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THE STRUCTURE OF ALGEBRAS OF
SINGULAR INTEGRAL OPERATORS

STEFFEN ROCH AND BERND SILBERMANN

1. Introduction. Recently, the application of local principles al-
lowed to get a deep insight into the nature of algebras of singular inte-
gral operators with piecewise continuous coefficients. In particular, it
turned out that these algebras are isometrically isomorphic to algebras
of continuous functions on a Hausdorff compact which take values in
certain Banach algebras (see [4] and [10] for algebras of operators on
simple closed curves and [7 9] for the case of general composed curves).

In this paper we will employ the above-mentioned results to describe
the center and the commutator ideal of such algebras, and to give some
applications to semi-Fredholm properties of singular integral operators
as well as to the decomposition of the algebra of all singular integral
operators into simpler objects. The basic results from [10] and [7 9]
are concentrated in the first two sections without proofs; for a more
comprehensive acquaintance with singular integral operators, we refer
to the monographs [3, 5, 6, 11].

2. Singular integral operators on the half axis. Given numbers
p and α with p > 1 and 0 < 1/p + α < 1, we let Lp(α) refer to the
Lebesgue space on the positive half axis R+ provided with the norm

||f || =
( ∫ ∞

0

|f(s)|p|s|αp ds

)1/p

,

and we define the singular integral operator S on R+ by

(Sf)(t) =
1
πi

∫ ∞

0

f(s)
s − t

ds, t ∈ R+.

Under the above restrictions for p and α, the operator S is bounded on
Lp(α). Let Σp(α) stand for the smallest closed subalgebra of the algebra
L(Lp(α)) of all bounded linear operators on Lp(α) which contains the
identity operator I and the singular integral operator S.
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The algebra Σp(α) is distinguished by the circumstance that it con-
sists of convolution operators only. More concretely: The algebra Σp(α)
is the smallest closed subalgebra of L(Lp(α)) which contains all Mellin
convolution operators Mo(b) = M−1bM where the function b is contin-
uous on R, possesses finite limits at ±∞, and is of finite total variation,
and where M stands for the Mellin transformation on Lp(α),

(Mk)(z) =
∫ ∞

0

t1/p+α−zi−1k(t) dt, z ∈ R,

and M−1 for the inverse Mellin transformation.

In particular, S = Mo(s) with s(z) = coth(z + i(1/p + α))π and,
denoting by γ a complex number with real part Re γ ∈ (0, 2π), the
operator Nγ ,

(Nγf)(t) =
1
πi

∫ ∞

0

f(s)
s − eiγt

ds, t ∈ R+,

belongs to Σp(α) and Nγ = Mo(nγ) with nγ(z) = exp((z + i(1/p +
α))(π − γ))/ sinh π(z + i(1/p + α)). Set N := Nπ, and denote the
smallest closed two-sided ideal of Σp(α) which encloses N by Np(α).
An operator Mo(b) belongs to the ideal Np(α) if and only if b(±∞) =
limz→±∞ b(z) = 0. Further, the ideal Np(α) can also be characterized
as the smallest closed two-sided ideal of Σp(α) which contains the
operator N2 or any of the operators Nγ . Finally, a result of Costabel
states that the algebra Σp(α) decomposes into the direct sum Σp(α) =
CI �CS �Np(α). (We say that the Banach space X is the direct sum
of its closed subspaces Xj , j = 1, . . . , n, if X is equal to the algebraic
sum X1 + · · ·+Xn, if Xi ∩Xj = {0} for i �= j, and if the original norm
on X and the norm defined by ||x1 � · · · � xn|| := ||x1|| + · · · + ||xn||
are equivalent.)

3. Singular integral operators on composed curves. Let Γ
be a composed curve in the complex plane, i.e., Γ is the union of a
finite number of pairwise compatible simple arcs. Remember that a
simple arc is a bounded oriented curve which is homeomorphic to a
closed interval and which satisfies the Lyapunov condition, i.e., there
exists a unique tangent at each point t ∈ Γ, and if these tangents are
endowed with an orientation being in accordance with the orientation
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of the curve Γ at t then the angle θ(t) between the so-oriented tangent
and the real axis depends Hölder continuously on t. A pair (Γ1, Γ2) of
simple arcs is called compatible if Γ1 ∩ Γ2 = ∅ or if Γ1 ∩ Γ2 consists
of exactly one point which is endpoint both of Γ1 and of Γ2 and the
one-sided tangents of Γ1 and Γ2 at this common point do not coincide.

Given a finite subset Γ′ of Γ and a sequence α = (αz)z∈Γ′ of
real numbers define the Khvedelidze weight function w on Γ\Γ′ by
w(z) =

∏
z∈Γ′ |t − z|αz , and let Lp

Γ(α) denote the weighted Lebesgue
space on Γ consisting of all classes of measurable functions f with

||f || =
( ∫

Γ

|f(t)|pw(t)p|dt|
)1/p

< ∞.

Here and hereafter assume that 0 < αz + 1/p < 1 for all z ∈ Γ′. Then
the singular integral operator SΓ,(

SΓf

)
(t) =

1
πi

∫
Γ

f(s)
s − t

ds, t ∈ Γ,

is bounded on Lp
Γ(α).

A piecewise continuous function on Γ is a function possessing finite
one-sided limits at each point t ∈ Γ along each arc ending in t. Since
any piecewise continuous function a on Γ is bounded by its definition,
the operator aI of multiplication by a is bounded on Lp

Γ(α). Let
PC(Γ) stand for the algebra of all piecewise continuous functions on Γ
provided with the supremum norm, and let PΣp

Γ(α) refer to the smallest
closed subalgebra of L(Lp

Γ(α)) which contains the operator SΓ and all
multiplication operators aI with a ∈ PC(Γ).

The algebra PΣp
Γ(α) contains the ideal K(Lp

Γ(α)) of all compact
operators on Lp

Γ(α). Denote by PΣp
Γ(α)π the quotient algebra PΣp

Γ(α)/
K(Lp

Γ(α)) and by π the canonical homomorphism from PΣp
Γ(α) onto

PΣp
Γ(α)π. In [7 9] there is given a description of the algebra PΣp

Γ(α)π

in terms of continuous Banach algebra valued functions on Γ. For its
presentation here we need some more notations.

For z ∈ Γ we define the “local” curve Γz by Γz = ∪k(z)
j=1ei(θj(z)−θ1(z))R+

where we have assume that, for any sufficiently small neighborhood Uz

of z, the (in Γ) open set (Uz∩Γ)\{z} consists of k(z) connected compo-
nents Γ1(z), . . . , Γk(z)(z), and where θj(z) denotes the angle between
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the oriented tangent of Γj(z) at z and the real axis. The orientation on
exp(i(θj(z) − θ1(z)))R+ is chosen in accordance with the orientation
on Γj(z): to z or away from z. Further, we extend the definition of
αz to points z ∈ Γ\Γ′ by setting αz = 0. Then we can introduce the
weighted Lebesgue space Lp

Γz
(αz) with norm

||f || =
( ∫

Γz

|f(s)|p|s|αzp|ds|
)1/p

for all z ∈ Γ, and we let Lp
Γz

(αz) stand for the smallest closed
subalgebra of L(Lp

Γz
(αz)) containing the singular integral operator

SΓz
and the operators χj(z)I of multiplication by the characteristic

functions of the half axes exp(i(θj(z) − θ1(z)))R+.

Interpreting Γz as a system of half axes it is not hard to see that
there is an isometric isomorphism Tz from Lp

Γz
(αz) onto the algebra

◦
Σp

k(z)(αz) which is declared as follows:
◦
Σp

k(z)(αz) is the algebra of all

matrices (Aij)
k(z)
i,j=1 with Ajj ∈ Σp(αz) for all j and Aij ∈ Np(αz) for

all i �= j.

For all z ∈ Γ and j = 1, . . . , k(z), we define a mapping Lj(z) :
Lp

Γz
(αz) → Lp

R(0) by the following procedure. Given A ∈ Lp
Γz

(αz) let
Ajj denote the jjth entry of the matrix Tz(A). By Costabel, there is a
unique decomposition Ajj = αI + βS + Mo(b) with Mo(b) ∈ Np(αz).
Now set Lj(z)(A) = αI+βnj(z)SR ∈ Lp

R(0), with numbers nj(z) being
1 if Γj(z) is directed away from z and −1 if Γj(z) is directed toward z.

Taking into account the identity S2 = I + N2, one easily checks that
Lj(z) is an algebra homomorphism and, further, since the coefficients
α, β in the decomposition of Ajj depend continuously on Ajj and this
operator on its hand depends continuously on A, the homomorphisms
Lj(z) are continuous.

Now we consider the set V (Γ,Lp
Γz

(αz)) of all bounded functions on
the curve Γ which take values in Lp

Γz
(αz) at z ∈ Γ. On declaring

pointwise operations and a norm by ||A|| = supz ||A(z)||, the set
V (Γ,Lp

Γz
(αz)) can be made in to a Banach algebra. A function

A ∈ V (Γ,Lp
Γz

(αz)) is said to be continuous on Γ if, for all z ∈ Γ and
j = 1, . . . , k(z), the limits lim y→z

y∈Γj(z)
A(y) exist and if lim y→z

y∈Γj(z)
A(y) =

Lj(z)(A(z)). Notice that this definition makes sense since, with the
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exception of a finite number of points z, all algebras Lp
Γz

(αz) are equal
to Lp

R(0). Further, we remark that the so-defined continuity coincides
with the notion of “continuity with respect to the connecting family of
homomorphisms {Lj(z)}” introduced in [9].

Denote the subalgebra of V (Γ,Lp
Γ2

(αz)) consisting of all continuous
functions by C(Γ,Lp

Γz
(αz)). Then the main results from [7 9] con-

cerning algebras of singular integral operators can be summarized as
follows.

Theorem 1. There is an isometric isomorphism φ between the
Banach algebras PΣp

Γ(α)π and C(Γ,Lp
Γz

(αz)). In particular,

φ(SΓ)(z) = SΓz

and

φ(aI)(z) =
k(z)∑
j=1

aj(z)χj(z)

for all a ∈ PC(Γ) where aj(z) = lim y→z
y∈Γj(z)

a(y).

4. The center. In this section we describe the center Cen (PΣp
Γ(α)π)

of the algebra PΣp
Γ(α)π.

Theorem 2. Cen (PΣp
Γ(α)π) is the smallest closed subalgebra of

PΣp
Γ(α)π which contains the cosets of all operators aI of multiplication

by continuous functions a on Γ and of all operators

Fz,1 =
k(z)∑
j=1

(fjSΓfjSΓfj − f3
j )

and

Fz,2 =
k(z)∑
j=1

nj(z)(fjSΓfjSΓfjSΓfj − f3
j SΓfj)

where z runs through Γ and where the fj ∈ PC (Γ) ∩ C(Γj(z)) are
functions depending on z such that supp fj ⊆Γj(z)∪{z} and fj(z) = 1.
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Proof. Let A ∈ PΣp
Γ(α) and π(A) ∈ Cen (PΣp

Γ(α)π). Then, neces-

sarily, Tz(φ(π(A))(z)) belongs to the center of the algebra
◦
Σp

k(z)(αz).

Obviously the center Cen (
◦
Σp

k(z)(αz)) consists just of all diagonal op-
erators diag (B(z), . . . , B(z)) with B(z) ∈ Σp(αz). By Costabel’s de-
composition of Σp(αz) there are uniquely determined numbers a(z) and
b(z) and an operator Mo(c(z)) ∈ Np(αz) such that

(1) Tz(φ(π(A))(z)) = diag 1≤j≤k(z)(a(z)I + b(z)
S + Mo(c(z)), . . . , a(z)I + b(z)S + Mo(c(z))).

Thus, Cen (PΣp
Γ(α)π) is the class of all cosets π(A) which satisfy

(1) and for which the function φ(π(A)) is continuous. From (1) one
derives that Lj(z)(φ(π(A))(z)) = a(z)I + nj(z)b(z)SR ∈ Σp

R(0) for all
j = 1, . . . , k(z). Hence, the function φ(π(A)) is continuous if and only
if

lim
y→z

y∈Γj(z)

(
a(y)I + b(y)S + Mo(c(y)) 0

0 a(y)I + b(y)S + Mo(c(y))

)

=
(

a(z)I + nj(z)b(z)S −b(z)N
b(z)N a(z)I − nj(z)b(z)S

)

for all z ∈ Γ. Thus, the continuity of φ(π(A)) is equivalent to
b(z) = 0 and lim y→z

y∈Γj(z)
(a(y)I+Mo(c(y))) = a(z)I. Invoking Costabel’s

decomposition again, the limit splits up into

lim
y→z

y∈Γj(z)

a(y) = a(z) and lim
y→z

y∈Γj(z)

Mo(c(y)) = 0 for all z ∈ Γ.

In other words, the coset π(A) is in Cen (PΣp
Γ(α)π) if and only if

Tz(φ(π(A))(z)) is of the form

(2) diag (a(z)I + Mo(c(z)), . . . , a(z)I + Mo(c(z))),

where the function a is continuous on Γ and where the operators
Mo(c(z)) ∈ Np(αz) satisfy the condition

lim
y→z

y∈Γj(z)

Mo(c(y)) = 0 for all z ∈ Γ.
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Denote the smallest closed subalgebra of PΣp
Γ(α)π which contains all

cosets π(aI) with continuous functions a and all cosets π(A) for which
there is a point z ∈ Γ and an operator Mo(c) ∈ Np(αz) such that

Ty(φ(π(A))(y)) =
{

diag (Mo(c), . . . , Mo(c)) if y = z

0 if y �= z

by C1 for a moment (such cosets must exist since the function φ(π(A))
is continuous). We claim that C1 = Cen (PΣp

Γ(α)π). Indeed, if
π(A) ∈ C1 then Tz(φ(π(A))(z)) is of the form (2) which implies
that C1 ⊆Cen (PΣp

Γ(α)π). For the reverse inclusion, let π(A) ∈
Cen (PΣp

Γ(α)π) be a coset for which

Tz(φ(π(A))(z)) = diag (Mo(c(z)), . . . , Mo(c(z)))

with Mo(c(z)) ∈ Np(αz) and limy→z
y �=z

Mo(c(y)) = 0. Then, given z ∈ Γ

and ε > 0, there is a neighborhood Uε(z) such that ||Mo(c(y))|| < ε
for all y ∈ Uε(z)\{z}. Choosing a finite covering Γ = ∪r

i=1Uε(zi), this
shows that ||Mo(c(y))|| < ε for all y ∈ Γ\{z1, . . . , zr} and this, on its
own, implies that π(A) ∈ C1 which proves our claim.

It remains to show that C1 is in fact generated by the cosets men-
tioned in the theorem. From Theorem 1 one concludes that

Ty(φ(π(Fz,1))(y)) =
{ 0 if y �= z

diag (S2 − I, . . . , S2 − I) if y = z

and

Ty(φ(π(Fz,2))(y)) =
{ 0 if y �= z

diag (S3 − S, . . . , S3 − S) if y = z.

Since Np(αz) is the smallest closed two-sided ideal of Σp(αz) which
contains N2, the ideal Np(αz) can also be viewed as the smallest closed
subalgebra of Σp(αz) containing the operators N2 and N2S. Thus,
because of S2 − I = N2 and S3 − S = N2S, the cosets π(aI) with
a being continuous and π(Fz,1) and π(Fz,2) with z ∈ Γ generate the
whole algebra C1, and we are done.

As above, we associate to each point z ∈ Γ functions fj (j =
1, . . . , k(z)) such that fj ∈ PC(Γ), fj(z) = 1, and supp fj ⊆Γj(z)∪{z},
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and we let J denote the smallest closed subalgebra of Cen (PΣp
Γ(α)π)

which contains all cosets π(Fz,1) and π(Fz,2) with z ∈ Γ.

Corollary 1. The algebra J is a closed two-sided ideal of
Cen (PΣp

Γ(α)π), and the center decomposes into the direct sum

(3) Cen (PΣp
Γ(α)π) = π(C(Γ)I) � J.

Here, as usual, C(Γ) stands for the Banach algebra of all continuous
complex-valued functions on Γ.

Proof. Let a ∈ C(Γ) and π(aI) ∈ π(C(Γ)I) ∩ J . Then, by (2),
a(z)I ∈ Np(αz) for all z ∈ Γ, which is impossible by Costabel’s
decomposition unless a ≡ 0. Thus, π(C(Γ)I) ∩ J = {0}. Further,
let a ∈ C(Γ). Then, by Theorem 1,

Ty(φ(π(aFz,1))(y)) = diag (a(y), . . . , a(y))

·
{

diag (N2, . . . , N2) if y = z

diag (0, . . . , 0) if y �= z

=

{
diag (a(z)N2, . . . , a(z)N2) if y = z

diag (0, . . . , 0) if y �= z

which shows that π(aFz,1) ∈ J . The same reasoning applies to the
coset π(aFz,2) and, thus, J is an ideal. Moreover, any coset π(A) which
belongs to the dense subalgebra of Cen (PΣp

Γ(α)π) which is generated
by all finite sums of products of the cosets π(Fz,1), π(Fz,2) and π(bI)
with b ∈ C(Γ) is representable in the form π(A) = π(aI + K) with
a ∈ C(Γ) and K ∈ J . Finally, since, by (2),

Tz(φ(π(A))(z)) = diag (a(z) + Mo(c(z)), . . . , a(z) + Mo(c(z))),

we can apply Costabel’s decomposition once more to get |a(z)| ≤
||π(A)||. Consequently, ||a||∞ ≤ ||π(A)||, i.e., the function a depends
continuously on A, and this shows that the decomposition (3) is direct.
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Our next goal is the description of the maximal ideal space of the
(commutative) Banach algebra Cen (PΣp

Γ(α)π) and of the Gelfand
transform for elements of this algebra.

Theorem 3. The maximal ideal space M of Cen (PΣp
Γ(α)π) is

homeomorphic to the “torus” Γ×Ṙ provided with an exotic topology (Ṙ
denoting the one-point compactification of the real axis R), the Gelfand
transforms of the generating cosets of Cen (PΣp

Γ(α)π) at (x, z) ∈ Γ×Ṙ
are given by

G(π(aI))(x, z) = a(x),

G(π(Fy,1))(x, z) =

{
n2

π(z) if y = x

0 if y �= x,

G(π(Fy,2))(x, z) =

{
n2

π(z) · s(z) if y = x

0 if y �= x,

and a neighborhood prebase of the topology of M is given by the sets
U×Ṙ with U running through the open sets of Γ, by {x0}×(a, b) where
x0 runs through Γ and a < b through R, and by (U\{x0})× Ṙ∪{x0}×
(Ṙ\[a, b]) where x0 runs through Γ, U through the neighborhoods of x0,
and a < b through R.

Proof. In the proof of Theorem 2 we have actually shown that
Cen (PΣp

Γ(α)π) is isometrically isomorphic to the algebra of all con-
tinuous functions on Γ taking at x ∈ Γ a value in the smallest closed
subalgebra of Σp(αx) containing the identity I and the ideal Np(αx).
Since the latter algebras have the same maximal ideal space Ṙ inde-
pendent on x ∈ Γ, the maximal ideal space of Cen (PΣp

Γ(α)π) can be
easily identified with Γ × Ṙ, and the above mentioned values of the
Gelfand transform are almost evident.

Next we show that the sets U × Ṙ, {x0}× (a, b), and (U\{x0})× Ṙ∪
{x0}× (Ṙ\[a, b]) must be open in the topology of M. For the first set,
let U ⊆Γ be open, and, given ε > 0, choose a function a ∈ C(Γ) which
satisfies 0 ≤ a(y) < ε for y ∈ U and a(y) = ε for y ∈ Γ\U . Then

{(x, z) ∈ M : |G(π(aI))(x, z)| < ε} = U × Ṙ
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because of G(π(aI))(x, z) = a(x) and, thus, U × Ṙ is open. Further,
let c ∈ C(Ṙ) be a function with finite total variation such that
−ε < c(y) < 0 for y ∈ (a, b) and c(y) = 0 for y ∈ Ṙ\(a, b), and
consider the coset C in Cen (PΣp

Γ(α)π) whose image under the above
mentioned isomorphism is the function

(x, y) �→
{

εI + Mo(c) if x = x0

εI if x �= x0

.

Then {(x, y) ∈ M : |G(C)(x, y)| < ε} = {x0} × (a, b) because of

|G(C)(x, y)| =
{

ε + c(y) if x = x0

ε if x �= x0.

Finally, for the third candidate of an open set in M, take a as above, let
d ∈ C(Ṙ) be a function possessing a finite total variation and satisfying
0 ≤ d(y) < ε for all y ∈ Ṙ\[a, b] and d(y) = ε for y ∈ [a, b], and consider
the coset D in Cen (PΣp

Γ(α)π) which is associated with the function

(x, y) �→
{

a(x0) + Mo(d) if x = x0

a(x) if x �= x0.

Then {(x, y) ∈ M : |G(d)(x, y)| < ε} = (U\{x0})×Ṙ∪{x0}×(Ṙ\[a, b])
because of

|G(D)(x, y)| =
{

d(y) if x = x0

a(x) if x �= x0.

Conversely, if one takes all finite intersections of sets of the form U×Ṙ,
{x0}×(a, b) or (U\{x0})×Ṙ∪{x0}×(Ṙ\[a, b]) as a base of a topology of
M, then it is easy to see that the Gelfand transforms of the generating
cosets of the center become continuous on M.

5. Decomposable operators and the essential SVEP. Fol-
lowing [1] an operator A ∈ L(Lp

Γ(α)) is called decomposable if for
each open covering {U1, U2} of the complex plane there are closed
invariant subspaces X1 and X2 for A with Lp

Γ(α) = X1 + X2 such
that the spectrum of the restriction of A to Xi is contained in Ui,
i = 1, 2. One says that A has the single-valued extension prop-
erty (SVEP) if the function αΩ(A) : H(Ω, Lp

Γ(α)) → H(Ω, Lp
Γ(α)),

(αΩ(A)f)(z) = (z − A)f(z), (with H(Ω, Lp
Γ(α)) being the space of
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Lp
Γ(α)-valued analytic functions on Ω⊆C) is injective for every open

Ω in C. Further, we need a particular representation of the Calkin al-
gebra L(Lp

Γ(α))/K(Lp
Γ(α)) as an algebra of operators (see [1] and the

references given there for details). To this end, let l∞(Lp
Γ(α)) denote

the Banach space of all bounded sequences (xn) of functions xn ∈ Lp
Γ(α)

provided with norm ||(xn)|| = sup ||xn||, and write A∞ for the oper-
ator induced by A ∈ L(Lp

Γ(α)) on l∞(Lp
Γ(α)) via A∞(xn) = (Axn).

The set q of all precompact sequences of elements of Lp
Γ(α) is a closed

subspace of l∞(Lp
Γ(α)) which is invariant for all operators A∞. Set

Lp
Γ(α)q := l∞(Lp

Γ(α))/q and denote by Aq the operator induced by A∞

on Lp
Γ(α)q. Then the mapping A �→ Aq is a unital homomorphism

from L(Lp
Γ(α)) to L(Lp

Γ(α)q) with kernel K(Lp
Γ(α)), and so it induces

a norm decreasing monomorphism π(A) �→ Aq from the Calkin algebra
to L(Lp

Γ(α)q).

Finally, an operator A ∈ Lp
Γ(α) is said to be essentially decomposable

(to have the essential SVEP) if Aq is decomposable (has the SVEP).

Theorem 4. The operators in PΣp
Γ(α) are essentially decomposable

and have the essential SVEP.

Proof. As in [1, Example 3.2] one sees that the algebra Cen (PΣp
Γ(α)π)

is normal and spectrally closed in the sense of [1, Definition 3.1]. Local-
izing the algebra PΣp

Γ(α)π over its center by Allan’s local principle (cf.
[3, 1.34, 1, 2, 3.1 or 3, 1.2]) and having in mind Theorems 1 and 2, one
gets that the local algebras at (x, z) ∈ M are isomorphic to certain sub-
algebras of Ck(x)×k(x). Thus, the local spectrum of any A ∈ PΣp

Γ(α) is
discrete at any maximal ideal of Cen (PΣp

Γ(α)π). So Theorem 3.6 [ 1,
Theorem 3.7] can be applied to deduce that every operator in PΣp

Γ(α)
has the essential SVEP (is essentially decomposable).

6. Semi-Fredholmness versus Fredholmness. As an application
of Theorem 4 we obtain

Corollary 2. Let A ∈ PΣp
Γ(α). The operator A is semi-Fredholm

on Lp
Γ(α) (i.e., the range of A is closed and A has a finite-dimensional

kernel or cokernel) if and only if A is Fredholm on Lp
Γ(α).
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Proof. Combine Theorem 4 and Proposition 4.1 of [1].

7. The commutator ideal. The commutator ideal of PΣp
Γ(α)π is,

by definition, the smallest closed two-sided ideal Com (PΣp
Γ(α)π) which

contains all commutators [A, B] := AB − BA with A, B ∈ PΣp
Γ(α)π.

For its description, denote by Np
k(z)(αz) the algebra of all k(z) × k(z)

matrices with entries in Np(αz). Obviously, Np
k(z)(αz) is a closed two-

sided ideal of
◦
Σp

k(z)(αz).

Theorem 5. (a) Com (PΣp
Γ(α)π) coincides with the set of all

cosets A ∈ PΣp
Γ(α)π for which Tz(φ(A)(z)) = 0 if k(z) = 1 and

Tz(φ(A)(z)) ∈ Np
k(z)(αz) if k(z) ≥ 2.

(b) For any z ∈ Γ with k(z) ≥ 2 choose two functions fj and fk

(depending on z) with j �= k as in Theorem 2. Then the commutator
ideal is the smallest closed two-sided ideal of PΣp

Γ(α)π which contains
all cosets π̇(fjSΓfkI).

(c) If k(z) ≥ 2 for all z ∈ Γ then the algebra PΣp
Γ(α)π decomposes

into the direct sums

π(PC(Γ)I) � π(PC(Γ)SΓ) � Com (PΣp
Γ(α)π)

and

π(PC(Γ)I) � π(SΓPC(Γ)I) � Com (PΣp
Γ(α)π).

Proof. If A is the commutator of two cosets in PΣp
Γ(α)π then

Tz(φ(A)(z)) is the commutator of two matrices in
◦
Σp

k(z)(αz). So we
conclude from the continuity of the homomorphisms φ and Tz that

Tz(φ(A)(z)) is in Com (
◦
Σp

k(z)(αz)) whenever A is in Com (PΣp
Γ(α)π).

For k(z) = 1, the algebra
◦
Σp

k(z)(αz) is commutative, and so its commu-
tator ideal is trivial. We claim that

(4) Com
( ◦

Σp
k(z)(αz)

)
= Np

k(z)(αz)
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for k(z) = 2. Let A, B ∈
◦
Σp

2(αz). Then, by definition, there are
operators S1, . . . , S4 ∈ Σp(αz) and N1, . . . , N4 ∈ Np(αz) such that

A =
(

S1 N1

N2 S2

)
and B =

(
S3 N3

N4 S4

)
.

Now we have

[A, B] =
(

N1N4 − N2N3 (S1 − S2)N3 + (S4 − S3)N1

(S3 − S4)N2 + (S2 − S1)N4 N2N3 − N1N4

)

which is in Np
2 (αz) since Np(αz) is an ideal in Σp(αz). Since, moreover,

Np
2 (αz) is an ideal in

◦
Σp

2(αz) this implies that Com (
◦
Σp

2(αz))⊆Np
2 (αz).

For the reverse inclusion consider the identities[(
1 0
0 0

)(
0 N
0 0

)
−

(
0 N
0 0

) (
1 0
0 0

)](
0 0
0 1

)
=

(
0 N
0 0

)
,[(

0 0
0 1

)(
0 0
N 0

)
−

(
0 0
N 0

) (
0 0
0 1

)](
1 0
0 0

)
=

(
0 0
N 0

)
,

(
0 N
0 0

) (
0 0
N 0

)
=

(
N2 0
0 0

)

and (
0 0
N 0

) (
0 N
0 0

)
=

(
0 0
0 N2

)

which show that the operators

(5)
(

0 N
0 0

)
,

(
0 0
N 0

)
,

(
N2 0
0 0

)
,

(
0 0
0 N2

)

belong to the commutator ideal of
◦
Σp

2(αz). On the other hand, since
the ideal Np(αz) is generated by each of the operators N and N2, it is

clear that the smallest closed two-sided ideal of
◦
Σp

2(αz) which contains
all operators in (5) coincides with Np

2 (αz) whence the desired inclusion

Np
2 (αz)⊆Com (

◦
Σp

2(αz)) follows. Analogously, (4) can be verified for
k(z) > 2. This shows that Com (PΣp

Γ(α)π) is contained in the set C2

of all cosets A ∈ PΣp
Γ(α)π for which Tz(φ(A)(z)) = 0 if k(z) = 1 and
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Tz(φ(A)(z)) ∈ Np
k(z)(αz) if k(z) ≥ 2. Assume, vice versa, that A ∈ C2.

Then Theorem 1 shows that A is the limit of finite linear combinations
of cosets Az satisfying

(6) Ty(φ(Az)(y))
{= 0 if y �= z

∈ Np
k(z)(αz) if y = z

for a certain z ∈ Γ with k(z) ≥ 2.

So we can restrict ourselves to the proof that Az ∈ Com (PΣp
Γ(α)π)

for all cosets Az being subject to (6). But his proof can be given in
a completely analogous manner as we have shown that Np

k(z)(αz)⊆
Com (

◦
Σp

k(z)(αz)).

For (b), notice that Tz(φ(π(fjSΓfkI))(z)) is a matrix whose only
nonvanishing entry stands at the jkth place and is of the form cNβ

with some β ∈ (0, 2π) and a nonvanishing coefficient c depending on
the orientation of Γ near z. The same arguments as in part (a) show
that this matrix generates the whole ideal Np

k(z)(αz) (remember that
Nβ generates Np(αz)).

Finally, we show one of the assertions of (c), say the first one. Let
k(z) ≥ 2 for all z, A ∈ PΣp

Γ(α), and Tz(φ(π(A))(z)) = (Aij(z))k(z)
i,j=1

with Ajj(z) ∈ Σp(αz) and Aij(z) ∈ Np(αz) for i �= j. By Costabel,
there are complex numbers bj(z) and cj(z) and operators Kj ∈ Np(αz)
such that

(7) Ajj(z) = bj(z)I + cj(z)S + Kj .

Put B(z) = Σk(z)
j=1 bj(z)χj(z) and C(z) = Σk(z)

j=1 cj(z)χj(z), and define
K(z) ∈ Lp

Γz
(αz) by

K(z) = φ(π(A))(z)− B(z)I − C(z)SΓz
.

A little thought shows that Tz(K(z)) ∈ Np
k(z)(αz) = Com (

◦
Σp

k(z)(αz)).
Further, the functions B : z �→ B(z) and C : z �→ C(z) are continuous
in the sense of Theorem 1. Thus, there are cosets π(b) and π(c)
in PΣp

Γ(α)π such that φ(π(b)) = B and φ(π(c)) = C. The so-
defined operators b and c can even be found among the operators of
multiplication by piecewise continuous functions on Γ. Indeed, this
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follows from the KMS-property of PΣp
Γ(α)π with respect to π(C(Γ)I)

and from a local enclosement argument (see [7, Theorem 5.3 or 8,
Theorem 6]). The result is that any coset π(A) ∈ PΣp

Γ(α)π can be
written in the form

(8) π(A) = π(bI) + π(cSΓ) + π(K)

with π(K) ∈ Com (PΣp
Γ(α)π). Hence,

(9) PΣp
Γ(α)π = π(PC(Γ)I) + π(PC(Γ)SΓ) + Com (PΣp

Γ(α)π),

and it remains to show that the sums in (9) are direct. Theorem 1
and the characterization of the commutator ideal in (a) imply that the
items of (9) have pairwise trivial intersections, and since the coefficients
bj(z) and cj(z) in (7) depend continuously on π(A), the functions b and
c in (8) depend continuously on π(A), too, and we are done.

Corollary 3. If k(z) ≥ 2 for all z ∈ Γ, then the algebra PΣp
Γ(α)

(without π!) decomposes into the direct sums

PC(Γ)I � PC(Γ)SΓ � Com (PΣp
Γ(α))

and

PC(Γ)I � SΓPC(Γ)I � Com (PΣp
Γ(α)).

Proof. It is well-known that the ideal of all compact operators is con-
tained in the commutator ideal Com (PΣp

Γ(α)). Thus, one immediately
obtains from the preceding theorem that

(10) PΣp
Γ(α) = PC(Γ)I + PC(Γ)SΓ + Com (PΣp

Γ(α)).

Since neither the algebra PC(Γ)I nor the linear set PC(Γ)SΓ contain
nonzero compact operators, any two of the items in (10) have a trivial
intersection. Finally, since PC(Γ) is a C∗-algebra, the continuous
dependence of the summands follows.

One might ask what happens with the decompositions in (c) of
Theorem 5 if Γ has points with k(z) = 1 (e.g., if Γ is an interval).
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It turns out that the commutator ideal is too small to guarantee a
decomposition as in (c). For this reason, we define the quasicommutator
ideal of the algebra PΣp

Γ(α)π as the smallest closed two-sided ideal of
PΣp

Γ(α)π containing the commutator ideal Com (PΣp
Γ(α)π) and the

coset π(S2
Γ− I). Denote this ideal by QCom (PΣp

Γ(α)π). The following
is the analogue of Theorem 5.

Theorem 6. (a) QCom (PΣp
Γ(α)π) coincides with the set of all

cosets A ∈ PΣp
Γ(α)π for which Tz(φ(A)(z)) ∈ Np

k(z)(αz) for all z ∈ Γ.

(b) The algebra PΣp
Γ(α)π decomposes into the direct sums

π(PC(Γ)I) � π(PC(Γ)SΓ) � QCom (PΣp
Γ(α)π)

and
π(PC(Γ)I) � π(SΓPC(Γ)I) � QCom (PΣp

Γ(α)π).

Proof. We only show that

(11) Tz(φ(QCom (PΣp
Γ(α)π))(z)) = Np

k(z)(αz)

for all z ∈ Γ. The remainder of the proof is analogous to that of
Theorem 5. For (11) it suffices to verify that

(12) Tz(φ(π(S2
Γ − I))(z)) ∈ Np

k(z)(αz) if k(z) ≥ 2

and that Tz(φ(π(S2
Γ − I))(z)) generates the whole ideal Np(αz) if

k(z) = 1. For the latter problem, notice that Tz(φ(π(S2
Γ−I))(z)) = N2

which, indeed, generates Np(αz). For (12) we need the fact that

Tz(φ(π(SΓ))(z)) =

⎛
⎜⎜⎝

S x · · · x
x S · · · x
...

...
. . .

...
x x · · · S

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

c1 O
. . .

. . .
O ck(z)

⎞
⎟⎟⎟⎠

where the x symbolizes some operators in Np(αz) and where the
numbers cj are equal to 1 or −1 in dependence on the orientation of



STRUCTURE OF ALGEBRAS 437

the curves Γj(z). Now a simple computation yields that, in fact, (12)
is true.

8. Algebras of singular integral operators with Carleman
shift. Here and hereafter, let Γ be an oriented composed curve in C
which is homeomorphic to the oriented unit circle (i.e., Γ may have a
finite number of edges and k(z) = 2 for all z ∈ Γ.) A homeomorphism μ
of Γ onto itself will be called a Carleman shift if μr = I for some r ∈ Z+

and if μ possesses a Hölder continuous derivative μ′ on Γ such that
μ′(z) �= 0 for all z ∈ Γ. The case when μ preserves the orientation of Γ
can be reduced to the case without shift by a standard procedure [6,2].
We treat only the opposite case, i.e., we let μ change the orientation.
This automatically implies that μ2 = I and that μ has exactly two fixed
points, say z0 and z1. The arc

�
z0z1 ⊆Γ will be denoted by Γ+. Let

PμΣp
Γ denote the smallest closed subalgebra of L(Lp

Γ(0)) which contains
the singular integral operator SΓ, all operators aI of multiplication
by a piecewise continuous function a, and the operator W defined by
(Wf)(z) = f(μ(z)). The algebra PμΣp

Γ contains the ideal of all compact
operators on Lp

Γ(0). We abbreviate the associated quotient algebra by
P π

μ Σp
Γ, and the canonical homomorphism from PμΣp

Γ onto P π
μ Σp

Γ by π.

Further, let Σ̈p
4 stand for the algebra of all 4×4 matrices with entries

in Σp(0) which are of the form

⎛
⎜⎝

X ∅ ∅ X
∅ X X ∅

∅ X X ∅

X ∅ ∅ X

⎞
⎟⎠

where X symbolizes operators (not necessarily the same) in Σp(0) and
∅ stands for operators belonging to the ideal Np(0). By Σp

2 we will
denote the algebra of all 2× 2 matrices with entries in Σp(0). In [7, 8]
the authors have constructed an isometrical isomorphism from P π

μ Σp
Γ

onto a subalgebra of the algebra V (Γ+) of all bounded functions on
Γ+ taking values in Σp

2 at the fixed points z0 and z1 and in Σ̈p
4 at the

nonfixed points of μ. For the exact description of this subalgebra, we
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define mappings L(z) if z ∈ {z0, z1} and L±(z) if z ∈ Γ+\{z0, z1} by

(13) L(z) : Σp
2 → Σ̈p

4,

(
aI + bS + K1 cI + dS + K2

eI + fS + K3 gI + hS + K4

)

�→

⎛
⎜⎝

a + bS −bN −dN c + dS
bN a − bS c − dS dN
fN e − fS g − hS hN

e + fS −fN −hN g + hS

⎞
⎟⎠

where the operators Ki (i = 1, . . . , 4) stand for certain operators in
Np(0) according to Costabel’s decomposition of Σp(0), and further by

L+(z) : Σ̈p
4 → Σ̈p

4,

⎛
⎜⎝

aI + bS + K1 ∅ ∅ cI + dS + K2

∅ X X ∅

∅ X X ∅

eI + fS + K3 ∅ ∅ gI + hS + K4

⎞
⎟⎠ �→ the matrix (13)

and L−(z) : Σ̈p
4 → Σ̈p

4,

⎛
⎜⎝

X ∅ ∅ X
∅ aI − bS + K1 cI − dS + K2 ∅

∅ eI − fS + K3 gI − hS + K4 ∅

X ∅ ∅ X

⎞
⎟⎠ �→ the matrix (13).

Here, of course, the symbols ∅ and X have the same meaning as
above, and the operators Ki belong to Np(0). A straightforward
computation shows that the so-defined mappings L±(z) and L(z) are
algebra homomorphisms, and the Costabel decomposition even implies
their continuity. A function A ∈ V (Γ+) is said to be continuous if
the limits limy→z

y<z
A(y) and limy→z

y>z
A(y) exist for any nonfixed point

z ∈ Γ+ and if the limits limy→z
y �=z

A(y) exist for all fixed points z, and

if limy→z
y≶z

A(y) = L±(z)(A(z)) and limy→z
y �=z

A(y) = L(z)(A(z)) for all

nonfixed points and fixed points, respectively. Denote by C(Γ+) the
set of all continuous functions in V (Γ+). Evidently, C(Γ+) is a closed
subalgebra of V (Γ+). Combining the results of [7, Ch. 9] or [8, 8.3]
with [9], one gets
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Theorem 7. There is an isometric isomorphism φ between the
Banach algebras P π

μ Σp
Γ and C(Γ+). In particular, if z is a fixed point

of μ, then

φ(π(SΓ))(z) =
(

S −N2π−β(z)

Nβ(z) −S

)
,

φ(π(W ))(z) =
(

0 I
I 0

)

and
φ(π(aI))(z) = diag (a+(z)I, a−(z)I),

and if z is a nonfixed point, then

φ(π(SΓ))(z) =

⎛
⎜⎝

S −N2π−β(z) 0 0
Nβ(z) −S 0 0

0 0 S −N2π−β(μ(z))

0 0 Nβ(μ(z)) −S

⎞
⎟⎠ ,

φ(π(W ))(z) =

⎛
⎜⎝

0 0 0 I
0 0 I 0
0 I 0 0
I 0 0 0

⎞
⎟⎠ ,

and

φ(π(aI))(z) = diag (a+(z)I, a−(z)I, a+(μ(z))I, a−(μ(z))I).

Here, β(z) stands for the angle between the tangents at z ∈ Γ, and the
numbers a±(z) are defined by limy→z

y≶z
a(y) =: a±(z).

As Theorem 1 above, this theorem will be our starting point for the
analysis of the center and the commutator ideal of the Banach algebra
P π

μ Σp
Γ. For the center, the result is:

Theorem 8. Cen (P π
μ Σp

Γ) is the smallest closed subalgebra of P π
μ Σp

Γ

which contains the cosets of all operators

(a) aI with a being continuous on Γ and a(z) = a(μ(z)) for all
z ∈ Γ+,

(b) Fz,1 := Σ2
j=1(fjSΓfjSΓfjI − f3

j I) and
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(c) Fz,2 := Σ2
j=1nj(fjSΓfjSΓfjSΓfjI−fjSΓfjI) if z ∈ {z0, z1} where

fj and nj are as in Theorem 2, and

(d) Fz,1+WFz,1W and Fz,2+WFz,2W if z runs through Γ+\{z0, z1}.

The proof proceeds as that of Theorem 2: The centers of Σp
2 and

Σ̈p
4 consist of all diagonal operators diag (A, A) and diag (A, A, A, A)

with A ∈ Σp, respectively. Thus, if the coset π(B) lies in the center of
P π

μ Σp
Γ, then, necessarily, there are numbers a(z) and b(z) and operators

Mo(c(z)) ∈ Np such that

φ(π(B))(z) =
{

diag (A(z), A(z)) if z ∈ {z0, z1}
diag (A(z), A(z), A(z), A(z)) if z ∈ Γ+\{z0, z1}

with

A(z) = a(z)I + b(z)S + Mo(c(z)).

The continuity of the function φ(π(B)) leads to the restrictions
limy→z a(y) = a(z), b = 0, and limy→z Mo(c(z)) = 0 for all z. To
complete the proof, remark that, if z ∈ {z0, z1}, φ(π(Fz,1))(z) =
diag (N2, N2) and φ(π(Fz,2))(z) = diag (SN2, SN2) and that, if z ∈
Γ+\{z0, z1},

φ(π(Fz,1 + WFz,1W ))(z) = diag (N2, N2, N2, N2)

and

φ(π(Fz,2 + WFz,2W ))(z) = diag (SN2, SN2, SN2, SN2),

and that the operators N2 and SN2 generate the algebra Np(0).

Corollary 4. The maximal ideal space of the commutative Banach
algebra Cen (P π

μ Σp
Γ) is homeomorphic to the “cylinder” Γ+×Ṙ provided

with the topology as in Theorem 3, and the Gelfand transforms of the
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generating cosets of the center of P π
μ Σp

Γ are

G(π(aI))(x, z) = a(x),

G(π(Fy,1))(x, z) =
{

n2(z) if x = y ∈ {z0, z1}
0 else

G(π(Fy,2))(x, z) =
{

s(z)n2(z) if x = y ∈ {z0, z1}
0 else

G(π(Fy,1 + WFy,1W ))(x, z) =
{

n2(z) if x = y ∈ Γ+\{z0, z1}
0 else

and

G(π(Fy,2) + WFy,2W ))(x, z) =
{

s(z)n2(z) if x = y ∈ Γ+\{z0, z1}
0 else.

Corollary 5. Let A ∈ PμΣp
Γ. Then A is semi-Fredholm if and only

if A is Fredholm.

Finally, we formulate the result for the commutator ideal of the
algebra P π

μ Σp
Γ which corresponds to Theorem 5.

Theorem 9. (a) Com(P π
μ Σp

Γ) coincides with the set of all cosets
A ∈ P π

μ Σp
Γ for which φ(A)(z) ∈ Np

2 if z ∈ {z0, z1} and φ(A)(z) ∈ Np
4

for all z ∈ Γ+\{z0, z1}.
(b) The algebra P π

μ Σp
Γ decomposes into the direct sum π(PC(Γ)I) �

π(PC(Γ)SΓ) � π(PC(Γ)W ) � π(PC(Γ)SΓW ) � Com (P π
μ Σp

Γ).

Last, but not least, it should be mentioned that we have not tried
to reach the greatest possible generality. For instance, it turns out
that the results of the preceding section remain true in the case of
weighted Lp-spaces, too. Further, all theorems can also be stated
for operators with matrix-valued coefficients (= the system case) and,
finally, the proposed method also applies to other algebras, e.g., to the
algebra generated by singular integral operators and by the conjugation
operator (Cf)(t) = f(t) (cf. [7, Ch. 10 or 8, 8.4]).
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6. G.S. Litvinchuk, Boundary value problems and singular integral equations with
shift, Nauka, Moscow, 1977 (Russian).

7. S. Roch and B. Silbermann, Algebras of convolution operators and their image
in the Calkin algebra, Karl-Weierstraß-Institut für Mathematik, Report R-MATH-
05/90, Berlin, 1990.

8. , The Calkin image of algebras of singular integral operators, IEOT 12
(1989), 855 897.

9. , Representations of noncommutative Banach algebras by continuous
functions, Submitted to Alg. Anal., Leningrad.

10. I.B. Simonenko and Chin Ngok Minh, A local method in the theory of
one-dimensional singular integral equations with piecewise continuous coefficients,
(cursive). Izd. Rostovsk. Univ., Rostov-na-Donu, 1986 (Russian).
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