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UNCONVENTIONAL SOLUTION OF SINGULAR
INTEGRAL EQUATIONS

EZIO VENTURINO

ABSTRACT. A simple method for the solution of second-
kind singular integral equations with negative index is inves-
tigated. It makes use of Gaussian quadrature that is not of
the type suggested by the theory. The major advantage is
its simplicity. The error analysis shows that under reasonable
assumptions on the smoothness of the solution, the proposed
method is convergent. Numerical experiments reveal a higher
convergence rate than the one obtained theoretically.

1. Introduction. In the recent literature, the numerical solution of
singular integral equations (SIE’s) has received considerable attention.
It is possible to reduce SIE’s to Fredholm integral equations, but
in practice direct methods are preferred. The unknown function is
replaced by the product of a smooth function times the fundamental
function of the problem, with the latter taken as the weight of a
quadrature rule. For variable coefficient SIE’s, the weight function is
nonclassical and the nodes and weights of the quadrature rule must be
constructed from scratch. For constant coefficient SIE’s, this reduces
to Jacobi quadrature.

In this paper we want to analyze the replacement of the possibly non-
classical weights and nodes by the weights and zeros of the Chebyshev
polynomials. This is a simpler approach than the standard one. It
also has the basic advantage that in doubling the size of the system,
the values of the kernel evaluated at the earlier run can be reused. It
may also lead to a fast method for second kind SIE’s. Recently a fast
method has been proposed for first kind equations [11], but for second
kind equations, one of the difficulties seems to be related to the asym-
metry of the Jacobi nodes. In [21] an algorithm which uses arbitrary
nodes is proposed, but no error analysis is provided. Here we consider
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nodes which are one of the best choices from the approximation the-
oretic point of view and we want to develop the error analysis for the
proposed method. Another perspective of this study is to investigate
the effect on its solution of perturbing the coefficients of the equation,
while still retaining the original quadrature rule. In contrast with some
recent local methods based on spline approximation of the solution [16
and the literature cited therein, 17], this study concerns only global
polynomial approximations.

The SIE considered here has constant coefficients so that we can com-
pare the method with Gauss-Jacobi quadrature. The index is negative,
which implies the fundamental function is bounded at the endpoints.
The error analysis can be carried out under two restrictive assumptions.
First, we require the solution to possess a Hölder continuous derivative,
a similar requirement being necessary in the convergence proof for first
kind equations based on an interpolation scheme [18]. Second, a bound
on the size of the coefficients is imposed. Since we are unable to find a
closed form inverse for the matrix of the discretized system, we perform
the error analysis by treating the singular operator as a perturbation
of the identity. In the experiments no problems were encountered when
this last condition was lifted.

The paper is organized as follows. In the next section the problem is
stated, and Section 3 presents the numerical scheme. Section 4 deals
with the error analysis, and Section 5 considers the complete equation.

2. Mathematical preliminaries. The dominant part of the second
kind singular integral equation with real constant coefficients can be
written as

(2.1) aφ(x) +
b

π

∫ 1

−1

− φ(t) dt

t − x
= f̃(x), −1 < x < 1

where the singular integral is interpreted in the Cauchy principal value
sense. It is not restrictive to assume the coefficients to satisfy a > 0,
a2 + b2 = 1. The fundamental function ρ(x) of the problem is defined
by ρ(x) = (1 − x)α(1 + x)β with

α =
1

2πi
ln

a − ib

a + ib
+ M, β = − 1

2πi
ln

a − ib

a + ib
+ N,
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M and N being integers chosen so that |α|, |β| < 1. The index of the
equation is χ = −(α + β) = −(M + N). We assume here χ = −1,
which implies 0 ≤ α, β ≤ 1. The solution to (2.1) exists provided the
following orthogonality condition is satisfied

(2.2)
∫ 1

−1

f(x)[ρ(x)]−1 dx = 0.

Even though this condition has been used [13] to investigate the
overdetermined system arising in the discretization of the SIE, as
proposed in [9, p. 596], we will not make use of it. From a well-known
formula [12, p. 290] and the assumption on the index, we obtain

∫ 1

−1

ρ(t)(t − x)−1 dt = πρ(x) cot(πα)

(2.3)

− 2B(α, β + 1)2F1

(
− 1, 1; 1 − α;

1 − x

2

)

= −π[a/bρ(x) − 2 csc(πα)P (−α,−β)
1 (x)]

where P
(α,β)
n (x) denotes the Jacobi polynomial of degree n relative to

the weight function ρ(x), and P
(−α,−β)
n (x) the one relative to [ρ(x)]−1.

Usually the unkown is rewritten by explicitly expressing the singular
behavior at the endpoints via the function ρ and introducing a new
unknown function g: φ(x) = ρ(x)g(x). On using (2.3), (2.1) becomes:

(2.4)
b

π

∫ 1

−1

ρ(t)
g(t) − g(x)

t − x
dt − 2b csc(πα)P (−α,−β)

1 (x)g(x) = f̃(x).

In [15, p. 114] the solution of the SIE is sought among the functions
satisfying a Hölder condition, and the right hand side is assumed to
satisfy the same hypothesis. Also, by reducing the SIE to a Fredholm
integral equation, [15, p. 134 139], it is shown that if f̃ is assumed to
be Hölder continuous, the solution φ is also. In practice, the function
g is assumed to be smooth. The integral in (2.4) exists and can be
discretized by an ordinary Gaussian quadrature. If qk, k = 1, . . . , n

denote the zeros of P
(α,β)
n (x) and cj , j = 0, . . . , n those of P

(−α,−β)
n+1 (x),
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the following square system is obtained

−
[
2 csc(πα)P (−α,−β)

1 (cj) +
n∑

k=1

wk

qk − cj

]
g(cj)

+
n∑

k=1

wk

qk − cj
g(qk) = f(cj), j = 0, . . . , n(2.5)

g(qk) =
n∑

j=0

lj(qk)g(cj) k = 1, . . . , n

where f(x) = f̃(x)/b, the wk’s denote the weights of the Gauss-Jacobi
quadrature, and lj(x) are the Lagrange fundamental polynomials con-
structed on the nodes cj , j = 0, . . . , n, [20, p. 328]. Observe that
cj �= qk, j = 0, . . . , n, k = 1, . . . , n, since b �= 0, as discussed in [8, p.
62]. Note that the system is of order 2n + 1.

Here we want to replace Gauss-Jacobi quadrature with Lobatto-
Chebyshev quadrature; see, e.g., [2, p. 104 or 19]. Let

φ(x) = y∗(x)/
√

1 − x2

so that

(2.6) y∗(x) = ρ̃(x)g(x), ρ̃(x) ≡
√

1 − x2ρ(x).

Now, proceeding as before, (2.4) is replaced by
(2.7)

−2 csc(πα)P (−α,−β)
1 (x)

y∗(x)
ρ̃(x)

+
1
π

∫ 1

−1

ρ̃(t)√
1 − t2

g(t) − g(x)
t − x

dt = f(x).

Let Hλ[−1, 1] denote the class of Hölder continuous functions of order
λ on [−1, 1]; then

(1) Clearly, ρ̃ ∈ Hλ[−1, 1], with λ = min(α + 1/2, β + 1/2) > 1/2.

(2) If g(x) is required to possess a Hölder continuous first derivative,
say g′ ∈ Hσ[−1, 1], σ > 1/2, we can then define

h(x, t) =
{

ρ̃(t)(g(t) − g(x))/(t − x) −1 < x �= t < 1
ρ̃(t)g′(t) −1 < t = x < 1

.
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It follows that h ∈ Hμ[−1, 1], μ = min(λ, σ) > 1/2, as function of the
variable t.

Throughout the paper {ei} denotes the standard basis in Rn, and 0n

denotes the null vector in the same space. {tk : k = 1, . . . , n} denotes
the zeros of the Chebyshev polynomials of the first kind Tn(x), and
{sj : j = 1, . . . , n − 1} those of second kind polynomial Un−1(x), with
s0 = 1, sn = −1.

3. Analysis of the numerical scheme. On applying Lobatto-
Chebyshev quadrature to (2.7) followed by collocation at tk, and using
(2.6) to eliminate the unknown g, we are led to

(3.1)

−y∗(tk)
ρ̃(tk)

[
2 csc(πα)P (−α,−β)

1 (tk) +
1
n

n∑′′

j=0

ρ̃(sj)
sj − tk

]

+
1
n

n∑′′

j=0

y∗(sj)
sj − tk

+ εQ(tk) = f(tk), k = 1, . . . , n

where εQ(x) is the quadrature error. This system is of size n by (2n+1).
To obtain a square system we may use Lagrange interpolation:

y∗(sj) =
n∑

k=1

y∗(tk)
Tn(sj)

(sj − tk)T ′
n(tk)

+ εI(sj),

j = 1, . . . , n − 1(3.2)

where εI(x) represents the interpolation error. We also need the known
information on the behavior of the solution at the endpoints:

(3.3) y∗(s0) = y∗(sn) = 0.

Dropping the error terms, we obtain a square system for the unknown
vector

y = (y(s0)/
√

2, y(s1), . . . , y(sn−1), y(sn)/
√

2, y(t1), . . . , y(tn))T

approximating the exact solution y∗. The system can be cast in the
partitioned form

(3.4) My ≡
(

A B
Ĩ L̃

)
y = f.
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Here

f = (f(t1), . . . , f(tn), 0 . . . 0)T = (bT , 0T
n+1)

T

B = diag (βk), k = 1, . . . , n

βk = − 1
ρ̃(tk)

[
2 csc(πα)P (−α,−β)

1 (tk) +
1
n

n∑′′

j=0

ρ̃(sj)
sj − tk

]

Ai,j+1 =

⎧⎨
⎩

1
n

1
sj−ti

for j = 1, . . . , n − 1 i = 1, . . . , n

1√
2n

1
sj−ti

if j = 0, n i = 1, . . . , n

Ĩ = diag (
√

2, 1, . . . , 1,
√

2)

L̃j+1,k =

⎧⎪⎪⎨
⎪⎪⎩

− Tn(sj)
(sj−tk)T ′

n(tk) =
(−1)j+k

√
1−t2

k

n(sj−tk) j = 1, . . . , n − 1

k = 1, . . . , n

0 if j=0, n k = 1, . . . , n.

I and L represent Ĩ and L̃ once their first and last rows are removed.
Note that the system is of order (2n + 1), the same size as the system
arising from ordinary Gaussian quadrature. But conditions (3.3) are
not implemented.

Alternatively, in addition to Lobatto-Chebyshev quadrature we can
apply Gauss-Chebyshev quadrature to (2.7) to obtain

(3.5) M̃ ỹ ≡
(

A B
P Q

)
ỹ = f̃

with

f = (f(t1), . . . , f(tn), f(s0), . . . , f(sn))T

P = diag (
√

2, γ1, . . . , γn−1,
√

2)

γj = − 1
ρ̃(sj)

[
2 csc(πα)P (−α,−β)

1 (sj) +
1
n

n∑′′

j=0

ρ̃(tk)
tk − sj

]

Qj,k+1 =

{
1
n

1
tk−sj

for j = 1, . . . , n − 1 k = 1, . . . , n

0 if j = 0, n k = 1, . . . , n
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Observe that, on using (A.6) and (2.4) we have for k = 1, . . . , n,

−2 csc(πα)P (−α,−β)
1 (tk) − 1

n

n∑′′

j=0

ρ̃(sj)
sj − tk

=
a

b
ρ(tk) +

1
π

∫ 1

−1

− ρ(t)
dt

t − tk
− 1

n

n∑′′

j=0

ρ̃(sj) − ρ̃(tk)
sj − tk

.=
a

b
ρ(tk) +

1
π

ρ̃(tk)
∫ 1

−1

dt

(t − tk)
√

1 − t2
=

a

b
ρ(tk),

the equality being approximated because we have suppressed the
Lobatto-Chebyshev quadrature error. Proceeding similarly for γj ’s we
can then rewrite the coefficients:

(3.6)
βk =

a

b
√

1 − t2k
, k = 1, . . . , n, γj =

a

b
√

1 − s2
j

, j = 1, . . . , n−1.

For the error analysis, we need two preliminary results on the singular
value decompositions of the submatrices

(3.7) C = [A, B] G = [Ĩ , L̃] H = [P, Q].

The first result is a straightforward generalization of [10].

Proposition 1. The matrix C has full rank. Its singular values are:

(3.8) δi = [|b|(1 − t2i )
1/2]−1 i = 1, . . . , n

and the corresponding two sets of singular vectors are:

v∗
i = ei i = 1, . . . , n(3.9)

ωi = (nδi)−1

[
1√
2
(1 − ti)−1, (s1 − ti)−1, . . . ,(3.10)

(sn−1 − ti)−1,
−1√

2
(1 + ti)−1, nβieT

i

]T

,
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for i = 1, . . . , n. Furthermore, ker (C) is spanned by the linearly
independent set:

(3.11)
u∗

1 = (1, 0T
n ,−(

√
2nβ1)−1(1 − t1)−1, . . . ,−(

√
2nβn)−1(1 − tn)−1)T

u∗
j+1 = (0, eT

j ,−(nβ1)−1(sj − t1)−1, . . . ,−(nβn)−1(sj − tn)−1)T

j = 1, . . . , n − 1.

u∗
n+1 = (0, eT

n , (
√

2nβ1)−1(1 + t1)−1, . . . , (
√

2nβn)−1(1 + tn)−1)T .

Also, H has full rank, and its singular values are

δ̃j = [|b|(1 − s2
j)

1/2]−1 j = 1, . . . , n − 1, δ̃j = 1, j = 0, n.

The associated singular vectors are

v∗∗i = ei i = 1, . . . , n + 1,

ω∗
j = (nδ̃j)−1[0T

j , nγj , 0T
n−j , (t1 − sj)−1, . . . , (tn − sj)−1]T

j = 1, . . . , n − 1,

ω∗
0 = (1, 0T

2n) ω∗
n = (0T

n , 1, 0T
n ).

Finally, ker (H) is spanned by the linearly independent set

u∗∗
k = [0, (nγ1(tk − s1))−1, . . . , (nγn−1(tk − sn−1))−1, 0, eT

k ],
k = 1, . . . , n.

Proposition 2. The matrix G of (3.7) has the singular values

(3.12) μ1 =

√
1 +

1
n

, μ2 = · · · = μn+1 =
√

2

The associated orthonormalized singular vectors are

(v1)k =
{

(n − 1)−1/2(−1)k k = 2, . . . , n

0 k = 1, n + 1

for j = 2, . . . , n − 1,



UNCONVENTIONAL SOLUTIONS 451

(3.13)

(vj)k =

⎧⎪⎨
⎪⎩

(−1)j+k(j(j − 1))−1/2 2 ≤ k ≤ j√
1 − 1

j k = j + 1

0 k = 1 or j + 2 < k < n + 1

vn = e1 vn+1 = en+1

and

(u1)k =

⎧⎪⎪⎨
⎪⎪⎩

(−1)k[n/(n2 − 1)]1/2 2 ≤ k ≤ n

(−1)l[n(n2 − 1)]−1/2tl(1 − t2l )
−1/2 n + 1 < k ≤ 2n + 1

l = k − n − 1
0 k = 1, n + 1

(3.14)

(uj)k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 k = 1, n + 1 j+2 ≤ k ≤ n+1
(−1)j+k(2j(j − 1))−1/2 2 ≤ k ≤ j

[(j − 1)/2j]1/2 k = j + 1

[2j(j − 1)]−1/2 (−1)
n

j−1+l √
1 − t2l

[∑j−1
i=1

1
si−tl

− j−1
sj−tl

]
n+2 ≤ k ≤ 2n+1
l = k − n − 1

j = 2, . . . , n − 1 un = (1, 0T
2n)T un+1 = (0T

n , 1, 0T
n )T

Finally, ker (G) is spanned by the following set of linearly independent
vectors:
(3.15)

(r∗i )k =

⎧⎪⎨
⎪⎩

(−1)i+k

n
1

sk−1−ti
2 ≤ k ≤ n

0 k = 1 n+1 ≤ k ≤ 2n+1, k �= i+n+1
(1 − t2i )

−1/2 k = n + 1 + i

i = 1, . . . , n.

Proof. Observe that the matrix GGT has the block diagonal structure:
GGT = diag (2, E, 2) with E ≡ I + LLT . Since in view of (A.3) and
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(A.4) we have

(LLT )ij =
(−1)i+j

n2

n∑
k=1

1 − t2k
sj − si

(
1

si − tk
− 1

sj − tk

)

=
(−1)i+j

n2(sj − si)

{
(1 − s2

i )
n∑

k=1

1
si − tk

− (1 − s2
j )

n∑
k=1

1
sj − tk

+
n∑

k=1

(si + tk − sj − tk)
}

=
(−1)i+j+1

n

i, j = 1, . . . , n − 1, i �= j

and

(LL)T
ii =

1
n2

n∑
k=1

1 − t2k
(si − tk)2

=
1
n2

[
(1 − s2

i )
n∑

k=1

1
(si − tk)2

+
n∑

k=1

(
−1 +

2si

si + tk

) ]
= 1 − 1

n
i = 1, . . . , n − 1,

E has the form:

Eij =

{
(−1)

n

i+j−1
i �= j, i, j = 1, . . . , n − 1

2 − 1
n i = j = 1, . . . , n − 1.

This is a Toeplitz matrix, of which the eigenvalues are needed. Define
the elementary matrix R by

Rij =
{

1 if i = j or i = j + 1, i, j = 1, . . . , n − 1
0 otherwise.

Let E(λ) = R[E − λI]. Easily, detE(λ) = det [E − λI] so that the
eigenvalues of E(λ) and of E are the same. Now:

E(λ)1j =

{
2 − 1

n − λ j = 1

(−1)j

n j = 2, . . . , n − 1

E(λ)ii = E(λ)i,i−1 = 2 − λ i = 2, . . . , n − 1
E(λ)ij = 0 otherwise.
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Expanding the determinant of E(λ) along the first row the character-
istic polynomial can easily be expressed as:

pn−1(λ) = (2 − λ − (1/n))(2 − λ)n−2 − (1/n)(n − 2)(2 − λ)n−2.

From this the eigenvalues of E are obtained: λ1 = 1 + 1/n and λ2 =
· · · = λn−1 = 2; thus the singular values (3.14) follow immediately.
The corresponding eigenvectors satisfy the equations:

(x1)i−1 = −(x1)i i = 2, . . . , n − 1

and
1
n

n−1∑
i=1

(−1)i(xj)i = 0 j = 2, . . . , n − 1.

It follows that the first eigenvector is

(x1)k = (−1)k−1 k = 1, . . . , n − 1

while the remaining ones are

(xj)j−1 = (xj)j = 1 j = 2, . . . , n − 1

(xj)k = 0 otherwise.

However, these vectors are not orthogonal. Let

v1 = ||x1||−1
2 x1 = (n − 1)−1/2x1.

Note that vT
1 xj = 0, j = 2, . . . , n − 1.

Application of the Gram-Schmidt procedure yields v2 = (1/
√

2)x2.

Now let us assume the general shape (3.13) for vj and show that the
same formula holds for vj+1. By induction (3.13) will then be proved.
Observe that xT

j+1vk = 0, k = 1, . . . , j − 1.

In the orthogonalization procedure it is then enough to consider

x̃j+1 = xj+1 − (xT
j+1vj)vj = xj+1 − (1 − (1/j))1/2vj .
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Componentwise:

(x̃j+1)k =
(−1)j+k−1

j − 1
j − 1

j
=

(−1)j+1+k

(j + 1) − 1
k = 1, . . . , j − 1

(x̃j+1)j = 1 − j − 1
j

=
1

(j + 1) − 1
(x̃j+1)j+1 = 1

(x̃j+1)k = 0 k = j + 2, . . . , n − 1.

Moreover,

||x̃j+1||2 =
j∑

k=1

1
j2

+ 1 =
j + 1

j
.

From these considerations, the representation (3.13) of the singular vec-
tors of G is obtained by embedding these results in the block structure
of GGT . The other related set of singular vectors is constructed from

μiui = GT vi i = 1, . . . , n + 1.

Since vi’s form an orthonormal set of vectors, so will the ui’s. Observe
that from (A.1),

(LT v1)l =
(−1)l+1

n
√

n − 1

√
1 − t2l

n−1∑
k=1

1
sk − tl

=
(−1)l

n
√

n − 1
tl√

1 − t2l

l = 1, . . . , n.

Also, for j = 1, . . . , n − 2,

(LT vj+1)l =
(−1)

n

j+l (
1 − t2l

j(j + 1)

)1/2 ( j∑
k=1

1
sk − tl

− j

sj+1 − tl

)

l = 1, . . . , n.

From these computations (3.14) is immediate. To find the spanning set
for ker (G), let r∗ = (r̃T

1 , r̃T
2 )T be a solution of the homogeneous system

Gr∗ = 0 with r̃1 ∈ Rn+1, r̃2 ∈ Rn. The system can be cast in the
form: Ĩ r̃1 = −L̃r̃2 so that, on taking subsequently r̃2 = (1 − t2i )

−1/2ei,
i = 1, . . . , n, we obtain the linearly independent vectors (3.15).



UNCONVENTIONAL SOLUTIONS 455

For the remainder of this section and the following one, we make the
following restrictive assumption on the coefficients of the equation:

(3.16) |b| < a.

We can now show

Proposition 3. Under assumption (3.16), systems (3.4) and (3.5)
are nonsingular.

Proof. The diagonal matrix B is square and nonsingular in view of the
representation (3.6) of its elements. Let c = (cT

1 , cT
2 )T be a nontrivial

solution of the homogeneous system Mc = 0. From the second set of
equations, c1 = −L̃c2 so that B(I −B−1AL̃)c2 = 0. Observe now that
||L̃||22 = max σ(L) where σ(L) denotes the singular values of L. These
are obtained from those of E, in Proposition 2, by a shift of −1. Note
also that LLT and LT L have the same nonzero eigenvalues. It follows
that ||L||22 = max(1, (1/n)) = 1. Also, from Proposition 1,

B−1AAT B−1 =
b2

a2
diag

√
1 − t2kdiag

1
1 − t2k

diag
√

1 − t2k

yielding in view of the assumption ||B−1A||2 = |b|/a < 1. The matrix
I − B−1AL̃ is thus invertible and thus c2 = 0, implying c1 = 0.
Contradiction. (3.5) is reduced to B(I − B−1AP−1Q)c2 = 0; then
observe that

||B−1AP−1Q||2 ≤ ||B−1A||2||P−1Q||2 ≤ b2a−2 < 1.

4. Error analysis. In the discretization procedure there are two
types of error vectors. Let εL be the Lobatto-Chebyshev quadrature
error, εG the Gauss-Chebyshev quadrature error, and εI the interpola-
tion error. The exact solution y∗ of (3.4) satisfies the system:

(4.1) My∗ = b∗ ≡ (bT − εT
L , εT

I )T .

Define the error vector e = y∗ − y = (eT
L , eT

I )T . Subtraction of (3.4)
from (4.1) leads to the error equation

(4.2) Me = (−εT
L, εT

I )T .
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Solving the second set of equations and substituting into the first one
yields:

(B − AL)eI = −εL − AεI

Taking norms and recalling the proof of Proposition 3,

||eI ||2 ≤ ||(I − B−1AL)−1||2(||B−1εL||2 + ||B−1AεI ||2)
≤ (1 − ||B−1A||2||L||2)−1 |b|

a
(||εL||2 + ||εI ||2).

Then from the above estimate,

||e||∞ ≤ 2|b|(a − |b|)−1n1/2 max(||εI ||∞, ||εL||∞).

For (3.5), minor modifications yield the same estimate, with εI replaced
by εG. Both the interpolation and the quadrature errors can be given
in terms of the best approximation error En(h) using the Lebesgue
constant ΛU for the set of nodes U = {s0, . . . , sn}.

The use of Jackson’s theorem and the fact that h ∈ Hμ[−1, 1],
together with known bounds on the Lebesgue constant yield

||εL||∞, ||εG||∞ ≤ (1 + ΛU )En(h) ≤ C1 ln n ω(h; 1/n) ≤ C2n
−μ+ε,

||εI || ≤ C3n
−λ+ε,

with ε > 0 arbitrarily small, and where C1, . . . , C5 represent constants.
Summarizing,

Proposition 4. Under assumption (3.16) for the discretization
error, the following estimate holds

(4.3) ||e||∞ ≤ C4n
−μ+1/2+ε.

We finally address the question of the convergence of the solution,
reconstructed from the solution vector y, to the analytical solution
y∗(x). The approximate solution can be represented by the Lagrange
interpolatory polynomial p2n−2(x) on the nodes {t1, s1, . . . , sn−1, tn}.
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Since these are the zeros xk = cos(kπ/2n) of U2n−1(x), k = 1, . . . , 2n−
1,

p2n−2(x) =
2n−1∑
k=1

y(xk)
U2n−1(x)

(x − xk)U ′
2n−1(xk)

.

Let p∗2n−2(x) be the polynomial of degree 2n − 2 interpolating on the
exact values of y∗(xk). Thus, if ΛU represents the Lebesgue constant
for the nodes xk,

|p∗2n−2(x) − p2n−2(x)|

≤
2n−1∑
k=1

|y∗(xk) − y(xk)|
∣∣∣∣ U2n−1(x)
(x − xk)U ′

2n−1(xk)

∣∣∣∣ ≤ ||e||∞ΛU .

Taking the maximum and using this result in the triangular inequality:

||y∗(x) − p2n−2(x)||∞ ≤ ||y∗(x) − p∗2n−2(x)||∞
+ ||p∗2n−2(x) − p2n−2(x)||∞ ≤ C3ω(y∗; 1/n) + C4||e||∞ ln n.

Combining these estimates with (4.5), since y∗ ∈ Hλ[−1, 1],

(4.4) ||y∗(x) − p2n−2(x)||∞ ≤ C5n
−η η = min(λ, μ − 1/2 − ε).

Summarizing:

Proposition 5. Under assumption (3.16) the convergence of the
proposed methods is ensured by the above estimate, which also gives the
rate of convergence.

Remark. A similar result holds for the polynomial p2n(x) constructed
on the same nodes as above and on the endpoints −1, 1.

5. The complete equation. We consider now the complete
equation

(5.1) aφ(x) +
b

π

∫ 1

−1

− φ(t) dt

t − x
+

∫ 1

−1

k(x, t)φ(t) dt = f̃(x).
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We assume that k(x, t) ∈ C◦([−1, 1] × [−1, 1]). Introducing the new
unknown y∗(x) as done in Section 2 and proceeding with Lobatto-
Chebyshev quadrature, we obtain

(5.2)
(

A + K B
Ĩ L̃

)
y = f

with

Ki,j+1 =

{
π
nbk(ti, sj) 1 ≤ j ≤ n − 1

π√
2nb

k(ti, sj) j = 0, n
i = 1, . . . , n.

Alternatively, we get

(5.3)
(

A + K B
P Q + K̂

)
y = f

K̂i,j+1 =
{ π

nbk(sj , ti) 1 ≤ j ≤ n − 1
0 j = 0, n

i = 1, . . . , n.

The two-norm of the matrix K can be estimated, by means of its
Frobenius norm

(5.4) ||K||2 ≤ ||k||∞/|b|

where
||k||∞ = max

−1≤x,t≤1
|k(x, t)|.

To proceed with the error analysis, we need a further very strong
restriction of (3.16)

(5.5) |b| + ||k||∞ ≤ a.

The procedure of Section 4 yields

[B − (A + K)L]e2 = −εL − (A + K)εI ,

from which, on taking norms

||e2||∞ ≤ |b|
a − |b| − ||k||∞ [||εL||2 + (1 + ||K||2)||εI ||2].
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A similar estimate holds for (5.3). From these, we have

Proposition 6. Under assumption (5.5) the methods are convergent
with rate μ − 1/2 − ε. If the solution is reconstructed on the whole
interval by means of an interpolatory formula, it converges to y∗(x)
with rate min(λ, μ − 1/2 − ε).

Remark. The previous results show convergence, and the theoretical
rate seems to be low and dependent essentially on the endpoint singu-
larities α and β of the fundamental function. Such estimates are com-
monly accepted in the literature on singular integrals, see e.g., [1,14].

6. Conclusions. It is interesting to note that for α = β ∼= .5, i.e.,
for a = 0, the condition number of the system increases. This can be
theoretically explained, since from (3.6), βk = 0, k = 1, . . . , n. Thus
B ≡ O; and also, from (A.3), if we sum the rows of A we obtain the
zero vector. Thus, the matrix C becomes rank deficient, and the whole
system is then singular. For a = 0, (2.1) reduces to

f̃(x) = π−1

∫ 1

−1

− φ(t) dt

t − x
≡ π−1

∫ 1

−1

− y∗(t)(1 − t2)−1/2(t − x)−1 dt

and after Lobatto-Chebyshev discretization, we get

1
n

n∑′′

j=0

y∗(sj)
sj − tk

= f(tk), k = 1, . . . , n.

This is an overdetermined system similar to the one discussed in [9,13].
If the discretized orthogonality condition is satisfied by f(x), then in
view of (A.3), one of the equations is redundant and can be omitted.
No extra unknowns arise and there is no need for the interpolatory
formulae. The system has size n.

This method is not a general method for solving SIE’s. In engineering
applications where systems of moderate or large size are very likely
to arise, a simple algorithm in place of an expensive method, if low
accuracy is sufficient, may be a viable alternative. This algorithm
could be useful also for equations whose solutions possess a singularity
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in some of the first derivatives, at an unknown location within (−1, 1),
other than the endpoints. To support this claim we show in the table
that this method and Gauss-Jacobi provide similar answers if applied
to such a situation. The performance of both algorithms is degraded
by the presence of the singularity in the third derivative of the solution.
While this dramatically affects the classical rule, it seems to influence
much less the algorithm proposed here. The computations have been
performed in double precision on a 80386-based machine.

Appendix

In the paper the following identities have been used [18,10], with
Tn(ti) = 0, i = 1, . . . , n, Un−1(sj) = 0, j = 1, . . . , n − 1.

(A.1)
n−1∑
j=1

1
tk − sj

=
tk

1 − t2k
k = 1, 2, . . . , n

(A.2)
n−1∑
j=1

1
(tk − sj)2

=
n2

1 − t2k
− 1 + t2k

(1 − t2k)2
k = 1, . . . , n

(A.3)
n∑

k=1

1
sj − tk

= 0 j = 1, . . . , n − 1

(A.4)
n∑

k=1

1
(sj − tk)2

=
n2

1 − s2
j

j = 1, . . . , n − 1

(A.5)
n∑

k=1

1
1 − t2k

= n2

(A.6)
n∑′′

j=0

1
sj − tk

= 0 k = 1, . . . , n
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TABLE. Solution: (.1 + x)2.3 if x > −.1 and −(.1 + x)2.3 if x < −.1.

a = 3.00E-1 b = 9.54E-1 α = 5.97E-1 β = 4.03E-1

CONVENTIONAL ALGORITHM gn denotes the approximate
solution of system (2.5)

size of condition error norm time used
system number ‖g − gn‖∞ in seconds

3 9.93 .26D+00 .06
7 13.28 .30D−01 .11

15 27.20 .17D−01 .38
31 54.91 .13D−01 1.54
63 118.66 .15D−02 6.98

127 300.07 .36D−03 37.35
total time used in seconds 46.42

a = 3.00E-1 b = 9.54E-1 α = 5.97E-1 β = 4.03E-1

LOBATTO CHEBYSHEV ALGORITHM yn denotes
the solution of system (3.4)

size of condition error norm time used
system number ‖g − yn/ρ̃‖∞ in seconds

3 14.92 .67D+00 .06
7 13.02 .99D−01 .16

15 22.29 .11D−01 .33
31 45.14 .17D−02 1.43
63 77.27 .35D−03 6.70

127 222.85 .97D−04 36.47

total time used in seconds 45.15
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