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NORMAL SOLUTIONS OF THE BELTRAMI EQUATION
FOR BOUNDED ANALYTIC FUNCTIONS

JOSEPH A. CIMA AND WILLIAM R. DERRICK

ABSTRACT. This paper provides a new method for finding
normal solutions of the Beltrami equation: homeomorphisms
of the extended complex plane onto itself that are quasicon-
formal inside the unit disk and holomorphic elsewhere. The
procedure is applicable for any complex dilatation that is the
product of a power of z times an arbitrary bounded regular
function in z conjugate. The proof demonstrates that this
technique is equivalent to that of the Vekua-Ahlfors method
which involves an infinite series of singular integral operators.

A homeomorphism f is said to be quasiconformal, with given complex
dilatation μ in a domain G of the complex plane C if it satisfies the
Beltrami equation

(1) fz̄ = μfz,

where μ = μ(z, z̄) is a complex-valued measurable function on G with
|μ| < 1, and

fz = (1/2)(fx − ify), fz̄ = (1/2)(fx + ify).

A central problem is that of finding quasiconformal homeomorphisms
of C onto itself where the support of μ is contained in the open unit
disk D. It is well known (see Vekua [5] and Ahlfors [1]) that such a
homeomorphism exists, and with the normalization fz − 1 in Lp(C), it
is unique. The proof is constructive, with the normal solution of the
problem having the form

(2) f =
∫ z

0

(I − Tμ)−1(z) dz,

where T is the operator

(3) Tμ = lim
ε→0+

− 1
π

∫∫
|ζ−z|>ε

μ(ζ, ζ̄)
(ζ − z)2

dζ ∧ dζ̄.
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Define the operator

(4) Qf(z) = − 1
π

∫
C

∫
f(ζ)
ζ − z

dζ ∧ dζ̄;

If f ∈ Lp(D), p > 2, then Qf exists everywhere as an absolutely
convergent integral and Tf exists almost everywhere as a Cauchy
principal value. More importantly, for our purposes, if f ∈ Cn

α(D̄), the
Banach space of n times continuously differentiable functions whose
nth partial derivatives have Hölder index 0 < α ≤ 1, then Qf and
Tf also belong to Cn

α(D̄). Indeed, Q : Cn
α(D̄) → Cn+1

α (D̄) is a
completely continuous onto operator and Tf : Cn

α(D̄) → Cn
α(D̄) is

a linear bounded onto operator (see [5, p. 56]). Furthermore,

(5)
∂Qf

∂z
= Tf and

∂Qf

∂z̄
= f,

and (5) holds in the distributional sense if f ∈ Lp(C), p > 1 (see [5, p.
71]). Then, by equations (2) and (5),

(6) f =
∫ z

0

(I + Tμ + TμTμ + · · · ) dz = z + Q(μ + μTμ + · · · ),

so that from (6) and (2)

(7) fz̄ = ∂Q(μ + μTμ + · · · )/∂z̄ = μ(I − Tμ)−1 = μfz,

and f satisfies the Beltrami equation.

We will use this constructive definition to obtain normal solutions for
the following family of dilatations μ: Let

(8) μ(z, z̄) = zkG(z̄)χD, k any integer,

where G(z) = g′(z), with g′ an analytic function from D into itself
having a zero at z = 0 of order ≥ |k|. In Cima and Derrick [2, 3], we
have determined normal solutions for special cases where the function
G(z̄) is a monomial. These results provide useful examples with which
to study chord-arc curves (see Semmes [4]).

Observe that μ has a removable singularity at z = 0 and that
||μ||∞ < 1 on D when k is negative. Thus, the construction above
will apply to all such dilatations.
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It is not difficult to find solutions to the Beltrami equation: any
f = F (r(z) + s(z̄)), with F, r, and s analytic is a general solution of

fz̄ =
s′(z̄)
r′(z)

fz.

In particular, for μ given by (8) and k �= 1, we have the solution on D

(9) f = F (z1−k + (1 − k)g(z̄)).

Note that on |z| = 1 this becomes F (z1−k + (1 − k)g(1/z)), and
that z1−k + (1 − k)g(1/z) has winding number 1 − k near ∞. This
suggests that if we select F (ζ) = ζ1/(1−k), then (9) is univalent in a
neighborhood of ∞, and that

f =
{

z[1 − (k − 1)zk−1g(z̄)]1/(1−k), |z| ≤ 1,
z[1 − (k − 1)zk−1g(1/z)]1/(1−k), |z| ≥ 1,

may be the normal solution. Similarly, for k = 1, we have f =
F (log(z) + g(z̄)), which is univalent in a neighborhood of ∞ if F (ζ) =
exp(ζ), implying that the corresponding normal solution may be

f =
{

z exp(g(z̄)), |z| ≤ 1,
z exp(g(1/z)), |z| ≥ 1.

The difficulty that remains is to show that these functions are univalent
in C. Since the constructive formula in (2) generates homemorphisms
on C, we shall use this infinite series of singular operators to verify that
the procedure indicated in (9) does generate normal solutions. We shall
need the following result in our proof.

Lemma. Let μ be given by (8). Then

Qμ =
∫ z̄

μ dζ̄ = zkg(z̄).

Proof. Using Pompeiu’s formula, we have

Qμ = − 1
π

∫∫
|ζ|<1

ζkg′(ζ̄)
ζ − z

dζ ∧ dz̄

= zkg(z̄) − 1
π

∫
|ζ|=1

ζkg(ζ̄)
ζ − z

dζ,
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where g(z̄) = z̄k+1(ck+1 + ck+2z̄ + · · · ). (The constant term in the
integration of g′ is analytic and cancels out in Pompeiu’s formula.) Let
ζ = eit, then the last integral becomes

∫
|ζ|=1

ζkg(ζ̄)
ζ − z

dζ = i

∞∑
n=1

cn+k

∫ π

−π

e−inθ dθ

1 − (z/eiθ)

= i

∞∑
n=1

∞∑
m=0

cn+kzm sin(m + n)π
m + n

= 0.

Theorem. The normal solution for the Beltrami equation (1) for μ
given by (8) is

(10) f =
{

z[1 − (k − 1)zk−1g(z̄)]1/(1−k), |z| ≤ 1,
z[1 − (k − 1)zk−1g(1/z)]1/(1−k), |z| ≥ 1,

for k �= 1, and

(11) f =
{

z exp(g(z̄)), |z| ≤ 1,
z exp(g(1/z)), |z| ≥ 1,

when k = 1.

Proof. Using (5) and the Lemma, we have

Tμ = ∂Qμ/∂z = kzk−1g(z̄),

so that
μTμ = kz2k−1g(z̄)g′(z̄) = (1/2)kz2k−1(g(z̄)2)′,

with the order of the zero at z = 0 of (g(z̄)2)′ ≥ |2k − 1|. Hence, μTμ
has the same form as μ, so the Lemma can be applied again. Proceeding
inductively, we obtain the nth iterate

(12) (Tμ)(n) =
[ n∏

j=1

(jk − (j − 1))
]
zn(k−1)g(z̄)n/n!.
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Hence, for k �= 1, we have

(I − Tμ)−1 =
∞∑

n=0

(Tμ)(n) = [1 − (k − 1)zk−1g(z̄)]−k/(k−1),

from which (10) follows in |z| ≤ 1 by integrating with respect to z.
When k = 1, (12) becomes g(z̄)n/n!, so that (I − Tμ)−1 = exp(g(z̄)),
and (11) holds in |z| ≤ 1. To determine the expressions in |z| > 1, let
z̄ = 1/z on |z| = 1, and extend the function to the rest of the plane.
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