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A RECTANGULAR QUADRATURE METHOD
FOR LOGARITHMICALLY SINGULAR

INTEGRAL EQUATIONS OF THE FIRST KIND

BERNARD BIALECKI AND YI YAN

ABSTRACT. This paper is concerned with a rectangular
quadrature method for the numerical solution of a logarith-
mically singular integral equation of the first kind on a simple
closed curve. By extracting the logarithmic singularity, the
integral equation is first transformed into an equivalent in-
tegral equation with peridic integrands which do not possess
singularities. The discretized equation is then obtained by re-
placing the integrals with a rectangular quadrature rule and
by collocating at the quadrature nodes. The resulting system
of linear algebraic equations does not involve the evaluation of
integrals. The method is analyzed by giving an explicit trun-
cation error formula and a stability proof. As a consequence,
the method is proved to have an optimal rate of convergence of
O(h3), where h is the stepsize of the quadrature rule. Based on
a derived asymptotic error expansion, Richardson’s extrapola-
tion is used to accelerate the convergence up to order O(h5).
Numerical examples are included to illustrate the predicted
rates of convergence.

1. Introduction. In this paper we consider a rectangular quadra-
ture method for the numerical solution of the singular integral equation
of the first kind

(1.1) −
∫

Γ

log |x− y|ρ(y) dl(y) = f(x), x = (x1, x2) ∈ Γ,

where Γ is a simple closed curve in the plane, dl(y) denotes the element
of the arc length at a point y = (y1, y2) ∈ Γ, and |x−y| is the Euclidean
distance between x and y. The function f is assumed to be given and
ρ is the desired solution. Equation (1.1) arises in direct and indirect
boundary integral equation methods in the solution of the Dirichlet
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problem for Laplace’s equation on a plane region (see, for example,
[9]). We assume that Γ has a 2π-periodic C∞ parametrization given
by

Γ : (x1, x2) = γ(t) ≡ (γ1(t), γ2(t)), t ∈ R,

with |γ′(t)| �= 0 for all t. Using this representation of Γ, equation (1.1)
can be written as

(1.2) −
∫ 2π

0

log |γ(t) − γ(τ )|w(τ ) dτ = g(t), t ∈ [0, 2π],

where
w(t) = ρ(γ(t))|γ′(t)|, g(t) = f(γ(t)).

In the first step of the method, we extract the logarithmic singularity
from the integrand as follows. We rewrite (1.2) as

(1.3)
∫ 2π

0

log |γ(t) − γ(τ )|[w(t) − w(τ )] dτ

− w(t)
∫ 2π

0

log |γ(t) − γ(τ )| dτ = g(t), t ∈ [0, 2π],

and split log |γ(t) − γ(τ )| in the second integral of (1.3) in the form

(1.4) − log |γ(t) − γ(τ )| = a(t− τ ) + b(t, τ ),

where

(1.5) a(t) = − log | sin(t/2)|,

(1.6)

b(t, τ ) =
{− log |2γ′(t)|, if t− τ = 2jπ, j = 0, ±1, . . . ,
− log |[γ(t) − γ(τ )]/ sin[(t− τ )/2]|, otherwise.

Then, using the identity

(1.7)
∫ 2π

0

a(t− τ ) dτ = 2π log 2
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(see, for example, [15, equation (8)]), we obtain the integral equation

(1.8) 2π log 2w(t) +
∫ 2π

0

log |γ(t) − γ(τ )|[w(t) − w(τ )] dτ

+ w(t)
∫ 2π

0

b(t, τ ) dτ = g(t), t ∈ [0, 2π].

The integrands in this equation are no longer singular, and, moreover,
they are 2π-periodic functions in τ .

In the second stage of the method, both integrals in (1.8) are approx-
imated by the rectangular quadrature rule

(1.9)
∫ 2π

0

v(τ ) dτ ≈ h
N−1∑
n=0

v(tn),

where h = 2π/N and tn = nh. This leads to

(1.10) 2π log 2w(t) + h
N−1∑
n=0

log |γ(t) − γ(tn)|[w(t) − w(tn)]

+ w(t)h
N−1∑
n=0

b(t, tn) ≈ g(t), t ∈ [0, 2π].

Collocating (1.10) at the points {tn}N−1
n=0 and replacing w(tn) with wn,

we obtain

(1.11)

2π log 2wm + h
N−1∑
n=0
n�=m

log |γ(tm) − γ(tn)|(wm − wn)

+ wmh

N−1∑
n=0

b(tm, tn) = g(tm),

m = 0, 1, . . . , N − 1.

This is a linear system of N equations in the unknowns w0, . . . , wN−1.
It follows from (1.6) that the coefficient of wm in each equation is given
by

(2π − h) log 2 − h log |γ′(tm)| + h log
N−1∏
n=0
n�=m

∣∣∣∣sin tm − tn
2

∣∣∣∣ .
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To simplify this expression, we use the identity

(1.12)
N−1∏
n=0
n�=m

∣∣∣∣sin tm − tn
2

∣∣∣∣ =
N−1∏
n=1

sin
tn
2

= N21−N ,

which follows from the 2π-periodicity of | sin(t/2)| and formula 1.392.1
in [8]. Thus, the linear system (1.11) can be written in the matrix-
vector form

(1.13) Chwh = gh,

where wh = [w0, . . . , wN−1]T ,

(1.14) gh = [g(t0), . . . , g(tN−1)]T ,

and
(1.15)

Ch = (cm,n)N−1
m,n=0, cm,n =

{−h log |γ(tm) − γ(tn)|, if m �= n,
h logN − h log |γ′(tm)|, if m = n.

This rectangular quadrature method is closely related to an early
method proposed by Christiansen [5]. In the last integral of (1.3),
Christiansen changed the interval of integration to [t − π, t + π] and
used the splitting

− log |γ(t) − γ(τ )| = − log |(t− τ )γ′(t)| + b̃(t, τ ),

where

b̃(t, τ ) =
{

0, if t = τ ,
− log(|γ(t) − γ(τ )|/|(t− τ )γ′(t)|), if t �= τ ,

(cf. (1.4) (1.6)). Since∫ t+π

t−π

log |t− τ | dτ = 2π(log π − 1),

the counterpart of equation (1.8) is

2π(1 − log |πγ′(t)|)w(t) +
∫ 2π

0

log |γ(t) − γ(τ )|[w(t) − w(τ )] dτ

+ w(t)
∫ 2π

0

b̃(t, τ ) dτ = g(t), t ∈ [0, 2π].
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While the first integral is approximated by the rectangular quadrature
rule (1.9), the second integral is approximated by a corrected trapezoid
rule since b̃(t, τ ) is not a 2π-periodic function in τ . Collocating at the
nodes of the rectangular quadrature rule (1.9) and assuming that N is
even, Christiansen arrived at the system of linear equations

C̃hwh = gh,

where gh is given by (1.14) and

C̃h = (c̃m,n)N−1
m,n=0,

c̃m,n =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−h log |γ(tm) − γ(tn)|,
if m �= n,

h

{
N − 1

3N + log
(

1
π

[
(N/2)!

(N/2)N/2

]2)}
− h log |γ′(tm)|,

if m = n.

Clearly, the off-diagonal elements of the matrices Ch and C̃h are
the same. Using formula 6.1.41 of [2] for logn!, we also find that
cm,m − c̃m,m = O(h4). Although in this paper we concentrate on the
analysis of the method (1.13) (1.15), our results can be used to show
that Christiansen’s method has a rate of convergence of O(h3), which
was observed experimentally in [5]. As far as we know, a rigorous proof
of this optimal rate of convergence for the method of Christiansen has
not been given until now, although an attempt in this direction was
made by Abou El-Seoud [1]. Making a restrictive assumption that the
second integral in (1.3) can be evaluated analytically, Abou El-Seoud
approximated the first integral of (1.3) by the rectangular rule and
proved only an O(h2) rate of convergence for the resulting method. It
should be noted that the analytical evaluation of the second integral
in (1.3) is only possible when Γ has a simple geometric shape, like, for
example, that of an ellipse.

Other related quadrature methods are based on the direct application
of the rectangular quadrature rule (1.9) to (1.2), which results in

−h
N−1∑
n=0

log |γ(t) − γ(tn)|w(tn) ≈ g(t).
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Instead of collocating, the corresponding linear system is obtained by
requiring that

(
− h

N−1∑
n=0

log |γ(·) − γ(tn)|wn − g, v

)
= 0, v ∈ Sh,

where (·, ·) is an appropriate inner product and Sh is a space of B-
splines. Ruotsalainen and Saranen [12] used the standard L2 inner
product, whereas Sloan and Burn [14] used a well-designed discrete
inner product and a space of linear B-splines. Both these methods
can be viewed and analyzed as Petrov-Galerkin methods with Dirac
functions as trial functions. The method of [12] requires little regularity
of the solution w to obtain convergence estimates in negative norms.
The method of [14] has a rate of convergence of O(h3) in the uniform
norm, but it requires more regularity of the solution. Both methods
involve the evaluation of integrals in the calculation of the elements in
the resulting matrix-vector equation.

Unlike the methods of [12] and [14], and Galerkin or collocation
methods in general, the present quadrature method does not require the
evaluation of integrals in the setting up of the matrix-vector equation
(1.13). In addition, when the method is applied to some boundary value
problems, the approximation to a single layer potential is computed by
a very simple formula based on the quadrature (1.9). In comparison,
the spline Galerkin method or the spline collocation method requires
additional quadrature formulae for the corresponding computation.

Upon completion of this work, we learned about the recent paper
of Saranen [13], who also derives the linear system (1.11) but does
not simplify the diagonal elements in the matrix Ch according to
(1.12). Using the Fourier analysis technique, Saranen shows that the
rectangular quadrature method (1.13) has a rate of convergence of
O(h3) in the uniform norm. The analysis of the method (1.13) given
in this paper differs significantly from that of Saranen, and it leads
to a number of important results which are not included in [13]. In
Section 2, following the traditional approach for analyzing quadrature
methods (see, for example, [4]), we derive an explicit formula of the
truncation error and prove the stability of the method. Based on this,
we give not only an O(h3) error estimate in the discrete L2-norm,
but also an explicit asymptotic error expansion in the approximate
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solution. This expansion shows that the O(h3) rate of convergence
is optimal. More importantly, using the error expansion, we employ
Richardson’s extrapolation to accelerate the convergence of the method
up to the order O(h5). The resulting matrix (1.15) of the quadrature
method clearly preserves the symmetry of the logarithmic kernel. As
a by-product of our stability analysis, we show that the condition
number of the matrix Ch is bounded by a constant multiple of h−1.
We also give explicit formulas for eigenvalues of the matrix Ch in the
special case when the curve Γ is a circle. Based on these properties
of the matrix Ch, an appropriate preconditioner may be given when
efficient iterative methods are considered for the solution of the matrix-
vector equation (1.13). It should also be pointed out that the present
approach for the analysis of the quadrature method (1.13) might be
applicable to the problem (1.1) in which the curve Γ has corners. In
such situations, other quadrature rules with nodes generated by a mesh
grading technique can be used in place of the rectangular rule (1.9).
An application of the method (1.13) to the numerical solution of some
boundary value problems is discussed in Section 3. We show that the
rate of convergence for the single layer potential is O(h3), and that it
can be improved to O(h5) by Richardson’s extrapolation. Finally, some
numerical results are presented and discussed in Section 4.

2. Convergence analysis. The convergence analysis of the method
(1.13) (1.15) involves a stability proof and a truncation error estimate.
For this purpose, we introduce integral operators A and B defined by

Av(t) =
∫ 2π

0

a(t− τ )v(τ ) dτ,

and

Bv(t) =
∫ 2π

0

b(t, τ )v(τ ) dτ,

where a and b are given by (1.5) and (1.6), respectively. It follows from
(1.4) that equation (1.2) can be written in the operator form

(2.1) Cw = g,
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where

(2.2) C = A+ B.

Using (1.7), it is easy to see that

Av(t) = 2π log 2v(t) −
∫ 2π

0

a(t− τ )[v(t) − v(τ )] dτ,

and hence equation (2.1) becomes

(2.3) 2π log 2w(t) −
∫ 2π

0

a(t− τ )[w(t) − w(τ )] dτ

+
∫ 2π

0

b(t, τ )w(τ ) dτ = g(t), t ∈ [0, 2π].

Applying the rectangular quadrature rule (1.9) to both integrals in
(2.3) and collocating at the quadrature nodes, as was done for (1.8),
we obtain the matrix-vector equation

(Ah +Bh)wh = gh,

where gh is given by (1.14) and

(2.4) Ah = (am,n)N−1
m,n=0, am,n =

{
ha(tm − tn), if m �= n,
h log(2N), if m = n,

(2.5) Bh = (bm,n)N−1
m,n=0, bm,n = hb(tm, tn).

It is easy to check that, for the matrix Ch given by (1.15), we have

(2.6) Ch = Ah +Bh.

The above discussion can be regarded as another way of deriving
(1.13). Corresponding to the integral operator decomposition (2.2),
we have the matrix decomposition (2.6), where Ah and Bh are discrete
approximations of A and B, respectively. The integral operator A can
be viewed as the dominant one in the decomposition (2.2) (see [15]).
In particular, the integral operator C coincides with A when the curve
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Γ is the circle of radius 1/2. The integral operator B has a smooth
kernel, so it can be regarded as a compact perturbation of A (see [15]).

As will be shown in the next subsection by finding its eigensystem,
the matrix Ah is invertible. This allows us to rewrite (2.6) as Ch =
Ah(I+A−1

h Bh). The stability of the method is then proved by viewing
I + A−1

h Bh as an approximation to the Fredholm integral operator
I +A−1B. A similar approach for stability of collocation methods was
used in [16 and 7].

2.1. Eigensystem of matrix Ah. In this subsection we give explicit
formulae for the eigenvalues and eigenvectors of the matrix Ah defined
by (2.4).

Using (2.4) and the 2π-periodicity of function a(t), it is easy to see
that the elements of the matrix Ah satisfy

(2.7) am,n = am+1,n+1,

and

(2.8) am,N−1 = am+1,0,

for m,n = 0, 1, . . . , N −2. Properties (2.7) and (2.8) show that Ah is a
circulant matrix (see, for example, [6, Section 3.1], which allows us to
obtain explicit expressions for the eigenvalues and eigenvectors of Ah.
These are given in the following theorem.

Theorem 2.1. The eigenvalues {λj}N−1
j=0 and the corresponding

eigenvectors {ej}N−1
j=0 of Ah are given respectively by

(2.9)

λj =

⎧⎪⎨
⎪⎩

2π log 2, j = 0,

π
(

1
j + 1

N−j − 1
N

∑∞
l=1

l+2(j/N)(1−j/N)
l(l+j/N)(l+1−j/N)

)
, j = 1, 2, . . . ,

N − 1,

and

(2.10) ej = [1, eijh, eij2h, . . . , eij(N−1)h]T ,

where in (2.10) i2 = −1. Moreover,

(2.11) λj ≥ π log 2
(

1
j

+
1

N − j

)
, j = 1, 2, . . . , N − 1.
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Proof. Since Ah is circulant, it follows from [6, Theorem 3.2.2] that
the eigenvalues λj and the corresponding eigenvectors ej of Ah are
given by

λj =
N−1∑
n=0

eijnha0,n,

and (2.10), respectively. Using (2.4) for a0,n and using the identity
(1.12), we have

λj = h log 2N − h

N−1∑
n=1

eijnh log sin(nh/2)

= h log 2N − h log
N−1∏
n=0

sin(nh/2) + h
N−1∑
n=1

(1 − eijnh) log sin(nh/2)

= 2π log 2 + h

N−1∑
n=1

(1 − eijnh) log sin(nh/2).

Clearly, λ0 = 2π log 2. Thus, we assume that j �= 0. Since

log sin(nh/2) = − log 2 −
∞∑

m=1

cos(mnh)
m

= − log 2 −
N−1∑
k=1

cos(knh)
k

−
∞∑

l=1

N−1∑
k=0

cos(knh)
lN + k

for 0 < n < N (see, for example, [8, 1.441.2]), we obtain

(2.12) λj = h

N−1∑
k=1

αj,k

k
+ h

∞∑
l=1

N−1∑
k=0

αj,k

lN + k

with

αj,k = (1/2)
N−1∑
n=1

(eijnh − 1)(eiknh + e−iknh).

Using the property

(2.13)
N−1∑
n=0

eimnh =
{
N, if m = lN , l = 0,±1, . . . ,
0, otherwise,
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it is easy to show that

(2.14) αj,k =

⎧⎪⎪⎨
⎪⎪⎩

−N, if k = 0,
N, if k = j = N/2,
N/2, if k = j or N − j, and j �= N/2,
0, otherwise.

Thus, (2.12) and (2.14) give

λj = π

(
1
j

+
1

N − j

)
+ π

∞∑
l=1

(
1

lN + j
+

1
(l + 1)N − j

− 2
lN

)
,

and hence (2.9) follows through a simple calculation. To show (2.11),
we use the inequality

l + 2t(1 − t)
l(l + t)(l+ 1 − t)

≤ 2
l(2l + 1)

= 4
(

1
2l

− 1
2l + 1

)
, t ∈ [0, 1],

to obtain

(2.15)

∞∑
l=1

l + 2 j
N (1 − j

N )

l(l + j
N )(l + 1 − j

N )
≤ 4

∞∑
l=1

(
1
2l

− 1
2l + 1

)

= 4

(
1 +

∞∑
l=1

(−1)l

l

)

= 4(1 − log 2).

Therefore, the inequality (2.11) is obtained by combining (2.9) and
(2.15) with 1/j + 1/(N − j) ≥ 4/N .

Theorem 2.1 implies that the matrix Ah is positive definite, since it
is symmetric, and since its eigenvalues are greater than zero. Theorem
2.1 also implies that the spectral condition number max{λj}/min{λj}
of the matrix Ah is bounded by a constant multiple of the number of
the quadrature nodes.

2.2. Truncation error. In this subsection we estimate the trunca-
tion error of the approximating equation (1.13). We shall employ the
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space Ck[0, 2π] of k-times continuously differentiable functions with the
norm || · ||Ck[0,2π] defined by

||v||Ck[0,2π] = max
l=0,... ,k

max
t∈[0,2π]

|v(l)(t)|.

We also use the space of 2π-periodic functions

Ck(2π) = {v ∈ Ck(R) : v(t+ 2π) = v(t), t ∈ R}.
The truncation error of the approximating equation (1.13) is defined
by

(2.16) ε(v) = rhCv − Chrhv,

where a restriction operator rh is given by

(2.17) rhv = [v(t0), v(t1), . . . , v(tN−1)]T , v ∈ C[0, 2π].

It follows from (2.2) and (2.6) that the truncation error ε(v) can be
decomposed in the form

(2.18) ε(v) = ε1(v) + ε2(v),

where

ε1(v) = rhAv −Ahrhv and ε2(v) = rhBv −Bhrhv.

By a simple calculation using (1.12), the components of ε1(v) =
[ε10, . . . , ε1N−1]

T can be written explicitly as

(2.19)

ε1m =
∫ 2π

0

a(tm − τ )[v(τ ) − v(tm)] dτ

− h
N−1∑
n=0
n�=m

a(tm − tn)[(v(tn) − v(tm)].

Also, the components of ε2(v) = [ε20, . . . , ε2N−1]
T can be expressed as

(2.20) ε2m =
∫ 2π

0

b(tm, τ )v(τ ) dτ − h

N−1∑
n=0

b(tm, tn)v(tn).
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In the following, for nonpositive z, ζ(z) is the analytic extension of
the Riemann zeta function. Also, c denotes a generic positive constant
independent of h.

Theorem 2.2. Assume v ∈ C2l(2π), l ≥ 1. Let ε1(v) =
[ε10, . . . , ε1N−1]

T and ε2(v) = [ε20, . . . , ε2N−1]
T be given by (2.19) and

(2.20), respectively. Then, for m = 0, 1, . . . , N − 1,

(2.21) ε1m = −2
l−1∑
j=1

ζ ′(−2j)
(2j)!

v(2j)(tm)h2j+1 + E2l(tm),

with

(2.22) |E2l(tm)| ≤ ch2l||v||C2l[0,2π],

and

(2.23) |ε2m| ≤ ch2l||v||C2l[0,2π].

In order to prove this theorem, we need Euler-Maclaurin formulae for
the rectangular rule given in the following lemma.

Lemma 2.1. Assume ψ ∈ C2l[0, 2π], l ≥ 1, and let u(t) = ψ(t) log t.
Then

(2.24)
∫ 2π

0

ψ(τ ) dτ − h
N∑

n=1

ψ(tn)

=
2l−1∑
j=1

(−1)j+1Bj

j!
[ψ(j−1)(2π) − ψ(j−1)(0)]hj + E2l,
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and

(2.25)

∫ 2π

0

u(τ ) dτ − h
N∑

n=1

u(tn)

=
2l−1∑
j=1

{
(−1)j+1Bj

j!
[u(j−1)(2π) − ψ(j−1)(0) log h]hj

+
ζ ′(1 − j)
(j − 1)!

ψ(j−1)(0)hj

}

− B2l

(2l)!
ψ(2l−1)(0)h2l logN + E2l,

where Bj are the Bernoulli numbers, and the error terms E2l satisfy

(2.26) |E2l| ≤ ch2l||ψ||C2l[0,2π].

Formulae (2.24) and (2.25) follow from (1) in [10] and (7) in [11],
respectively, by scaling the interval of integration.

The proof of Theorem 2.2 requires also two additional lemmas.

Lemma 2.2. Let u(t) = ψ(t) log sin(t/4) with ψ(t) an even function
in C2l(2π), l ≥ 1. Then
(2.27)∫ 2π

0

u(τ ) dτ − h

N−1∑
n=1

u(tn) = − 1
2
ψ(0)h log(4N)

+
l−1∑
j=1

ζ ′(−2j)
(2j)!

ψ(2j)(0)h2j+1 + E2l,

where E2l satisfies (2.26).

Proof. Writing the function u(t) as

u(t) = ψ(t) log
sin(t/4)

t
+ ψ(t) log t

≡ u1(t) + u2(t),
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and applying (2.24) to u1 and (2.25) to u2, respectively, we obtain

∫ 2π

0

u(τ ) dτ − h

N∑
n=1

u(tn)

=
2l−1∑
j=1

{
(−1)j+1Bj

j!
[u(j−1)(2π) − u

(j−1)
1 (0)

− ψ(j−1)(0) log h]hj +
ζ ′(1 − j)
(j − 1)!

ψ(j−1)(0)hj

}

− B2l

(2l)!
ψ(2l−1)(0)h2l logN + E2l.

Since ψ and u1 are even functions, and since u(2π + t) = u(2π − t),
the values u(j−1)(2π), u(j−1)

1 (0), ψ(j−1)(2π) for j = 2, 4, . . . , 2l−2, and
ψ(2l−1)(0) are zero. Further, Bj = 0 for all odd integers j ≥ 3. Hence,
we have

∫ 2π

0

u(τ ) dτ − h

N∑
n=1

u(tn) =B1[u(2π) − u1(0) − ψ(0) log h]h

+ ζ ′(0)v(0)h

+
l−1∑
j=1

ζ ′(−2j)
(2j)!

ψ(2j)(0)h2j+1 + E2l.

Finally, since u(2π) = 0, u1(0) = −ψ(0) log 4, B1 = −1/2 and
ζ ′(0) = −(1/2) log(2π), the last equality leads to (2.27).

Lemma 2.3. Let u(t) = ψ(t) log sin(t/2) with ψ ∈ C2l(2π), l ≥ 1.
Then

(2.28)
∫ 2π

0

u(τ ) dτ − h

N−1∑
n=1

u(tn)

= −ψ(0)h log(2N) + 2
l−1∑
j=1

ζ ′(−2j)
(2j)!

ψ(2j)(0)h2j+1 + E2l,

where E2l satisfies (2.26).
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Proof. Since sin(t/2) = 2 sin(t/4) cos(t/4), we can write the integral∫ 2π

0
u(τ ) dτ as

∫ 2π

0

u(τ ) dτ =
∫ 2π

0

ψ(τ ) log 2 dτ +
∫ 2π

0

ψ(τ ) log sin
τ

4
dτ

+
∫ 2π

0

ψ(2π − τ ) log sin
τ

4
dτ

=
∫ 2π

0

ψ(τ ) log 2 dτ +
∫ 2π

0

[ψ(τ ) + ψ(−τ )] log sin
τ

4
dτ,

where in the first step we have used the change of variable τ := 2π−τ in
the third integral. Applying (2.24) and (2.27) to the last two integrals,
respectively, we obtain

∫ 2π

0

u(τ ) dτ = h

N−1∑
n=1

{
ψ(tn) log 2 + [ψ(tn) + ψ(−tn)] log sin

tn
4

}

+ ψ(2π)h log 2 − ψ(0)h log(4N)

+ 2
l−1∑
j=1

ζ ′(−2j)
(2j)!

ψ(2j)(0)h2j+1 + E2l.

Since

N−1∑
n=1

ψ(−tn) log sin
tn
4

=
N−1∑
n=1

ψ(2π − tn) log cos
2π − tn

4

=
N−1∑
n=1

ψ(tn) log cos
tn
4
,

we have

∫ 2π

0

u(τ ) dτ = h

N−1∑
n=1

ψ(tn) log sin
tn
2

+ ψ(0)h log 2 − ψ(0)h log(4N)

+ 2
l−1∑
j=1

ζ ′(−2j)
(2j)!

ψ(2j)(0)h2j+1 + E2l,

which finally leads to (2.28).
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Proof of Theorem 2.2. Since v(τ ) is 2π-periodic and since a(t− τ ) is
2π-periodic with respect to τ , we have

∫ 2π

0

a(tm − τ )[v(τ ) − v(tm)] dτ =
∫ 2π+tm

tm

a(tm − τ )[v(τ ) − v(tm)] dτ

= −
∫ 2π

0

[v(τ + tm)

− v(tm)] log sin(τ/2) dτ,

where the last identity is obtained by making the change of variable
τ := τ + tm. Similarly, we have

h
N−1∑
n=0
n�=m

a(tm−tn)[v(tn)−v(tm)] = −h
N−1∑
n=1

[v(tn+tm)−v(tm)] log sin(tn/2).

Thus, estimate (2.21) follows from Lemma 2.3 applied to ψ(t) =
v(tm) − v(t + tm). Since b(t, τ ) is a smooth function of (t, τ ) (see,
for example, [15]) and is 2π-periodic with respect to τ , estimate (2.23)
follows from the Euler-Maclaurin formula (2.24).

2.3. Stability and convergence. The following notation is
used in the remainder of the paper. For v = [v0, . . . , vN−1]T and
u = [u0, . . . , uN−1]T in CN , 〈·, ·〉 and || · || denote the inner product
and vector norm defined respectively by

〈v,u〉 = h
N−1∑
n=0

vnūn, ||v||2 = 〈v,v〉.

We also use the symbol || · || to denote the matrix norm induced by the
vector norm.

Theorem 2.1 implies that

(2.29) ||A−1
h || ≤ ch−1.

Therefore, if v ∈ C4(2π), then estimates (2.29), (2.21), (2.22) and (2.23)
lead to

||A−1
h ε(v)|| ≤ ||A−1

h || ||ε(v)|| = O(h2).
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However, as the following theorem shows, a more careful treatment of
A−1

h ε(v) reveals that ||A−1
h ε(v)|| = O(h3).

Theorem 2.3. Let Ah and ε(v) be defined by (2.4) and (2.16),
respectively, and assume that v ∈ C4(2π). Then

(2.30) ||A−1
h ε(v)|| ≤ ch3||v||C4[0,2π].

The proof of this theorem requires an estimate of discrete Fourier
coefficients, which is given in the following lemma.

Lemma 2.4. Let vectors {ej}N−1
j=0 be given by (2.10), and assume

v ∈ C4(2π). Then,

|〈rhv
(2), ej〉| ≤ c||v||C4[0,2π]

{
N−2, j = 0,(

1
j + 1

N−j

)2

, j = 1, 2, . . . , N − 1.

Proof. Since

(2.31)
∫ 2π

0

v(2)(τ ) dτ = v(1)|2π
0 = 0,

Lemma 2.4 for j = 0 is obtained by applying Lemma 2.1 to the 2π-
periodic function v(2)(t). It is clear that for k �= 0,

(2.32)
∫ 2π

0

v(2)(τ )e−ikτ dτ = − 1
k2

∫ 2π

0

v(4)(τ )e−ikτ dτ.

Substituting (2.31) and (2.32) into the Fourier expansion

v(2)(t) =
1
2π

∞∑
k=−∞

eikt

∫ 2π

0

v(2)(τ )e−ikτ dτ

yields

v(2)(tn) =
−1
2π

∞∑
|k|=1

1
k2
eiktn

∫ 2π

0

v(4)(τ )e−ikτ dτ.
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Thus, for j �= 0,

〈rhv
(2), ej〉 = − 1

2π

∞∑
|k|=1

1
k2

∫ 2π

0

v(4)(τ )e−ikτ dτh

N−1∑
n=0

ei(k−j)tn

= −
∞∑

l=−∞

1
(lN + j)2

∫ 2π

0

v(4)(τ )e−i(lN+j)τ dτ,

where property (2.13) has been applied in the last step. Hence, we have

|〈rhv
(2), ej〉| ≤ 2π

∞∑
l=−∞

1
(lN + j)2

||v(4)||C[0,2π].

Since ∞∑
l=−∞

1
(lN + j)2

≤ c

(
1
j

+
1

N − j

)2

,

we obtain the desired inequality for j �= 0.

By property (2.13), the eigenvectors ej of Ah satisfy 〈ej , ek〉 = 2πδj,k
for 0 ≤ j, k ≤ N−1, where δj,k is the Kronecker delta. This orthogonal
property allows us to have an expansion

rhv
(2) =

1
2π

N−1∑
j=0

〈rhv
(2), ej〉ej ,

and hence

||A−1
h rhv

(2)||2 =
1
2π

N−1∑
j=0

λ−2
j |〈rhv

(2), ej〉|2.

Applying Lemma 2.4 and using (2.11), we obtain

(2.33) ||A−1
h rhv

(2)|| ≤ c||v||C4[0,2π],

which will be used in the proof of Theorem 2.3.
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Proof of Theorem 2.3. It follows from (2.18) and (2.21) that

ε(v) = ε1(v) + ε2(v) = −(1/12)ζ ′(−2)h3rhv
(2) + E + ε2(v),

where E = [E4(t0), . . . , E4(tN−1)]T . By the triangle inequality,

||A−1
h ε(v)|| ≤ (1/12)ζ ′(−2)h3||A−1

h rhv
(2)|| + ||A−1

h [E + ε2(v)]||.
Inequalities (2.29), (2.22) and (2.23) give

||A−1
h [E + ε2(v)]|| ≤ c||A−1

h ||[||E|| + ||ε2(v)||] ≤ ch3||v||C4[0,2π],

which with (2.33) gives (2.30).

The next result involves the concept of the transfinite diameter CΓ of
the curve Γ, which is determined by the geometric shape and size of Γ.
Its definition and basic properties can be found, for example, in [15].

Theorem 2.4. Assume that CΓ �= 1. Let Ah and Bh be the matrices
defined by (2.4) and (2.5), respectively. Then, for h sufficiently small,

(2.34) ||(I +A−1
h Bh)−1|| ≤ c.

The proof of Theorem 2.4 is based on the following lemma.

Lemma 2.5. Let K be an integral operator on L2(0, 2π) defined by

(2.35) Kv(t) =
∫ 2π

0

κ(t, τ )v(τ ) dτ,

where the kernel κ satisfies the Lipschitz conditions

|κ(t, τ ) − κ(t∗, τ )| ≤ c|t− t∗|
and

|κ(t, τ )− κ(t, τ∗)| ≤ c|τ − τ∗|
for t, t∗, τ, τ∗ ∈ [0, 2π]. Let Kh be the matrix given by

(2.36) Kh = (κm,n)N−1
m,n=0, κm,n = hκ(tm, tn).



A RECTANGULAR QUADRATURE METHOD 357

If

(2.37) ||(I +K)v||L2(0,2π) ≥ c||v||L2(0,2π), v ∈ L2(0, 2π),

then, for h sufficiently small,

||(I +Kh)v|| ≥ c||v||, v ∈ RN .

Proof. Let phv, where v = [v0, . . . , vN−1]T , denote a piecewise
constant function such that phv(t) = vn for t ∈ (tn, tn+1), n =
0, 1, . . . , N − 1. It is easy to verify that

(2.38) ||v|| = ||phv||L2(0,2π).

Let K̃h be the matrix defined by

K̃h = (κ̃m,n)N−1
m,n=0, κ̃m,n =

∫ tn+1

tn

κ(tm, τ ) dτ.

Simple calculations show that

||Kphv − ph(K̃hv)||L2(0,2π) ≤ ch||v||,

and
||(K̃h −Kh)v|| ≤ ch||v||.

Then, applying (2.38) and the triangle inequality, we obtain

||(I + K̃h)v|| ≥ ||(I +K)phv||L2(0,2π) − ||Kphv − phK̃hv||L2(0,2π)

≥ c(1 − h)||v||,

where (2.37) and (2.38) have been used in the last step. Thus, for h
sufficiently small, we have

||(I +Kh)v|| ≥ ||(I + K̃h)v|| − ||(K̃h −Kh)v|| ≥ c||v||,

which is the desired inequality.
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Proof of Theorem 2.4. Using the decomposition (2.2), equation (2.1)
can be rewritten as

(2.39) (I +K)w = A−1g,

where K = A−1B. It is known from [3 and 15] that K is an integral
operator on L2(0, 2π) of the form (2.35), where κ(t, τ ) is given by

κ(t, τ ) = κτ (t) = A−1bτ (t), bτ (t) = b(t, τ ).

Since the kernel κ(t, τ ) is a smooth function of (t, τ ), it satisfies the
Lipschitz conditions in Lemma 2.5. Since CΓ �= 1, it is also known
from [15] that the inequality (2.37) holds. Thus, all assumptions of
Lemma 2.5 are satisfied. Let Kh be the matrix given by (2.36), and let
us rewrite Kh and Bh as

Kh = h[κ0, . . . ,κN−1], Bh = h[b0, . . . ,bN−1],

respectively, where κn = rhκtn
and bn = rhbtn

. Applying Theorem
2.3 with v(t) = κtn

(t) and noting that ε2(v) = 0, we have

||κn −A−1
h bn|| = ||A−1

h (Ahκn − bn)|| = ||A−1
h (Ahrhκtn

− rhAκtn
)||

= ||A−1
h ε(v)|| ≤ c||κtn

||C4[0,2π]h
3 ≤ ch3.

Thus,

||(Kh −A−1
h Bh)v|| ≤

(N−1∑
n=0

||κn −A−1
n bn||2h

)1/2

||v|| ≤ ch3||v||.

Finally, Lemma 2.5 yields

||(I +A−1
h Bh)v|| ≥ ||(I +Kh)v|| − ||(Kh −A−1

h Bh)v|| ≥ c(1− h3)||v||,

for all v ∈ RN , and hence Theorem 2.4 follows.

Corollary 2.1. If CΓ �= 1, then the matrix Ch given by (1.13) is
nonsingular for h sufficiently small. Moreover,

(2.40) ||C−1
h || ≤ ch−1.
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Proof. By Theorem 2.4, we know that I+A−1
h Bh is nonsingular, and

hence, equation (2.6) gives C−1
h = (I + A−1

h Bh)−1A−1
h . Thus, (2.40)

follows from (2.29) and (2.34).

Since ||Ch|| ≤ ||Ah|| + ||Bh||, it follows from Theorem 2.1 and the
definition of Bh that ||Ch|| is uniformly bounded. In addition, Ch is
symmetric. Hence, Corollary 2.1 shows that the spectral condition
number of Ch is bounded by a constant multiple of h−1.

We are now ready to give a convergence theorem for the rectangular
quadrature method.

Theorem 2.5. Assume that the transfinite diameter CΓ �= 1. Let w
and wh be solutions of (1.2) and (1.13), respectively, and assume that
w ∈ C4(2π). Then, for h sufficiently small,

(2.41) ||rhw − wh|| ≤ ch3||w||C4[0,2π].

Proof. From (1.13) and (2.16), we obtain

Ch(rhw − wh) = −ε(w),

and equivalently,

(I +A−1
h Bh)(rhw − wh) = −A−1

h ε(w).

Hence, the estimate (2.41) follows from Theorems 2.3 and 2.4.

2.4. Error expansion. Theorem 2.5 shows that the error in
the approximate solution wh is O(h3). In this subsection we give
an asymptotic expansion for this error, in which the O(h3) term is
explicitly presented. This enables us to accelerate the convergence by
employing Richardson extrapolation.

Theorem 2.6. Suppose that CΓ �= 1. Let w and wh be solutions
of (1.2) and (1.13), respectively, and assume that w ∈ C6(2π). If the
solution φ of the equation

(2.42) −
∫ 2π

0

log |γ(t) − γ(τ )|φ(τ ) dτ = ζ ′(−2)w′′(t), t ∈ [0, 2π],
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is a C4(2π) function, then, for sufficiently small h,

(2.43) rhw − wh = h3rhφ+ Eh,

where

(2.44) ||Eh|| ≤ ch5{||w||C6[0,2π] + h||φ||C4[0,2π]}.

Proof. Let Eh be defined by (2.43). It follows from (1.13), (2.16),
and Theorem 2.2 that

(2.45)
ChEh = −ε(w) − h3Chrhφ = (h5/12)ζ ′(−4)rhw

(4)

+ h3[ζ ′(−2)rhw
′′ − Chrhφ] + h6ηh,

where

(2.46) ||ηh|| ≤ c||w||C6[0,2π].

We also notice, by (2.42) and (2.16), that

(2.47) ζ ′(−2)rhw
′′ − Chrhφ = rhCφ− Chrhφ = ε(φ).

Substituting (2.47) into (2.45) and multiplying through by A−1
h , we get

(I +A−1
h Bh)Eh = (h5/12)ζ ′(−4)A−1

h rhw
(4) + h3A−1

h ε(φ) + h6A−1
h ηh,

and hence the triangle inequality and Theorem 2.4 give

||Eh|| ≤ c{h5||A−1
h rhw

(4)|| + h3||A−1
h ε(φ)|| + h6||A−1

h || ||ηh||}.

Using this inequality, estimate (2.44) follows from inequality (2.33)
applied to v(t) = w(2)(t), Theorem 2.3, and inequalities (2.29) and
(2.46).

It should be remarked that the condition imposed on φ in Theorem
2.6 is satisfied, for example, when w ∈ C8(2π). This can be verified by
the Sobolev space theory for the integral operator C (see [15]).
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The asymptotic error expansion (2.43) clearly shows that the estimate
in Theorem 2.5 cannot be improved. Based on this error expansion,
Richardson extrapolation can be applied to accelerate the convergence
as follows. Using the approximate solutions w2h,wh for steps 2h and
h, respectively, we construct a modified solution w∗

h by

(2.48) w∗
h = w̃h + (1/7)(w̃h − w2h),

where w̃h is obtained by taking every other component of wh starting
from the first one. It follows easily from (2.43) and (2.44) that

(2.49) ||rhw − w∗
h|| ≤ ch5{||w||C6[0,2π] + h||φ||C4[0,2π]}.

3. Application in boundary value problems. Here we consider
an application of the rectangular quadrature method to the numerical
solution of the Dirichlet boundary value problem for the Laplace
equation:

(3.1) Δu(x) = 0, x ∈ O, u(x) = f(x), x ∈ Γ,

where O is a plane region whose boundary Γ satisfies the assumptions
given in Section 1. In the single layer potential method, the solution u
of (3.1) is represented as

(3.2) u(x) = −
∫ 2π

0

log |x− γ(τ )|w(τ ) dτ, x ∈ O,

where w is the solution of (1.2). Let wh = [w0, . . . , wN ]T be an approx-
imate solution to w obtained by the quadrature method (1.13) (1.15).
Based on the rectangular rule for (3.2), we approximate u(x) by

(3.3) uh(x) = −h
N−1∑
n=0

log |x− γ(tn)|wn, x ∈ O.

Theorem 3.1. Let u and uh be defined by (3.2) and (3.3), respec-
tively. Then, under the assumptions of Theorem 2.5,

|u(x) − uh(x)| ≤ ch3||w||C4[0,2π], x ∈ O.
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Proof. It follows easily from (3.2) and (3.3) that

(3.4) u(x) − uh(x) = J1(x) + J2(x),

where

(3.5) J1(x) = h

N−1∑
n=0

log |x− γ(tn)|w(tn) −
∫ 2π

0

log |x− γ(τ )|w(τ ) dτ,

and

(3.6) J2(x) = h

N−1∑
n=0

log |x− γ(tn)|[wn − w(tn)].

Using Lemma 3.1 with v(t) = log |x− γ(t)|w(t), we obtain

(3.7) |J1| ≤ ch4||v||C4[0,2π] ≤ ch4||w||C4[0,2π].

Similarly, the Cauchy-Schwarz inequality and Theorem 3.5 give

(3.8) |J2| ≤ c||rhw − wh|| ≤ ch3||w||C4[0,2π],

and hence the desired estimate follows from (3.4), (3.7), and (3.8).

The next result is a counterpart of the expansion (2.43) for u(x).

Theorem 3.2. Let u and uh be defined by (3.2) and (3.3), respec-
tively. Then, under the assumptions of Theorem 2.6,

(3.9) u(x)− uh(x) = −h3

∫ 2π

0

log |x− ν(τ )|φ(τ ) dτ + ηh(x), x ∈ O,

where φ is the solution of equation (2.42), and

(3.10) |ηh(x)| ≤ ch5{||w||C6[0,2π] + h||φ||C4[0,2π]}.
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Proof. Let ηh(x) be defined by (3.9). It follows from (3.2) and (3.3)
(cf. (3.4)) that

(3.11)
ηh(x) = u(x) − uh(x) + h3

∫ 2π

0

log |x− ν(τ )|φ(τ ) dτ

= J1(x) + J2(x) + h3

∫ 2π

0

log |x− ν(τ )|φ(τ ) dτ,

where J1(x) and J2(x) are given by (3.5) and (3.6) respectively. Simi-
larly, as in the proof of Theorem 3.1, we have

(3.12) |J1| ≤ ch6||w||C6[0,2π].

Using (2.43) with Eh = [E0, . . . , EN−1]T , we find that
(3.13)

J2(x)+h3

∫ 2π

0

log |x− ν(τ )|φ(τ ) dτ

= h3

[ ∫ 2π

0

log |x− γ(τ )|φ(τ ) dτ − h
N−1∑
n=0

log |x− γ(tn)|φ(tn)
]

− h

N−1∑
n=0

log |x− γ(tn)|ψn ≡ J3(x) − J4(x).

By Lemma 3.1 and Theorem 3.6,

(3.14) |J3(x)| ≤ ch7||φ||C4[0,2π],

and

(3.15) |J4(x)| ≤ ch5{||w||C6[0,2π] + h||φ||C4[0,2π]}.

Finally, we obtain (3.10) from (3.11) (3.15).

Based on the asymptotic error expansion (3.9) for the potential u,
application of Richardson extrapolation yields an approximation u∗h(x)
defined by

(3.16) u∗h(x) = uh(x) + (1/7)[uh(x) − u2h(x)], x ∈ O,
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where u2h(x) and uh(x) are calculated by (3.3) with w2h and wh,
respectively. Using (3.10), it is easy to verify that

(3.17) |u(x) − u∗h(x)| ≤ ch5{||w||C6[0,2π] + h||φ||C4[0,2π]}.

4. Numerical examples. All computations were carried out in
double precision on the University of Kentucky’s Sequent Symmetry
S81. In each example subroutines from LINPACK were used to solve
the matrix-vector equations.

Example 1. The rectangular quadrature method is used to solve
equation (1.2), where Γ is the circle with radius e1/2 centered at the
origin, and parametrized by

γ(t) = (e1/2 cos t, e1/2 sin t), t ∈ R.

The right-hand side g and the exact solution w are given, respectively,
by

g(t) = (π/2) cos 2t, w(t) = cos 2t.

The errors

eh = ||rhw − wh||, e∗h = ||rhw − w∗
h||,

and the estimated orders of convergence

μh =
ln(e2h/eh)

ln 2
, μ∗

h =
ln(e∗2h/e

∗
h)

ln 2
,

are reported in Table 1.
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TABLE 1. Errors eh, e∗h and orders µh, µ∗
h.

N = 2π/h eh μh e∗h μ∗
h

4 .70
8 .68 × 10−1 3.37 .97 × 10−2

16 .84 × 10−2 3.01 .77 × 10−4 6.97
32 .10 × 10−2 3.01 .72 × 10−5 3.42
64 .13 × 10−3 3.00 .30 × 10−6 4.59
128 .16 × 10−4 3.00 .11 × 10−7 4.83

The entries of Table 1 are consistent with the O(h3) and O(h5) rates of
convergence, as seen in eh (cf. (2.41)) and e∗h (cf. (2.49)), respectively.
It should be mentioned that Christiansen [5] has solved the same
example using his quadrature method. The numerical results he
obtained illustrated also the O(h3) rate of convergence.

Example 2. We solve the boundary value problem (3.1) in which Γ is
the circle with radius 2, and parametrized by

γ(t) = (2 cos t, 2 sin t), t ∈ R.

The boundary data f and the exact solution u are given, respectively,
by

f(x) = x1, x ∈ Γ, u(x) = x1, x ∈ O.
The approximate solutions uh and Richardson’s extrapolation approx-
imations u∗h are computed at the points

x(1) = (0.5, 0), x(2) = (1.875, 0).

The corresponding errors

eh(x(j)) = |u(x(j)) − uh(x(j))|, e∗h(x(j)) = |u(x(j)) − u∗h(x(j))|

are given in Table 2.
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TABLE 2. Errors eh(x(j)) and e∗h(x(j)).

N = 2π/h eh(x(1)) e∗h(x(1)) eh(x(2)) e∗h(x(2))
4 .87 × 10−2 1.4
8 .24 × 10−2 .14 × 10−2 .44 .30
16 .29 × 10−3 .56 × 10−6 .10 .57 × 10−1

32 .37 × 10−4 .85 × 10−7 .15 × 10−1 .27 × 10−2

64 .46 × 10−5 .30 × 10−8 .84 × 10−3 .12 × 10−2

128 .57 × 10−6 .98 × 10−10 .36 × 10−5 .12 × 10−3

The above example was solved by Ruotsalainen and Saranen [12] who
used the Petrov-Galerkin method with Dirac’s distributions as trial
functions and with linear B-splines as test functions. Their method for
the potential u also has the third order rate of convergence, and hence
the results of our Table 2 are comparable with those given in Table
1 in [12]. Examining further the entries of Table 2, it is clear that
convergence for the point x(2) is much slower and more erratic than for
x(1). The error eh(x(2)) is larger than eh(x(1)) since the approximate
solution uh(x), given by (3.3), may, in general, become unbounded
when x approaches the boundary Γ. This last observation and (3.9)
imply also that for x close to Γ, ηh(x) may become very large, although
it is of order 5 with respect to h. This, in turn, explains why, for x
near Γ, Richardson extrapolation may not be valid which is confirmed
by the behavior of e∗h(x(2)).

Example 3. We solve the boundary value problem (3.1) in which O
is an elliptic region with the boundary Γ parametrized by

γ(t) = (cos(t), 4 sin(t)), t ∈ R.
The boundary data f and the exact solution u are given, respectively,
by

f(x) = ex1 cos(x2), x ∈ Γ, u(x) = ex1 cos(x2), x ∈ O.
The approximate solutions uh and u∗h are computed at the points

x(j) = rj(cos(π/4), 4 sin(π/4)), j = 1, 2, 3, 4,
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with
rj = 0, 0.4, 0.8, 0.99.

The errors

eh(x(j)) = |u(x(j)) − uh(x(j))|, e∗h(x(j)) = |u(x(j)) − u∗h(x(j))|

are reported in Tables 3 and 4, respectively.

TABLE 3. Errors eh(x(j)).

N = 2π/h eh(x(1)) eh(x(2)) eh(x(3)) eh(x(4))
4 .77 1.3 2.3 2.7
8 .46 .17 .26 × 10−1 2.7
16 .20 × 10−1 .93 × 10−1 .24 1.3
32 .37 × 10−2 .16 × 10−2 .13 × 10−1 .42
64 .51 × 10−3 .99 × 10−4 .95 × 10−3 .10
128 .63 × 10−4 .13 × 10−4 .11 × 10−3 .72 × 10−2

TABLE 4. Errors e∗h(x(j)).

N = 2π/h e∗h(x(1)) e∗h(x(2)) e∗h(x(3)) e∗h(x(4))
8 .42 .15 × 10−1 .35 3.5
16 .44 × 10−1 .13 .28 1.0
32 .71 × 10−2 .12 × 10−1 .50 × 10−1 .30
64 .53 × 10−4 .12 × 10−3 .30 × 10−2 .58 × 10−1

128 .20 × 10−6 .22 × 10−6 .13 × 10−4 .65 × 10−2

It can be seen from Tables 3 and 4 that the rate of convergence
deteriorates as the point x(j) approaches the boundary Γ. This again
can be explained by the arguments given at the end of Example 2. This
example was solved by Atkinson [3] who used the discrete Galerkin
method with trigonometric polynomials as basis functions. Atkinson’s
results look better than the results shown in Table 3 because his method
has an exponential rate of convergence for infinitely smooth solutions.
In addition, Atkinson improves the accuracy of his method, for points
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near Γ, by using more quadrature nodes in a formula similar to (3.3).
For the quadrature method of this paper, a similar modification does
not seem to work, probably due to the fact that the quadrature method,
in contrast to Atkinson’s method, is only third order accurate.
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Klasse von schwach singulären Integralgleichungen 1. Art unter Verwendung von
Kollokations-und Galerkin-Methoden, Z. Angew. Math. Mech. 65 (1985), 405 415.

2. M. Abramowitz and I.A. Stegun, Handbook of mathematical functions, Dover
Pub., Inc., New York, 1970.

3. K.E. Atkinson, A discrete Galerkin method for first kind integral equations
with a logarithmic kernel, J. Integral Equations and Appl. 1 (1988), 343 363.

4. C.T.H. Baker, The numerical treatment of integral equations, Oxford Univer-
sity Press, London, 1977.

5. S. Christiansen, Numerical solution of an integral equation with a logarithmic
kernel, BIT 11 (1971), 276 287.

6. P.J. Davis, Circulant matrices, John Wiley & Sons, Inc., New York, 1979.

7. I.G. Graham and Y. Yan, Piecewise constant collocation for first kind boundary
integral equations, J. Austral. Math. Soc. Ser. B., 33 (1991), 39 64.

8. I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products,
Academic Press, Inc., New York, 1980.

9. M.A. Jaswon and G.T. Symm, Integral equation methods in potential theory
and elastostatics, Academic Press, London, 1977.

10. I. Navot, An extension of the Euler-Maclaurin summation formula to func-
tions with a branch singularity, J. Math. Phys. 40 (1961), 271 276.

11. , A further extension of the Euler-Maclaurin summation formula, J.
Math. Phys. 41 (1962), 155 163.

12. K. Ruotsalainen and J. Saranen, Some boundary element methods using
Dirac’s distributions as trial functions, SIAM J. Numer. Anal. 24 (1987), 816 827.

13. J. Saranen, The modified quadrature method for logarithmic-kernel integral
equations on closed curves, J. Integral Equations Appl., to appear.

14. I.H. Sloan and B.J. Burn, An unconventional quadrature method for loga-
rithmic-kernel integral equations on closed curves, J. Integral Equations Appl., to
appear.



A RECTANGULAR QUADRATURE METHOD 369

15. Y. Yan and I.H. Sloan, On integral equations of the first kind with logarithmic
kernels, J. Integral Equations Appl. 1 (1988), 549 579.

16. Y. Yan, The collocation method for first-kind boundary integral equations on
polygonal regions, Math. Comp. 54 (1990), 139 154.

Department of Mathematics, University of Kentucky, Lexington, KY
40506


