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POSITIVE PERTURBATIONS OF LINEAR VOLTERRA
EQUATIONS AND SINE FUNCTIONS OF OPERATORS

ABDELAZIZ RHANDI

Introduction. The purpose of this note is to study perturbations
of linear Volterra equations with positive solution families and positive
sine functions by positive operators.

Let E be a Banach lattice and A an unbounded closed linear operator
in E with dense domain D(A). We say that A is resolvent positive if
there exists w ∈ R such that (μ − A) : D(A) → E is bijective and
(μ − A)−1 is a positive operator on E for all μ > w.

Let a : [0,∞) → R be a function which is of bounded variation on
each compact interval [0, T ], T > 0 and consider the linear Volterra
equation

(VO)A

U(t) := x + a ∗AU(t) = x +
∫ t

0

a(t− s)AU(s) ds, t ≥ 0, x ∈ D(A).

We assume throughout that a is exponentially bounded, i.e., there exist
K ≥ 0, β ≥ 0, such that |a(t)| ≤ K exp(βt), t ≥ 0. Then we can define
the function dâ by

dâ (μ) =
∫ ∞

0

exp(−μt) da (t), μ > β.

We assume further that dâ (μ) �= 0, μ > β. A strongly continuous
family (V (t))t≥0 of bounded linear operators on E is called a solution
family (or a resolvent) for (VO)A if there exist M ≥ 0, w ≥ β such that

(i) ||V (t)|| ≤ M exp(wt)

(ii) V (0) = 1

(iii) (μ − dâ (μ)A) : D(A) → E is bijective, μ > w and

(μ − dâ (μ)A)−1 =
∫ ∞

0

exp(−μt)V (t) dt.
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This notion of “solution family” is the natural extension of the concept
of “Co-semigroup” for a(t) = 1 and “cosine family” for the case a(t) = t.
(M, w) is called the type of v(t).

Necessary and sufficient conditions for the existence of a solution
family for [V O]A have been considered by Da Prato and Ianneli [4]
(see also [12] and [3]).

Assume that A generates a positive Co-semigroup and B : D(A) → E
is linear and positive such that A + B is resolvent positive. Then it
was shown by Desch [5] that A + B generates a positive Co-semigroup
whenever E is a space L1. A simple proof is given by Voigt [16].

In section 1 we give the analogous result when [V O]A admits a posi-
tive solution family (V (t))t≥0 on L1 and we also prove that [V O]A+B

admits a positive solution family whenever B is a positive rank-one
perturbation of A in any Banach lattice E. This result contains the
result of [2] when A generates a positive Co-semigroup. The proofs
are based on some generalization of a perturbation result by Miyadera
and Voigt (see [ 11] and [17]. This result is applied to the ordinary
differential operator of second order: (d/dx)2 + b(x)(d/dx) + c(x).

A one-parameter family (S(t))t≥0 of bounded linear operators in E
is called a sine function with infinitesimal generator A if it satisfies the
following conditions. There exist, M, w ≥ 0 such that

(i) S(t) is strongly continuous in t and exponentially bounded (i.e.,
‖ S(t) ‖≤ M exp(wt)(t ≥ 0) where M, w ≥ 0.

(ii) (W 2,∞) ⊂ ρ(A) and (μ2 − A)−1 =
∫ ∞
0

exp(−μt)S(t)dt for all
μ > w.

If A generates a sine function (S(t))t≥0 on E, then we have that for
x ∈ D(A), y ∈ D(A2), u(t) := S(t)x+(d/dt)S(t)y is a classical solution
of u′′(t) = AU(t), u′(o) = x, u(o) = y.

In Section 2 we give the same results as in Section 1 when A
generates a positive sine function and an application to the Klein-
Gordon equation in L1(RN )(N = 1, 2, 3) with a singular potential.

Concerning existence and positivity of the resolvent for [V O]A see
[13].
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1. Volterra equations. Let E be a Banach space, A an unbounded
linear operator in E such that [V O]A admits a solution family (V (t))t≥0

of type (M, w) and B : (D(A), ‖ . ‖A) → E a continuous linear
mapping.

THEOREM 1.1. Assume that there exist constants μ > w and
γ ∈ [0, 1) such that

(1.1)∫ ∞

0

exp(−μr) ‖ B

∫ r

0

V (r − s)x da(s) ‖ dr ≤ γ ‖ x ‖ (x ∈ D(A)).

Then [V O]A+B admits a solution family (W (t))t≥0 on E and

(1.2)

W (t)x = V (t)x +
∫ t

0

W (t − r)B
∫ R

0

v(r − s)x da(s)dr (x ∈ D(A)).

Proof. For t ≥ 0 we define inductively operators Un(t) ∈ L(E)(n =
0, 1, 2, . . . ) with the following properties:

(i) [0,∞) ∈ t → Un(t) is strongly continuous,

(ii) ‖ Un(t)) ‖≤ γnM exp(μt) (t ≥ 0).

U0(t) = V (t) satisfies (i) and (ii). If Un(.) is defined, we put for
x ∈ D(A)

Un+1(t)x :=
∫ t

0

Un(t − r)B
∫ r

0

V (r − s)x da(s)dr,

then [0∞) ∈ t → Un+1(t)x is continuous and by (ii) and (1.1)

‖ Un+1(t)x ‖ ≤ γnM exp(μt)
∫ t

0

exp(−μr) ‖ B

∫ r

0

V (r − s)xda(s) ‖ dr

≤ γn+1M exp(μt) ‖ x ‖ .

D(A) is dense, then Un+1(t) can be extended uniquely to an operator
Un+1(t) ∈ L(E); we have (ii) and (i) for Un+1(.).
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We define for t ≥ 0,

W (t) :=
∞∑

n=0

Un(t).

It follows from (i) and (ii) that [0,∞) � t → w(t) is strongly continuous,
‖ W (t) ‖≤ (M/(1 − γ)) exp(μt) and

W (t)x = V (t)x +
∫ t

0

W (t − r)B
∫ r

0

V (r − s)x da(s)dr (x ∈ D(A)).

So, it suffices to prove that (γ − dâ(γ)(A + B)) : D(a) → E is bijective
and (γ − dâ(γ)(A + B))−1 =

∫ ∞
0

exp(−γt)W (t)dt for γ > μ. Let
γ > μ, we put

H(λ) =
∫ ∞

0

exp(−λt)W (t) dt and H(λ, A) =
∫ ∞

0

exp(−λt)V (t) dt.

Note that H(λ) is a bounded linear operator because (W (t)) is expo-
nentially bounded. For x ∈ D(A),

H(λ)x−H(λ, A)x =
∫ ∞

0

exp(−λt)(W (t)x−V (t)x) dt

=
∫ ∞

0

exp(−λt)
(∫ t

0

W (t−r)B
∫ r

0

V (r−s)x da (s)dr

)
dt

=
∫ ∞

0

exp(−λt)
∫ t

0

∫ r

0

W (t−r)BV (r−s)x da (s) dr dt.

Applying the Fubini theorem and changing the variable of integration,
we have

H(λ)x − H(λ, A)x =
∫ ∞

0

( ∫ ∞

r

exp(−λt)
∫ r

0

W (t − r)BV

· (r − s)x da(s) dt

)
dr

=
∫ ∞

0

∫ ∞

0

exp(−λt) exp(−λr)
∫ r

0

W (t)BV

· (r − s)x da(s) dt dr
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=
∫ ∞

0

exp(−λr)
[∫ ∞

0

exp(−λt)W (t)

·
( ∫ r

0

BV (r − s)x da(s)
)

dt

]
dr

=
∫ ∞

0

exp(−λr)H(λ)
∫ r

0

BV (r − s)x da(s) dr

= H(λ)
∫ ∞

0

∫ ∞

s

exp(−λr)BV (r − s)x dr da(s)

= H(λ)
∫ ∞

0

exp(−λs)B
∫ ∞

0

exp(−λr)V (r)x dr da(s)

= H(λ)
( ∫ ∞

0

exp(−λs) da(s)
)

BH(λ, A)x.

Since D(A) is dense, we obtain H(λ)−H(λ, A) = dâ (λ)H(λ)BH(λ, A).
From the definition of H(λ, A) and by (1.1), we have for x ∈ D(A) and
λ > μ,

||dâ (λ)BH(λ, A)x|| =
∥∥∥∥

∫ ∞

0

exp(−λr)B
∫ r

0

V (r − s)x da(s) dr

∥∥∥∥
≤

∫ ∞

0

exp(−μr)
∥∥∥∥B

∫ r

0

V (r − s)x da(s)
∥∥∥∥ dr

≤ γ||x||.

Then r(dâ (λ)BH(λ, A)) <1 and H(λ)=H(λ, A)(1−dâ (λ)BH(λ, A))−1

= (λ − dâ (λ)(A + B))−1.

Corollary 1.2. If B ∈ L(E), then (VO)A+B admits a solution
family on E.

Example 1.3. Let E = C0(R) be the space of continuous functions
on R vanishing in infinity, with supremum norm and consider the cosine
function on E defined by

(1.3) (C(t)f)(x) = (1/2)(f(x + t) + f(x − t)).

Let A be the generator of (C(t)). Then D(A) = {u ∈ E : u′′ ∈ E}
and Au = u′′ for u ∈ D(A). The sine function associated with a cosine
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function on E is a family (S(t)), defined by

(1.4) (S(t)f)(x) =
∫ t

0

(C(s)f)(x) ds = (1/2)
∫ x+t

x−t

f(s) ds.

Let b and c belong to E. Then the operator B defined by Bu =
b(.)u′ + c(.)u is a continuous linear mapping from (D(A), ||.||A) to E.
In the following, we will prove that the operator B satisfies (1.1) when
a(t) = t.

Let f ∈ D(A); we have

(BS(t)f)(x) = b(x)(d/dx)(S(t)f)(x) + c(x)(S(t)f)(x)
= (b(x)/2)(f(x + t) − f(x − t)) + c(x)(S(t)f)(x).

Hence, |(BS(t)f)(x)| ≤ (C(t)|f |)(x)|b(x)|+ |c(x)|(S(t)|f |(x) and
∫ ∞

0

exp(−μt)||BS(t)f ||∞ dt =
∫ ∞

0

exp(−μt) sup
x∈R

|(b(x)/2)[f(x + t)

− f(x − t)] + c(x)(S(t)f)(x)| dt

≤
∫ ∞

0

exp(−μt) sup
x∈R

(|b(x)|(C(t)|f |)(x)

+ |c(x)|(S(t)|f |(x)) dt

≤
[
c1

∫ ∞

0

exp(−(μ − w)t) dt

+ c2

∫ ∞

0

exp(−(μ−w)t) dt

]
||f ||∞

= ((c1 + c2)/(μ − w))||f ||∞,

where μ > w. We put γ = ((c1 + c2)/(μ − w)) for μ sufficiently large.

Recall that a Banach lattice E is an AL-space if ||u+v|| = ||u||+ ||v||
whenever u, v ∈ E+ (see [15]). Any space L1(μ) is an AL-space.

Corollary 1.4. Assume that E is an AL-space, (V (t))t≥0 is a
positive solution family and B : D(A) → E is a positive operator.
If there exist μ > w such that

(1.5) ||B((μ/dâ (μ)) − A)−1|| < 1
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then (VO)A+B admits a positive solution family on E.

Proof. By Theorem 1.1, we have only to show that (1.1) is satisfied.
For x ∈ D(A)+,

∫ ∞

0

exp(−μr)
∥∥∥∥B

∫ r

0

V (r − s)x da(s)
∥∥∥∥ dr

=
∥∥∥∥

∫ ∞

0

exp(−μr)B
∫ r

0

V (r − s)x da(s) dr

∥∥∥∥
= ||B((μ/dâ (μ)) − A)−1x||
≤ γ||x||

where γ = ||B((μ/dâ (μ))−A)−1||. For x ∈ D(A), xn,± = n(n−A)−1x±
where n ∈ Ω = {(ξ/dâ (ξ)) : ξ > w}. We have xn,± ∈ D(A)+,
limn→∞ ||(xn,+ − xn,−) − x||A = 0 and limn→∞ ||xn,± − x±|| = 0 (see
[12]). It follows that

∫ ∞

0

exp(−μr)
∥∥∥∥B

∫ r

0

V (r − s)(xn,+ − xn,−) da(s)
∥∥∥∥ dr

≤ γ(||xn,+|| + ||xn,−||)

and
∫ ∞

0

exp(−μr)
∥∥∥∥B

∫ r

0

V (r − s)x da(s)
∥∥∥∥ dr ≤ γ(||x+|| + ||x−||).

Finally, using the fact that E is an AL-space, we have that (1.1) holds.

Theorem 1.5. Assume that E is an AL-space, (V (t))t≥0 is a positive
family and B : D(A) → E is a positive operator. If A + B is resolvent
positive, then (VO)A+B admits a positive solution family on E.

Before giving the proof, we apply the result to a(t) = t and obtain

Corollary 1.6. Let A be the generator of a positive cosine function
on an AL-space E and B : D(A) → E a positive linear mapping such
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that A+B is resolvent positive. Then A+B generates a positive cosine
function on E.

Theorem 1.5 is a generalization of the following result established by
Desch [5] (see also [16 or 14]).

Theorem 1.7. Assume that E is an AL-space, A the generator of
a positive semigroup on E and B : D(A) → E a positive operator. If
A+B is resolvent positive, then A+B generates a positive semigroup.

Proof of Theorem 1.5. Voigt’s proof of Theorem 1.7 can be adapted
to the situation considered here. Since a is exponentially bounded,
we have (dâ (λ)/λ) → 0, λ → ∞. This implies that there exists μ
sufficiently large such that (μ/dâ (μ)) ∈ ρ(A+B) and ((μ/dâ (μ))−A−
B)−1 ≥ 0. By a result of Voigt [16], one has r(B((μ/dâ (μ))−A)−1) <
1, r(sB((μ/dâ (μ)) − A)−1) < 1 for s ∈ [0, 1] and

(1.6)
((μ/dâ (μ)) − A)−1 ≤ ((μ/dâ (μ)) − A − sB)−1

≤ ((μ/dâ (μ)) − A − B)−1 for s ∈ [0, 1].

Let n ∈ N be such that ||B((μ/dâ (μ)) − A − B)−1|| < n. As a
consequence of (1.6), one has ||(1/n)B((μ/dâ (μ))−A− (j/n)B)−1|| <
1, j = 0, 1, . . . , n. For j = 0, ||(1/n)B((μ/dâ (μ)) − A)−1|| < 1, it
follows from Corollary 1.4 that (VO)A+(1/n)B admits a positive solution
family on E. Successively, we obtain that (VO)A+B admits a positive
solution family on E.

Example 1.8. Linear Klein-Gordon equation with a singular
potential in L1(R). We consider the well-known class of potentials
KN = {V ∈ L1

loc(R
N ); V D(A1) ⊂ L1(RN ) and limµ→∞ ||V (μ −

A1)−1|| = 0} where A1 is the Laplacian on L1(RN ) (i.e., D(A1) =
{f ∈ L1 : Δf ∈ L1}, A1f = Δf). If N = 1, then KN = L1

loc,unif(R) =
{V ∈ L1

loc(R) : supx

∫
|x−y|≤1

|V (y)| dy < ∞} (see [1]). If E = L1(R),
A1f = f ′′ and D(A1) = w2,1(R), then A1 generates a positive cosine
function (C(t))t≥0 on E where (C(t)f)(x) = (1/2)(f(x+ t)+ f(x− t)).
So, by Corollary 1.6, A1 + V generates a positive cosine function on E
whenever 0 ≤ V ∈ L1

loc,unif(R).
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However, we obtain perturbation results valid in any Banach lattice
if we consider positive perturbations of rank-one. By D(A)′+ we denote
the cone of all positive linear forms on D(A).

The proof of the following theorem is the same as the one of Theorem
2.2 in [2].

Theorem 1.9. Suppose there exist ϕ ∈ D(A)′+, g ∈ E+ such that
Bf := ϕ(f)g, f ∈ D(A). Then (VO)A+B admits a positive solution
family on E.

2. Second order equation governed by a sine function. Let E
be a Banach space, A be the generator of a sine function (S0(t))t≥0 of
type (M, w) on E with dense domain D(A). Let B : (D(A), ||.||A) → E
be a continuous linear mapping.

Theorem 2.1. Assume that there exist constants μ > w and
γ ∈ [0, 1) such that

(2.1)
∫ ∞

0

exp(−μt)||BS0(t)x|| dt ≤ γ||x||, x ∈ D(A).

Then A + B generates a sine function (S(t))t≥0 on E and

(2.2) S(t)x = S0(t)x +
∫ t

0

S(t − s)BS0(s)x ds, x ∈ D(A).

Proof. For t ≥ 0, we define inductively operators Un(t) ∈ L(E),
n = 0, 1, 2, . . . , with the following properties:

(i) [0,∞) � t → Un(t) is strongly continuous.

(ii) ||Un(t)|| ≤ Mγn exp(μt), t ≥ 0.

U0(t) := S0(t) satisfies (i) and (ii). If Un(.) is defined, we put for
x ∈ D(A), Un+1(t)x :=

∫ t

0
Un(t − s)BS0(s)x ds. We can see as in

the proof of Theorem 1.1 that Un+1(t) ∈ L(E) and S(t) :=
∑∞

0 Un(t)
define a sine function with infinitesimal generator A + B.
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In the sequel we suppose that E is a Banach lattice, A is the generator
of a positive sine function of type (M, w) on E such that

(2.3) sup
µ>w

||(μ2 − w)(μ2 − A)−1|| < ∞

and B : D(A) → E is a positive linear mapping. For example, if in
addition A generates a semigroup, then (2.3) is satisfied.

We observe that, from (2.3), we have

(2.4) lim
µ→∞ ||μ(μ − A)−1x − x|| = 0 for all x ∈ E.

Consequently, by the same proof as the one of Corollary 1.4, we have

Corollary 2.2. Assume that E is an AL-space. If there exists μ > w
such that

(2.5) ||B(μ2 − A)−1|| < 1

then A + B generates a positive sine function on E.

Theorem 2.3. Assume that E is an AL-space. If A+B is resolvent
positive, then A + B generates a positive sine function on E.

Theorem 2.4. Suppose there exist ϕ ∈ D(A)′+, g ∈ E+, such that
Bf := ϕ(f)g, f ∈ D(A). Then A+B generates a positive sine function
on any Banach lattice E.

Remark 2.5. Assumption (2.3) is essential if we want to prove that
(2.5) implies (2.1) and that μ(μ−A−(j/n)B)−1| → 1, μ → ∞ strongly,
in order to apply Corollary 2.2 successively for j = 0, 1, 2, . . . (see the
proofs of Theorem 1.5 and Theorem 1.9).

Proof. The proofs are similar to those of Theorem 1.5 and Theorem
1.9 so we shall not repeat them here.

Example 2.6. Linear Klein-Gordon equation with a singular
potential in L1(RN ), N = 2, 3. Let E = L1(RN ) and 0 ≤ V ∈ KN .
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A1 generates a positive sine function on E, where D(A1) = {f ∈ E :
Δf ∈ E} (see [8 or 6]). Then, by Theorem 2.3, A1 + B generates a
positive sine function on E.

Remark 2.7. So, the only perturbation result known for sine functions
of operators seems to be Theorem 5.3 in [3] which we recall here:

Theorem. Let A generate a sine function and B ∈ L(D(A), E).
Then A + B generates a sine function, too.

Acknowledgment. We thank Professor W. Arendt for several
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