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SWITCHING BEHAVIOR OF PN-DIODES:
VOLTERRA INTEGRAL EQUATION MODELS

RICHARD K. MILLER AND ANDREAS UNTERREITER

1. Introduction. PN-diodes are semiconductive devices with a wide
range of applications in modern electrical engineering. The purpose
of this paper is to study a mathematical model of the current-time
characteristics of such devices. We shall investigate an electrical circuit
consisting of a PN-diode, a linear Ohmic resistor and a voltage source.
These are connected serially. The analysis is restricted to the case
where the diode is abruptly switched from the forward to the backward
direction.

The standard model which describes the dynamics of a semiconduc-
tive device’s charge densities is the drift-diffusion equations of Van
Roosbroeck [9]. These drift-diffusion equations are a system of cou-
pled partial differential equations in three space dimensions plus time.
(The spatial variable ranges over a smooth bounded domain Ω. It may
be approximated by an infinite domain in some cases.) The equations
are subject to boundary conditions which reflect the assumptions on
the diode’s contacts with the electrical circuit as well as Kirchhoff’s
laws. The initial conditions are provided by the solution of the station-
ary equations which describe the biasing of the circuit in the forward
direction before time zero.

It is useful to reduce the number of space dimensions when dealing
with PN-diodes possessing spatial symmetries. Such a case of inter-
est here is the one-dimensional model of a PN-diode with piecewise
constant parameter and semi-infinite N and P regions.

Under simplifying assumptions (zero space charge approximations,
low injection limit), the n-dimensional (n = 1, 2 or 3) system of partial
differential equations can be reduced to a single diffusion equation in
n space dimensions plus time. Two cases are considered here.
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(I) If the spatial domains of the P and N regions are both finite,
then this diffusion equation can be further reduced to a Volterra integral
equation with the total current as the unknown.

(II) If the PN-diode has piecewise constant parameters, the N and P
regions are semi-infinite and the equation has only one space dimension,
then this diffusion equation can be further reduced to a system of
coupled Volterra integral equations.

The reductions in these two cases are discussed in detail in Schmeiser
et al. [6], Schmeiser and Unterreiter [7] and Unterreiter [8].

In Section 2 below we formulate the single Volterra integral equation
as well as the system of two coupled Volterra integral equations which
come from cases (I) and (II), respectively. We show that in the case of
symmetric diodes the system of two equations can be easily decoupled
to obtain a single Volterra integral equation which has the same form
as the equation obtained in case (I) above. The form of this equation
is

exp(−U − wI) = 1 + CIF + (I − IF ) ∗ a

where ∗ denotes convolution, e.g.,

I ∗ a(t) =
∫ t

0

I(t − s)a(s) ds,

I(t) is the unknown current, a(t) is a completely monotone kernel,
U, w, IF and C are positive physical constants and C = lim(1 ∗ a)(t),
t → ∞.

In Section 3 we present a rigorous theory for the single integral equa-
tion case. Our results include existence, uniqueness, global bounded-
ness, monotonicity, and asymptotic behavior of the solution. These
results generalize the results of Schmeiser et al. [6] who studied the
symmetric, one-dimensional diode with semi-infinite P and N regions.

In Section 4 we show that the nonsymmetric form of the problem
can be reduced from a coupled system of Volterra equations to a single
Volterra equation to which the results of Section 3 will also apply.
Hence, we show that the results in [7] and [8] can be extended from
the symmetric to the nonsymmetric case.

2. The integral equation model. In [7] and [8] it was shown that
under the zero space charge approximation and low injection limit, one
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can replace the (degenerate) n-dimensional drift diffusion equations by
a single Volterra integral equation of the form

(2.1a) exp(−U − wI) = 1 + CIF + (I − IF ) ∗ a.

Here IF is the constant uniquely determined via the relation

(2.1b) exp(W − wIF ) = 1 + CIF .

The constants W and −U are the potential drops generated by the
voltage source for t < 0 and, respectively, t > 0; w denotes the
resistance in Ohms in the circuit and a(t) is a completely monotone
kernel of the form

a(t) =
∞∑

n=1

K2
neλnt

with all λn negative and λn → −∞ as n → ∞. Furthermore, the kernel
a(t) is integrable, indeed

C =
∞∑

n=1

K2
n/|λn| =

∫ ∞

0

a(t) dt < ∞.

In the case of a model with one space dimensional and with semi-
infinite N and P regions, it was shown in [6] that the currents in the
circuit satisfy

(2.2)

⎧⎨
⎩

exp(−U − wI) = 1 + CNZI
N + (zN − ZI

N ) ∗ aN

exp(−U − wI) = 1 + CpZ
I
p + (zp − ZI

p ) ∗ ap

I = zN + zp.

The three functions I, zN and zp are unknown currents, ZI
N and ZI

p are
constants uniquely determined by the relations

exp(W − wIF ) = 1 + CNZI
N

exp(W − wIF ) = 1 + CpZ
I
p

ZI
N + ZI

p = IF
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and aN (t) and ap(t) are given by

aN (t) =
CN√

τp

exp(−t/τp)√
πt

,

ap(t) =
Cp√
τN

exp(−t/τN )√
πt

.

The physical constants CN , Cp, τN and τp are all positive. It is easy
to check that

lim
t→∞(1 ∗ aN )(t) = CN and lim

t→∞(1 ∗ ap)(t) = Cp.

We will call a diode “symmetric” if τn = τp. In the symmetric case
there is no loss of generality in taking τN = τp = 1. In this case some
easy algebraic manipulations can be used to see that (2.2) reduces to

(2.3a) exp(−U − wI) = 1 + CIF + (I − IF ) ∗ a

where a(t) = Ce−t/
√

πt, C is the positive constant defined via the
relation

C =
1

1
CN

+ 1
Cp

and IF is the unique solution of

(2.3b) exp(W − wIF ) = 1 + CIF .

The n-dimensional finite region model (2.1) and the symmetric model
(2.3) both have the form

(2.4a) exp(−U − wI) = 1 + CIF + (I − IF ) ∗ a

and

(2.4b) exp(W − wIF ) = 1 + CIF

where a(t) is a completely monotone and integrable function such that

lim
t→∞(1 ∗ a)(t) = C > 0.
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Solutions of this general model equation will be studied in detail in
Section 3. In that analysis we will show that I(t) tends to a limit I∞
as t → ∞. The constant I∞ is the unique solution of

(2.5) exp(−U − wI∞) = 1 + CI∞.

Define y via the relation y = exp(−w(I−I∞))−1. Then I(t)−I∞ → 0
as t → ∞ if and only if y(t) → 0 as t → ∞. In terms of y(t) equation
(2.4) transforms to a new equation of the form

(2.6) y = A1(C − 1 ∗ a) − B1 ln(y + 1) ∗ a

where
A1 =

IF − I∞
1 + CI∞

and B1 =
1

w(1 + CI∞)
.

From (2.5) we see that 1 + CI∞ > 0 and that I∞ must be negative.
Hence, B1 > 0. From (2.4b) and (2.5) we see that C(IF − I∞) =
eW−wIF − e−U−wI∞ . If IF − I∞ ≤ 0, then W − wIF > −U − wIF ≥
−U − wI∞ and 0 ≥ C(IF − I∞) ≥ eW−wIF − e−U−wI∞ > 0, a
contradiction. Hence, IF − I∞ > 0 and the constants A1 and B1 are
both positive.

3. General results. The integral equation (2.6) can be written in
the form

(3.1) y(t) = f(t) −
∫ t

0

a(t − s) ln[y(s) + 1] ds,

or in convolution notation y = f − a ∗ ln[y + 1]. We will study (3.1)
under the following assumptions:

(A1) a(t) ∈ L1
loc(0,∞), a(t) 	≡ 0 and a(t) is completely monotone.

Let r(t) denote the resolvent of a(t). Thus, r(t) is the unique locally
integrable solution of

(3.2) r(t) = a(t) −
∫ t

0

a(t − s)r(s) ds.

Note that r(t) 	≡ 0 and r(t) ∈ L1
loc(0,∞).
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(A2) f(t) is a nonnegative function in L1
loc(0,∞)

(A3) z = (δ − r) ∗ f is nonnegative, i.e., the unique solution of

z(t) = f(t) −
∫ t

0

a(t − s)z(s) ds

is nonnegative.

(A4) f ∈ C[0,∞) and the limit limt→∞ f(t) = F exists and is
nonnegative.

(A5) f ∈ C1(0,∞), f ′ ∈ L1(0, 1) and (δ − r) ∗ f ′ ≤ 0.

General information on completely monotone functions can be found
in Widder [10, Chapter 4]. Information on the resolvents of completely
monotone functions can be found in Miller [4, Chapter IV, Section 7]
or G. Gripenberg, S.O. Londen and D. Staffans, [2, Chapter 5], see also
Gripenberg [1]. In particular, as Reuter [5] has shown, the resolvent
r(t) will also be completely monotone. Moreover, if a ∈ L1(0,∞), then

∫ ∞

0

r(t) dt =

∫ ∞
0

a(s) ds

1 +
∫ ∞
0

a(s) ds
< 1.

If a /∈ L1(0,∞), then
∫ ∞
0

r(t) dt = 1. Local existence, uniqueness and
continuation results for (3.1) or (3.2) can also be found in [2] or [4].
Such results will be used as needed without further comment.

Theorem 1. If (A1 A3) are true, then the solution y(t) of (3.1)
exists for all t ≥ 0 and 0 ≤ y(t) ≤ f(t) for all t ≥ 0.

Proof. The local solution of (3.1) can be continued so long as it
remains bounded. We will show this boundedness. Let δ(t) be the
delta function. Convolution multiply (3.1) by (δ − r) where r(t) is the
resolvent of a(t). Then

y = (δ − r) ∗ f + r ∗ (y − ln[y + 1])

or

(3.3) y = z + r ∗ (y − ln[y + 1])
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for as long as y(t) exists. Since ln(w) is a strictly concave function
of w, then y − ln[y + 1] > 0 for all y 	= 0. Also, z(t) ≥ 0 by (A3)
and r(t) > 0 since it is completely monotone. Thus the solution of
(3.3) is nonnegative for as long as it exists. But y(t) ≥ 0 implies
ln[y(t) + 1] ≥ 0 for as long as y(t) exists. Use this and (A2) in (3.1)
to see that y(t) ≤ f(t) for as long as y(t) exists. By continuation, y(t)
will exist for all t ≥ 0 and 0 ≤ y(t) ≤ f(t) for all t ≥ 0. This proves
Theorem 1.

Theorem 2. If (A1 A4) are true, then the limit limt→∞ y(t) = y∗

exists. If a(t) /∈ L1(0,∞), then y∗ = 0. Otherwise, y∗ is the unique
solution of

(3.4) y∗ = F −
( ∫ ∞

0

a(s) ds

)
ln[y∗ + 1].

Proof. Under our hypotheses we see from Theorem 1 that 0 ≤ y(t) ≤
f(t) for all t ≥ 0. Hence, y(t) is bounded and results on limiting
equations apply, cf., e.g., [4, Chapter III, Theorem 7.1]. The positive
limit set of y(t) is an invariant set with respect to the equation

(3.5) y1(t) = z∞ +
∫ t

−∞
r(t − s)(y1(s) − ln[y(s) + 1]) ds,

where z∞ = limit z(t) as t → ∞. If a /∈ L1(0,∞), then
∫ ∞
0

r(s) ds = 1
and

z∞ = lim
t→∞

(
f(t) −

∫ t

0

r(t − s)f(s) ds

)
= F −

∫ ∞

0

r(s)F ds = 0.

If a ∈ L1(0,∞), then

z∞ = F

(
1 −

∫ ∞

0

r(s) ds

)
≥ 0.

Let y∗ solve (3.4) so that y∗ = 0 if z∞ = 0 and y∗ > 0 if z∞ > 0.
Then

y∗ = z∞ +
∫ t

−∞
r(t − s)(y∗ − ln[y∗ + 1]) ds



264 R. MILLER AND A. UNTERREITER

and y2 = y1 − y∗ will solve

y2(t) =
∫ t

−∞
r(t − s)(y1(s) − ln[y1(s) + 1] − y∗ + ln[y∗ + 1]) ds

=
∫ t

−∞
r(t − s)(y2(s) − ln[(y2(s) + y∗ + 1)/(y∗ + 1)]) ds

or

(3.6) y2(t) =
∫ t

−∞
r(t − s)H(y2(s)) ds,

where H(y) = y − ln[(y + y∗ + 1)/(y∗ + 1)]. Note that H(0) = 0 and
0 ≤ H ′(y) ≤ 1 when y + y∗ ≥ 0.

Consider the case a ∈ L1(0,∞). Then

R =
∫ ∞

0

r(s) ds < 1.

Since the solution y(t) is nonnegative, then all points in its positive limit
set are nonnegative. Hence, there is no loss of generality in assuming
that the solution y1(t) of (3.5) is nonnegative. Thus, y2(t) + y∗ =
y1(t) ≥ 0 in our case and 0 ≤ H ′(y2(s)) ≤ 1 for all s. This means that
for any t in (−∞,∞), one has

|y2(t)| ≤
∫ t

−∞
r(t − s)|H2(y2(s))| ds

≤
∫ t

−∞
r(t − s)|y2(s)| ds

≤ R sup
s

|y2(s)| ds.

Hence,
sup

t
|y2(t)| ≤ R sup

s
|y2(s)|.

Since R < 1, this is only possible if y2(t) ≡ 0. Hence, y1(t) ≡ y∗ is the
only nonnegative and bounded solution of (3.5) and the positive limit
set of y(t) must consist of the single point y∗. Since y(t) must tend to
its positive set, then a ∈ L1(0,∞) implies limt→∞ y(t) = y∗.
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Next, consider the case where a /∈ L1(0,∞). In this case, y∗ = 0.
Assume that the nonnegative, bounded solution y(t) of (3.1) does not
tend to zero as t → ∞. There must be a sequence tn → ∞ and a ȳ > 0
such that

lim
n→∞ y(tn) = ȳ = lim

t→∞ sup y(t).

By Theorem 2.1 in [4, Chapter III] there is a subsequence, which we
may assume is the entire sequence, and a solution of (3.5) such that

lim
n→∞ y(t + tn) = y1(t), −∞ < t < ∞.

This solution of (3.5) will satisfy the relation y1(0) = ȳ = sup{y1(s) :
−∞ < s < ∞}. Since y1(t) is continuous, then y1(t) > 0 in a
neighborhood of t = 0. Thus, H(y2(s)) < 1 on a set 0 < s < δ for
some δ > 0. Since r(t) is completely monotone, then it is analytic for
Re t > 0. Since also r(t) 	≡ 0 for t > 0, then r(t) > 0 for t > 0. By
(3.6), we see that

ȳ = y1(0) =
∫ 0

−∞
r(−s)H(y1(s)) ds

<

∫ 0

−∞
r(−s)|y1(s)| ds

≤
∫ 0

−∞
r(−s)ȳ ds = ȳ,

a contradiction. Hence, y(t) → 0 as t → ∞. This proves Theorem 2.

Theorem 3. If (A1 A5) are true, then y(t) is a nonincreasing
function of t.

Proof. By Theorems 1 and 2 above, the solution y(t) of (3.1) is
nonnegative and tends to y∗ as t → ∞. By [2, Theorem 13.3.3] y(t) is
absolutely continuous with derivative w(t) satisfying the equation

(3.7) w(t) = f ′(t)− a(t) ln[f(0)+1]−
∫ t

0

a(t− s)[w(s)/(1+ y(s))] dx.
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We will show that w(t) ≤ 0 so that y(t) is nonincreasing in t. Convolu-
tion multiply (3.7) by (δ−r) to obtain w = (δ−r)∗f ′− ln[f(0)+1]r+
r ∗ (1 − 1/(1 + y))w. Since (δ − r) ∗ f ′ ≤ 0 by (A5), ln[f(0) + 1] > 0,
r(t) > 0 and 1 − (1 + y)−1 > 0, then w is nonpositive. This proves
Theorem 3.

All of the results in this section can be applied to equation (2.6).
Indeed, f(t) = A1(C − 1 ∗ a) is positive and decreasing to zero as
t → ∞. If r(t) is the resolvent of a(t), then

∫ ∞
0

a(s) ds = C and∫ ∞
0

r(s) ds = C(1 + C)−1. Hence,

z = (δ − r) ∗ f = A1[(δ − r) ∗ C − (δ − r) ∗ a ∗ 1]

= A1

[
C − C

∫ t

0

r(s) ds − r ∗ 1
]

= A1

[
C − (C + 1)

∫ t

0

r(s) ds

]
≥ 0.

Assumptions (A1 A5) are all true for (2.6).

Remark. Equation (3.1) has the form y = f − a ∗ h(y) where a(t)
is completely monotone and h(y) is a C1, increasing function with
h(0) = 0. Such nonlinear equations have been studied in several papers,
cf., e.g., [1, 2 or 4]. The key ingredient which makes our results new
and different is that h(y) = ln[y + 1] is also a concave function. All of
our results remain true if for any nonlinear function h(y) which is C1,
increasing, concave and satisfies h(0) = 0.

4. The dual integral equations. The coupled system (2.2)
formulated in Section 2 can be written in the form

(4.1)

⎧⎪⎨
⎪⎩

e−U−wI = 1 + CNZI
N + (zN − ZI

N ) ∗ aN

e−U−wI = 1 + CpZ
I
p + (zp − ZI

p ) ∗ ap

I = zN + zp

where

aN (t) = CN
√

γn
e−γnt

√
πt

, ap(t) = Cp
√

γp
e−γpt

√
πt
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and U, w, CN , Cp, γN and γp are positive constants. The constants
ZI

N , ZI
p and IF satisfy the steady state problem

(4.2)

⎧⎪⎨
⎪⎩

eW−wIF = 1 + CNZI
N

eW−wIF = 1 + CpZ
I
p

IF = ZI
p + ZI

N

.

Solve the first two equations for ZI
N and ZI

p . Then

IF = (eW−wIF − 1)C−1
N + (eW−wIF − 1)C−1

p

or
IF = (eW−wIF − 1)

1
C

,
1
C

=
1

CN
+

1
Cp

.

Thus,

eW−wIF = 1 + CIF , C =
CNCp

CN + Cp
.

Similarly, let I∞, Z∞
p and Z∞

N solve

e−U−wI∞ = 1 + CNZ∞
N = 1 + CpZ

∞
p

I∞ = Z∞
N + Z∞

p

so that

(4.3) e−U−wI∞ = 1 + CI∞.

Notice that 1 + CIF > 0, 1 + CI∞ > 0 and IF − I∞ > 0.

Let zN1 = zN −ZI
n and zp1 = zp −ZI

p . Let ẐN1 and Ẑp1 denote their
Laplace transforms. From the first two equations in (4.1) we see that

ẐN1
AN√
s + γN

= Ẑp1
Ap√
s + γp

,

where √ means the principal root cut on the negative real axis while
AN = CN

√
γn and Ap = Cp

√
γp. Thus,

ẐN1 =
Ap

AN

√
s + γN√
s + γp

Ẑp1 =
Ap

AN
(1 + β̂0(s))Ẑp1
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where β0(t) is that locally integrable function such that

β̂0(s) =
√

s + γN√
s + γp

− 1 =
γN − γp√

s + γp

1√
s + γp +

√
s + γN

.

Hence,
I − IF = (zN + zp) − (ZI

N + ZI
p ) = zN1 + zp1

=
Ap

AN
(δ + β0) ∗ zp1 + zp1

or

(4.4) I − IF =
AN + Ap

AN

(
δ +

Ap

AN + Ap
β0

)
∗ zp1.

We use (4.4) in the middle equation of (4.1) to see that
(4.5)

e−U−wI = 1+CpZ
I
p +ap∗

(
AN

AN + Ap

)(
δ +

Ap

AN + Ap
β0

)−1

∗(I−IF ).

The left side of (4.5) can be written as

e−U−wI = e−U−wI∞e−w(I−I∞)

= (1 + CI∞)e−w(I−I∞).

Note also that 1 + CpZ
I
p = eW−wIF = 1 + CIF . Hence, (4.5) can be

rewritten as

e−w(I−I∞) − 1 =
1 + CIF

1 + CI∞
− 1 +

1
1 + CI∞

β1 ∗ (I − IF )

=
1

1 + CI∞
[C(IF − I∞) + β1 ∗ (I − IF )]

=
1

1 + CI∞
[C(IF − I∞) + β∗

1(I − I∞ + I∞ − IF )]

where

β1 =
AN

AN + Ap
ap ∗

(
δ +

Ap

AN + Ap
β0

)−1

.
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Hence,

(4.6) e−w(I−I∞) − 1 =
IF − I∞
1 + CI∞

(C − β1 ∗ 1) +
1

1 + CI∞
β1 ∗ (I − I∞).

Notice that

β̂1(s) =
AN

AN + Ap

Ap√
s + γp

(
1 +

Ap

AN + Ap

[√
s + γN√
s + γp

− 1
])−1

or

(4.7) β̂1(s) =
ANAp

AN
√

s + γp + Ap

√
s + γN

.

Since AN = Cn

√
γN and Ap = Cp

√
γp, if β1 ∈ L1(0,∞), then

(4.8)
∫ ∞

0

β1(s) ds = β̂1(0) =
CNCp

CN + Cp
= C.

This proves the following result.

Theorem 4. System (4.1) (4.2) reduces, under the transformation
y(t) = e−w(I(t)−I∞) − 1, to one Volterra integral equation

(4.9) y(t) = A1

(
C −

∫ t

0

β1(s) ds

)
− A2

∫ t

0

β1(t − s) ln[y(s) + 1] ds

where A1 > 0, A2 > 0 and β1(t) is a locally L1 function which satisfies
(4.7).

The function β1(t) turns out to be completely monotone and inte-
grable over (0,∞). Indeed, the following result follows from [2, Theo-
rem 5.2.6].

Lemma 5. If A, B, a and b are all positive constants and if β(t) is
that function whose Laplace transform is

β̂(s) =
1

A
√

s + a + B
√

s + b
,
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then β(t) is completely monotone and L1(0,∞).

Notice that when a = b > 0, then Lemma 5 is true but trivial. In
this case

β̂(s) =
1

(A + B)
√

s + a

so that

β(t) =
1

A + B

e−at

√
πt

.

This function is obviously completely monotone and integrable over
(0,∞). The case a = b corresponds to the symmetric case studied in
[6] and [8].

Since β1(t) > 0, β1 ∈ L1(0,∞) and (4.8) is true, then the following
Theorem is clear.

Theorem 6. In (4.9), the function

(4.10) f(t) = A1

(
C −

∫ t

0

β1(s) ds

)

is positive, continuous and decreasing with f(t) → 0 as t → ∞.

The next result completes the task of showing that (4.9) satisfies all
hypotheses (A1) (A5) in Section 2.

Theorem 7. In (4.9), let f be defined by (4.10), let a(t) = A2β1(t)
and let r(t) be the resolvent of a(t). Then the solution z of the linear
problem

z(t) = f(t) −
∫ t

0

a(t − s)z(s) ds

is nonnegative.

Proof. Here β1(t) = a(t)/A2. Since r = a − a ∗ r, then

z = (δ − r) ∗ f = A1(δ − r) ∗ (C − β1 ∗ 1).
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Without loss of generality, take A1 = 1. Then

z(t) = C − C ∗ r − (δ − r) ∗ (A2β1) ∗ A−1
2

= C − C ∗ r − r ∗ A−1
2

= C − (C + A−1
2 )

∫ t

0

r(s) ds.

Now z(0) = C > 0 and z′(t) = −(C + A−1
2 )r(t) < 0 for t > 0 so that

the limit z(∞) will exist. But r ∈ L1(0,∞) and

∫ ∞

0

r(s) ds =

∫ ∞
0

A2β1(s) ds

1 +
∫ ∞
0

A2β1(s) ds
=

A2C

1 + A2C
.

Thus,

z(∞) = C − A2C + 1
A2

∫ ∞

0

r(s) ds = C − C = 0.

It follows that z(t) > 0 for all t ≥ 0. This proves Theorem 7.

Since all of the necessary hypotheses are true, then the results in
Section 3 apply to (4.9). We see that y(t) exists for all t ≥ 0, is positive
and decreases to zero as t → ∞. Hence, I(t) in (4.5) (or in (4.1)) exists
for all t ≥ 0, is negative and increases to the limit I∞ as t → ∞.
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