvalues
in σ(Kβ) is

#σ(Kβ) = #σ+(Kβ) + #σ−(Kβ).

Results will be proved primarily for σ+(Kβ). They carry over to
σ−(Kβ) by replacing κ(u) by −κ(u).

Theorem 4.1. Assume κ ∈ L1(R), ||κ||1 �= 0, and κ(−u) = κ(u).
Let 0 < α < β < ∞. Then

(a) #σ±(Kα) ≤ #σ±(Kβ), #σ(Kα) ≤ #σ(Kβ),

(b) λαj ≤ λβj for j ≤ #σ+(Kα), μαj ≥ μβj for j ≤ #σ−(Kα).

(c) [mα, Mα] ⊂ [mβ , Mβ].

Proof. Let V be the closed subspace of L2(0, β) defined by

V = {f ∈ L2(0, β) : f(s) = 0 for α < s < β}.

The monotonicity theorem associated with the Rayleigh-Ritz method
(see Theorem A1 in the Appendix) states that the positive eigenvalues
of the quadratic form (Kβf, f) on V , when appropriately labelled, are
no greater than those of (Kβf, f) on L2(0, β). Since

(Kβf, f) = (Kαf, f)[0,α] for f ∈ V,

the result translates as

λαj ≤ λβj for j ≤ #σ+(Kα).

A similar argument for the negative eigenvalues yields (a) and (b). Set
j = 1 in (b) to obtain (c).

Theorem 4.2. Let κ ∈ L1(R), ||κ||1 �= 0, and κ(−u) = κ(u).

(a) σ(Kβ) ⊂ [mβ, Mβ ] ⊂ [m, M ] = σ(K) for all β.

(b) Mβ → M and mβ → m as β → ∞.
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(c) For β sufficiently large, Kβ has at least one nonzero eigenvalue:
a positive eigenvalue if M > 0, and a negative eigenvalue if m < 0.

Proof. By Theorem 3.15 of [3], every neighborhood of σ(K) = [m, M ]
contains σ(Kβ), and hence, contains [mβ , Mβ], for β large enough.
From Theorem 4.1(c), Mα ≤ Mβ for α < β. It follows by contradiction
that Mβ ≤ M for all β. If M = 0, then Mβ = 0. Suppose M > 0.
Then κ̂(p0) = M for some p0 ∈ R. By Theorem 3.2,

(Kβϕβp0 , ϕβp0) → κ̂(p0) = M as β → ∞.

Since Mβ = sup||f ||=1(Kβf, f) and Mβ ≤ M , Mβ → M as β → ∞.
The other results follow.

The next theorem shows that #σ(Kβ) → ∞ as β → ∞. Moreover, if
M > 0, then the number of eigenvalues of Kβ in any neighborhood of
M grows without bound as β → ∞.

Theorem 4.3. Assume κ ∈ L1(R), ||κ||1 �= 0, and κ(−u) = κ(u).

(a) #σ(Kβ) → ∞ as β → ∞.

(b) If M > 0, then #σ+(Kβ) → ∞ as β → ∞; moreover

λβj → M as β → ∞ for j = 1, 2, . . . .

Proof. Let M > 0. Then M = κ̂(p0) for some p0 ∈ R. From Theorem
3.2(b) and Example 3.1, for any n ≥ 1 there exists β(n) such that for
each β ≥ β(n) there is an orthonormal set {xβj : j = 1, . . . , n} in
L2(0, β) which satisfies

(Kβxβj , xβj) >
n − 1

n
M for j = 1, . . . , n.

Since M ≥ Mβ = λβ1, the last inequality and Theorem A2(a) in
the Appendix imply that #σ+(Kβ) ≥ n for β ≥ β(n). Therefore,
#σ+(Kβ) → ∞ as β → ∞. For the remainder of the proof, assume
that β ≥ β(n). For j = 1, . . . , n,

λβ1 = Mβ ≥ (Kβxβj , xβj) >
n − 1

n
M.
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From Theorem A2(b), it follows that

λβj >
n − j

n − j + 1
λβ1 ≥ n − j

n
λβ1 for j = 1, . . . , n.

Hence,

M ≥ λβj >
n − j

n
· n − 1

n
M >

n − j − 1
n

M for j = 1, . . . , n.

Fix any j ≥ 1. Let n → ∞ and β → ∞ with β ≥ β(n), to obtain
λβj → M as β → ∞. Thus, (b) is proved. A similar result holds if
m < 0, and now (a) follows.

The following theorem specifies in further detail how the positive
eigenvalues λβj of Kβ depend on β. It augments Theorems 4.1 and
4.3. Among other results, λβj is a continuous function of β for each
j. The analysis is based on the collectively compact operator theory in
[1]. The results in [1] are for operator sequences, but they are equally
valid with the same proofs for operators depending on a continuous
parameter such as β.

Theorem 4.4. Assume κ ∈ L1(R), κ(−u) = κ(u), and M > 0.

(a) There is a sequence {αj} such that 0 ≤ αj ≤ αj+1 < ∞ and
such that λβj exists if and only if β ∈ (αj ,∞}. Moreover, λβj is a
continuous function of β for β ∈ (αj ,∞).

(b) {β : #σ+(Kβ) = j} = (αj , αj+1].

(c) λβj → 0 as β → αj+.

(d) If #σ+(Kβ) = ∞ for some β and if #σ+(Kα) < ∞ for α < β,
then #σ+(Kα) → ∞ as α → β−.

Proof. In this proof, we assume that Kβ acts on X+ rather than
L2(0, β). The spectrum of Kβ is unchanged. For 0 ≤ α < β < ∞,

|Kβf(s) − Kαf(s)| ≤
∫ β

α

|κ(s − t)f(t)| dt

≤ ||f ||∞
∫ s−α

s−β

|κ(u)| du,
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||Kβ − Kα|| ≤ sup
r∈R

∫ r+β−α

r

|κ(u)| du,

||Kβ − Kα|| → 0 as β − α → 0.

Since each operator Kβ is compact, it follows by a simple argument
(see [1, Proposition 5.3]) that

{Kβ : 0 ≤ β ≤ γ} is collectively compact for any γ ∈ R+.

For any r > 0, let #σr(Kβ) be the number of eigenvalues λβj of Kβ

with λβj > r (counting multiplicities). Since Kβ is compact, #σr(Kβ)
is finite. In other terminology, #σr(Kβ) is the dimension of the spectral
subspace associated with the spectral set {λ ∈ σ(Kβ) : λ > r}. By the
continuous analogue of Theorem 4.16 in [1], there exists δ(β, r) > 0
such that

#σr(Kα) = #σr(Kβ) for |α − β| < δ(β, r),
λαj → λβj as α → β for j ≤ #σr(Kβ).

Thus, for each j, λβj is a continuous function of β for β in an
open set which, by Theorems 4.1 and 4.3, has the form (αj ,∞) with
0 ≤ αj ≤ αj+1 < ∞. This proves (a), which implies (b). Consider (c).
First, assume αj = 0 for some j. Let β → 0. Then Mβ ≤ ||Kβ || → 0
as β → 0, and (b) is valid for this case. Now consider (c) with αj > 0.
By (b), #σ+(Kαj

) < j. Since #σ+(Kαj
) is finite, there exists rj > 0

such that

#σr(Kαj) = #σ+(Kαj) < j for 0 < r < rj .

From above, #σr(Kβ) = #σr(Kαj) < j for |β − αj | < δ(αj , r),
0 < r < rj . Since λβ1 ≥ λβ2 ≥ · · · ≥ λβj > 0 for β > αj , it follows
that λβj ≤ r for αj < βj < αj + δ(αj , r), 0 < r < rj , which implies (c).
Finally, consider (d). From above, #σ+(Kα) ≥ #σr(Kα) = #σr(Kβ)
for β − δ(β, r) < α < β. Let r → ∞ to obtain (d).

The final theorem in this section gives estimates for sums of eigenval-
ues of Kβ . When all the eigenvalues are positive, trace estimates are
obtained. In the theorem

κ̂+(p) =
{

κ̂(p) if κ̂(p) ≥ 0,
0 if κ̂(p) < 0.
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Since κ ∈ L1(R), both κ̂(p) and κ̂+(p) are continuous and approach
zero as p → ±∞.

Theorem 4.5. Assume κ ∈ L1(R), ||κ||1 �= 0 and κ(−u) = κ(u).

(a) lim infβ→∞ 2π
β

∑
λ∈σ+(Kβ) λ ≥ limP→∞

∫ P

−P
κ̂+(p) dp.

(b) lim infβ→∞ 2π
β

∑
λ∈σ(Kβ) |λ| ≥ limP→∞

∫ P

−P
κ̂+(p) dp.

The limits on the right can be finite or infinite.

Proof. Define pj = pβj = 2πj/β for j ∈ Z. Then, as in Example
3.1, {ϕβpj

: j ∈ Z} is an orthonormal set in L2(0, β). So too is any
subset, such as the subset for which κ̂(pj) ≥ 0. It therefore follows
from Theorem A3 in the Appendix that, for any P > 0,∑

λ∈σ+(Kβ)

λ ≥
∑
j∈Z

κ̂(pj)≥0
|pj |≤P

(Kβϕβpj
, ϕβpj

).

Let ε > 0. It follows from Theorem 3.2(b) that there exists β0 = β0(ε)
such that |(Kβϕβpj

, ϕβpj
) − κ̂(pj)| < ε for β ≥ β0, j ∈ Z. Then, for

β ≥ β0,
2π

β

∑
λ∈σ+(Kβ)

λ ≥
∑
j∈Z

κ̂(pj)≥0
|pj |≤P

[κ̂(pj) − ε],

2π

β

∑
λ∈σ+(Kβ)

λ ≥ 2π

β

∑
j∈Z

|pj |≤P

κ̂+(pj) −
(

2P+
2π

β0

)
ε.

The first term on the right is a Riemann sum for the continuous function
κ̂+ on [−P, P ] with Δp = 2π/β. Thus, there exists β1 ≥ β0 such that

2π

β

∑
λ∈σ+(Kβ)

λ ≥
∫ P

−P

κ̂+(p) dp −
(

4P +
4π

β0

)
ε

for β ≥ β1. Since this inequality holds for any ε > 0, it follows that

lim inf
β→∞

2π

β

∑
λ∈σ+(Kβ)

λ ≥
∫ P

−P

κ̂+(p) dp.
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Let P → ∞ to obtain (a) in the theorem. Then (b) follows trivially.

Example 4.2. Let

κ(u) =
{

1, |u| ≤ 1,
0, |u| > 1.

Then

κ̂(p) =
{ 2, p = 0,

2 sin p
p , p �= 0.

In this case, κ̂ /∈ L1(R),

∫ P

−P

κ̂+(p) dp → ∞ as P → ∞,

and Theorem 4.5 gives∑
λ∈σ+(Kβ)

λ → ∞ as β → ∞.

Example 4.3. Let κ(u) = e−|u|, as in Example 4.1. In this case,
Theorem 4.5 gives

lim inf
β→∞

2π

β

∑
λ∈σ+(Kβ)

λ ≥ 2π.

5. Toeplitz forms. Further information about the distribution of
the eigenvalues of Kβ is furnished by results on Toeplitz forms given
in the book by Grenander and Szegö [4]; see also Kac, Murdock, and
Szegö [6]. They work in a more restrictive setting:

κ ∈ L2(R), κ(−u) = κ(u), κ̂ ∈ L1(R), κ̂ bounded.

For [a, b] ⊂ σ(K) with 0 /∈ [a, b], let Nβ(a, b) be the number of
eigenvalues λ ∈ σ(Kβ) with a < λ < b, where the eigenvalues are
repeated as to multiplicity. Let ν denote Lebesgue measure on R.
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Theorem 5.1 [4, Theorem 8.6]. Assume κ ∈ L2(R), κ(−u) = κ(u),
κ̂ ∈ L1(R), and κ̂ bounded. Let a, b ∈ R such that 0 /∈ [a, b] and

ν{p : κ̂(p) = a} = 0, ν{p : κ̂(p) = b} = 0.

Then

lim
b→∞

Nβ(a, b)
β

=
1
2π

ν{p : a < κ̂(p) < b}.

Now suppose that κ ∈ L1(R), κ(−u) = κ(u), and κ̂ ∈ L1(R). Then
both κ and κ̂ are bounded and continuous. It follows that κ ∈ L2(R)
and κ̂ ∈ L2(R). For example, the Picard kernel satisfies all these
conditions, but Example 4.2 does not.

Theorem 5.2. Assume κ ∈ L1(R), κ(−u) = κ(u) and κ̂ ∈ L1(R).
Then σ(Kβ) is asymptotically dense in σ(K) as β → ∞.

Proof. A number λ ∈ σ(K) will be called a regular point if ν{p :
κ̂(p) = λ} = 0 and otherwise an irregular point. It is an easy exercise
to show that the set of irregular points is countable. For example, if
we define

f(λ) = ν

{
θ ∈ (−1, 1) : κ̂

(
tan

π

2
θ

)
= λ

}
, λ ∈ σ(K),

then λ is irregular if and only if f(λ) > 0. Since f(λ) ≤ 2, there are at
most two irregular points with f(λ) ≥ 1, at most four with f(λ) ≥ 1/2,
and so on, which gives a countable ordering of the irregular points of
σ(K).

For any ε > 0, the spectrum σ(K) = [m, M ] can be covered by a
finite number of open intervals Ij , j = 1, . . . , n, each of length ε. If one
or more endpoints happen to irregular, move each such endpoint so as
to (a) make each endpoint a regular point; (b) reduce the length of the
interval; (c) retain a covering of σ(K) = [m, M ].

Since the set of irregular points is countable, this is possible. By
Theorem 5.1, there exists β(ε) such that each interval Ij contains at
least one eigenvalue of Kβ for β ≥ β(ε).
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Example 5.1. For the Picard kernel κ(u) = e−|u|, Theorem 5.1
gives

lim
β→∞

Nβ(a, b)
β

=
1
π

[(
2
a
− 1

)1/2(2
b
− 1

)1/2]
for 0 < a < b < 2.

This is consistent with Theorem 5.2.

APPENDIX

Let A be a compact self-adjoint operator on a Hilbert space H. We
shall estimate the number of positive eigenvalues of A in terms of values
of quadratic forms (Axj , xj) with {xj} orthonormal. Lower bounds for
leading eigenvalues are also given.

Assume that A has at least one positive eigenvalue. Let σ+(A) =
{λ ∈ σ(A) : λ > 0}. Then

σ+(A) = {λk : k = 1, 2, . . . },

where the positive eigenvalues are repeated as to multiplicity, and

λ1 ≥ λ2 ≥ · · · ≥ λk ≥ · · · .

Let #σ+(A) = n if σ+(A) = {λ1, . . . , λn} and #σ+(A) = ∞ otherwise.
If #σ+(A) = ∞, then λk → 0 as k → ∞.

There exist orthonormal eigenfunctions ϕk ∈ H such that

Aϕk = λkϕk, (Aϕk, ϕk) = λk.

The eigenvalues λk are the maximum values of Rayleigh quotients
(Ax, x)/||x||2 on successive subspaces of H. In other words, the positive
eigenvalues of A are also the positive eigenvalues of the quadratic form
(Ax, x) (see, for example, [12, Chapter 3]).

We shall make use of the following monotonicity property associated
with the Rayleigh-Ritz method (see, for example, [12, Chapter 3,
Theorem 7.1]). In this theorem and throughout the appendix, A is
compact, self-adjoint, and has at least one positive eigenvalue. The
positive eigenvalues of A are labelled as above.
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Theorem A1. Let V be a subspace of H. Assume that on V the
quadratic form (Ax, x) has at least n positive eigenvalues

μ1 ≥ μ2 ≥ · · · ≥ μn,

repeated as to multiplicity. Then #σ+(A) ≥ n and

λj ≥ μj for j = 1, . . . , n.

If the subspace V in the theorem is finite dimensional, then the
eigenvalues μj are just the eigenvalues of the matrix {(Axj , xk)}, where
{xj} is an orthonormal basis for V .

Lemma A1. Let {xj : j = 1, . . . , n} be an orthonormal set in
H. Let the eigenvalues of the matrix {(Axj , xk) : j, k = 1, . . . , n} be
μ1 ≥ μ2 ≥ · · · ≥ μn, repeated as to multiplicity. Assume that exactly
n0 of these eigenvalues are positive. Then

(a) #σ+(A) ≥ n0,

(b) λj ≥ μj for j = 1, . . . , n0,

(c)
∑n0

j=1 λj ≥ ∑n
j=1(Axj , xj).

Proof. Both (a) and (b) follow directly from Theorem A1. Part (c)
follows from

n0∑
j=1

λj ≥
n0∑

j=1

μj ≥
n∑

j=1

μj =
n∑

j=1

(Axj , xj).

An immediate consequence is

Corollary A1. Let {xj : j = 1, . . . , n} be an orthonormal set in H.
Then

(a)
∑

λ∈σ+(A) λ ≥ ∑n
j=1(Axj , xj),

(b)
∑n

j=1 λj ≥ ∑n
j=1(Axj, xj), if #σ+(A) ≥ n.
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Theorem A2. Assume that there exists an orthonormal set
{xj : j = 1, . . . , n} in H, with n ≥ 1, such that

(Axj , xj) >
n − 1

n
λ1 for j = 1, . . . , n,

or the weaker condition
n∑

j=1

(Axj, xj) > (n − 1)λ1.

Then

(a) #σ+(A) ≥ n,

(b) λj > [(n − j)/(n − j + 1)]λ1 for j = 1, . . . , n.

Proof. From the weaker hypothesis and Corollary A1(a),∑
λ∈σ+(A)

λ > (n − 1)λ1,

which cannot hold if #σ+(A) < n. Hence, #σ+(A) ≥ n and (a) is
established. Consider (b). For j = 2, . . . , n, we have

(j − 1)λ1 ≥
j−1∑
k=1

λk, (n − j + 1)λj ≥
n∑

k=j

λk.

By Corollary A1(b) and the weaker hypothesis of the theorem,

(j − 1)λ1 + (n − j + 1)λj ≥
n∑

k=1

λk ≥
n∑

k=1

(Axk, xk)

> (n − 1)λ1,

which implies (b).

Theorem A3. Let {xj : j = 1, 2, . . . } be an orthonormal set in H.
Then ∑

λ∈σ+(A)

λ >

∞∑
j=1

(Axj, xj).
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Proof. This follows by letting n → ∞ in Corollary A1(a).
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