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THE NUMERICAL APPROXIMATION OF THE
SOLUTION OF A NONLINEAR BOUNDARY INTEGRAL

EQUATION WITH THE COLLOCATION METHOD

M. HAMINA, K. RUOTSALAINEN AND J. SARANEN

ABSTRACT. Recently, Galerkin and collocation methods
have been analyzed in connection with the nonlinear boundary
integral equation which arises in solving the potential problem
with a nonlinear boundary condition. Considering this model
equation, we propose here a discretized scheme such that the
nonlinearity is replaced by its L2-orthogonal projection. We
are able to show that this approximate collocation scheme
preserves the theoretical L2-convergence. For piecewise linear
continuous splines, our numerical experiments confirm the
theoretical quadratic L2-convergence.

1. Introduction. We consider the solution of the potential equation
in a bounded domain Ω with a given Neumann-type nonlinear boundary
condition. Taking the model problem of [12, 13], consider

(1.1)
{

ΔΦ = 0, in Ω
−∂nΦ|Γ = f(x,Φ) − g, on Γ = ∂Ω.

We assume that the boundary Γ is a smooth Jordan-curve in the plane.
Conditions for the nonlinear function f(x,Φ) as well as for the given
boundary data g will be specified later.

By using Green’s representation formula for the potential Φ, problem
(1.1) reduces to the following nonlinear boundary integral equation [13]

(1.2)
1
2
u−Ku+ V F (u) = V g.

Here V is the single layer boundary integral operator

V u(x) :=
−1
2π

∫
Γ

u(y) ln |x− y| dsy,
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K is the double layer boundary integral operator

Ku(x) :=
1
2π

∫
Γ

u(y)
∂

∂ny
ln |x− y| dsy,

and u is the boundary density. Ruotsalainen and Wendland [13] discuss
the solvability of the equation (1.2) and analyze the convergence of the
spline Galerkin approximation method. Another theoretical approach
for the analysis of the numerical schemes, covering also the spline col-
location method, was presented by Ruotsalainen and Saranen [12]. In
addition, Atkinson and Chandler proposed [4] two other numerical ap-
proaches for problem (1.1), namely the use of the Nyström Method and
a method based on trigonometric interpolation. Based on the frame-
work of monotone operators, [12, 13] give optimal order convergence
results, if the approximation error of the boundary density u is mea-
sured by the Sobolev norm of order 1/2. Later, Saranen [14] was able
to prove the optimal L2-convergence. From a practical point of view,
the collocation method is superior to the Galerkin method. However, in
the actual numerical implementation, the nonlinearity must be handled
carefully in order to retain the convergence properties. The purpose of
our paper is to introduce an approximation scheme for (1.2) by using an
easily computable L2-orthogonal projection of the nonlinear function.
This approach applies to general projection methods, but for simplicity,
we discuss only collocation. It turns out that our method retains the
optimal convergence order of the collocation method. We also take into
account the effect of numerical integration in the scheme. Numerical
experiments confirm our theoretical results.

2. Preliminaries. We assume that the boundary Γ has a regular
1-periodic parameterization x(t) : R → Γ such that |dx/dt| ≥ ρ0 > 0.
Let Δh = {xk = x(tk)|0 = t0 < · · · < tN = 1}, h = 1/N , be a mesh on
Γ, and let Sd

h be the corresponding space of smoothest splines of degree
d ≥ 0 on the periodic partition {tk|k ∈ Z} ⊂ R. We assume that the
family of partitions {Δh|h > 0} is quasiuniform.

In the following, Hs(Γ), where s ∈ R, denotes the usual Sobolev
space equipped with the norm ||u||s = (u|u)1/2

s . In particular, we have
H0(Γ) = L2(Γ) and (u|v)0 =

∫
Γ
u(x)v(x) dsx. We frequently identify

the 1-periodic function u(x(t)) with the function u(x) defined on the
boundary Γ.
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The following approximation and inverse properties are well known
[2, 7].

Approximation Property. Let t ≤ s ≤ d+ 1, t < d+ 1/2. Then,
for all u ∈ Hs(Γ), there exists φ ∈ Sd

h such that

(2.1) ||u− φ||t ≤ chs−t||u||s,

where the constant c is independent of u and h.

Inverse Property. Let t ≤ s < d+1/2. Then there exists a constant
c independent of h such that

(2.2) ||φ||s ≤ cht−s||φ||t
for all φ ∈ Sd

h.

The real valued nonlinear function f(·, ·) : Γ×R → R is assumed to
satisfy the Carathéodory conditions

f(·, u) : Γ → R is measurable for all fixed u ∈ R(2.3.i)
f(x, ·) : R → R is continuous for almost all x ∈ Γ.(2.3.ii)

The associated Nemitsky operator is defined by

F (u)(x) = f(x, u(x)).

The Nemitsky operator u �→ F (u) is a well-defined operator from L2(Γ)
to L2(Γ) if the Carathéodory conditions and the growth condition
|f(x, u)| ≤ a(x)+b(x)|u|, are valid [9]. For the analysis of the numerical
approximation scheme, we make the supplementary assumption:

A1. The Nemitsky operator F is strongly monotone, i.e., for every
w, u ∈ L2(Γ),

(F (u) − F (w)|u− w)0 ≥ c||u− w||20.

A2. The Carathéodory function f(·, ·) is such that F : L2(Γ) → L2(Γ)
is Lipschitz continuous.
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A3. The Nemitsky operator F : Hs(Γ) → Hs(Γ) is bounded for all
0 ≤ s < 1.

We remark that (A2) and (A3) are valid if f is Lipschitz continuous.

The mapping properties of the operators V and K are quoted from
[8] and we collect them in the following theorem. The capacity of the
boundary Γ is denoted by cap (Γ).

Theorem 2.1. (1) If cap (Γ) �= 1, then V : Hs(Γ) → Hs+1(Γ) is an
isomorphism.

(2) If diam (Ω) < 1, then there exists σ0 > 0 such that

(2.4) (V ψ|ψ)0 ≥ σ0||ψ||2− 1
2
, for all ψ ∈ H− 1

2 (Γ).

(3) K : Hs(Γ) → Hs+1(Γ) is continuous for all s.

The solvability of (1.2) and the regularity of the solution has been
discussed in [13].

Theorem 2.2. Let cap (Γ) �= 1.

(1) For every g ∈ H−1/2(Γ), the integral equation (1.2) has a unique
solution u ∈ H1/2(Γ).

(2) For the solution u, the following regularity result is true: If
g ∈ Hs−1(Γ), 1/2 ≤ s < 2, and assumptions (A1), (A2) and (A3)
are valid, then the solution satisfies u ∈ Hs(Γ).

The proof of this theorem is presented in [13]. It is based on the fact
that the integral operator defined by

A(w) :=
(

1
2
I −K

)
w + V F (w)

is strongly V −1-monotone, i.e., for all u,w ∈ H1/2(Γ), we have

(A(u) −A(w)|V −1(u− w))0 ≥ c||u− w||21
2
.

In [13], the assumption diam (Ω) < 1 was used. However, the assump-
tion cap (Γ) �= 1 is sufficient. The proof [13] is still applicable.
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3. The collocation approximation. Let us now consider the
collocation method for finding an approximate solution of the equation
(1.2). We require that g ∈ Hs−1(Γ), s > 1/2. Then the function V g is
continuous, and the collocation equations are given by: Find uh ∈ Sd

h

such that

(3.1) Auh(x̃i) = V g(x̃i), i = 0, . . . , N − 1,

where
x̃i = x(ti), d is odd

x̃i = x

(
ti + ti+1

2

)
, d is even.

For the midpoint collocation, we assume that the mesh is smoothly
graded in the sense of [3]. An equivalent formulation of equation (3.1)
is: Find uh ∈ Sd

h such that

(3.2) IhAuh = IhV g,

where the interpolation operator Ih : Hs(Γ) → Sd
h is defined by

Ihψ(x̃i) = ψ(x̃i), i = 0, . . . , N − 1.

By our assumption, the interpolation error satisfies the estimate

(3.3)
||Ihw − w||t ≤ chs−t||w||s,

0 ≤ t < d+ 1/2, 1/2 < s ≤ d+ 1, t ≤ s.

We shall need the following result, known for the collocation method.

Theorem 3.1. Assume d > 0. Let u ∈ Hs(Γ), 1/2 < s ≤ d+ 1, be
the solution of (1.2) and suppose that (A1) and (A2) are valid. Then,
for sufficiently small h, the collocation problem (3.1) admits a unique
solution uh. Moreover, we have the asymptotic error estimate

(3.4) ||u− uh||t ≤ chs−t||u||s,

where 0 ≤ t ≤ s and t < d+ 1/2.
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The proof presented in [12] covers indices 1/2 ≤ t ≤ s and the recent
results by Saranen [14] give (3.4) for 0 ≤ t < 1/2.

For numerical purposes, we define an approximate collocation equa-
tion as follows: Find ũh ∈ Sd

h such that

(3.5) Ãh(ũh) :=
1
2
ũh − IhKũh + IhV PhF (ũh) = IhV g.

Here Ph : L2(Γ) → Sd
h is the orthogonal projection defined by equation

(3.6) (Phw|χ)0 = (w|χ)0 ∀χ ∈ Sd
h.

The orthogonal projection possesses the approximation property

(3.7)
||Phw − w||t ≤ chs−t||w||s,

−d− 1 ≤ t < d+
1
2
, −d− 1

2
< s ≤ d+ 1, t ≤ s,

([11], Corollary 4). Solvability of (3.5) as well as the error estimates
are based on the following stability property.

Theorem 3.2. Let d > 0. There exists a positive constant c1 such
that

(3.8) ||Ãh(χ) − Ãh(ψ)|| 1
2
≥ c1||χ− ψ|| 1

2
,

for all χ, ψ ∈ Sd
h when 0 < h ≤ h0. Moreover, equation (3.5) has a

unique solution for 0 < h ≤ h0.

Proof. Since d > 0, we have Sd
h ⊂ H1/2(Γ). For splines ψ ∈ Sd

h, we
have

(3.9) Ãh(ψ) =
1
2
ψ − IhKψ + IhV PhF (ψ).

The mapping properties of K,V and the continuity of F together with
(3.3), (3.7) imply the continuity of Ãh : Sd

h → Sd
h.

Next we prove the stability estimate (3.8). We abbreviate

B̃(χ) := −Kχ+ V PhF (χ) B(χ) := −Kχ+ V F (χ).
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By the estimate

(A(χ) −A(ψ)|V −1(χ− ψ))0 ≥ c||χ− ψ|21
2

and Theorem 2.1, we have
(3.10)

(Ãh(χ)−Ãh(ψ)|V −1(χ− ψ))0 ≥ c||χ− ψ||21
2

− ||(I − Ih)(B̃(χ) − B̃(ψ))|| 1
2
||V −1(χ− ψ)||− 1

2

− ||(B̃ −B)(χ) − (B̃ −B)(ψ)|| 1
2
||V −1(χ− ψ)||− 1

2

≥ {c||χ− ψ|| 1
2
− ||(I − Ih)(B̃(χ) − B̃(ψ))|| 1

2

− ||(B̃ −B)(χ) − (B̃ −B)(ψ)|| 1
2
}||V −1(χ− ψ)||− 1

2

for all splines ψ and χ. Using the approximation property (3.3), we get

||(I−Ih)(B̃(χ)−B̃(ψ))|| 1
2
≤ ch

1
2 {||K(χ−ψ)||1+||V Ph(F (χ)−F (ψ))||1}.

Since K : H1/2(Γ) → H1(Γ), V : L2(Γ) → H1(Γ) and the orthogonal
projection Ph : L2(Γ) → L2(Γ) are continuous and the Nemitsky
operator F : L2(Γ) → L2(Γ) is Lipschitz continuous, we obtain

(3.11) ||(I − Ih)(B̃(χ) − B̃(ψ))|| 1
2
≤ ch

1
2 ||χ− ψ|| 1

2
.

Similarly, by Theorem 2.1 and the approximation property (3.7), we
have
(3.12)

||(B̃ −B)(χ) − (B̃ −B)(ψ)|| 1
2
≤ c||(Ph − I)(F (χ) − F (ψ))||− 1

2

≤ ch
1
2 ||F (χ) − F (ψ)||0

≤ ch
1
2 ||χ− ψ|| 1

2
.

If the parameter h0 is sufficiently small, then the estimates (3.10),
(3.11) and (3.12) imply

(3.13) (Ãh(χ) − Ãh(ψ)|V −1(χ− ψ))0 ≥ c||χ− ψ|| 1
2
||V −1(χ− ψ)||− 1

2
,

for 0 < h ≤ h0. Now, the stability (3.8) follows from (3.13) by the
Schwarz inequality

c||χ− ψ|| 1
2
||V −1(χ− ψ)||− 1

2
≤ (Ãh(χ) − Ãh(ψ)|V −1(χ− ψ))0

≤ ||Ãh(χ) − Ãh(ψ)|| 1
2
||V −1(χ− ψ)||− 1

2
.
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Due to the stability result (3.8), the operator Ãh is an injection.
According to the Brouwer theorem on invariance of the domain ([6],
Theorem 4.3, p. 23) the range R(Ãh) is open. On the other hand, the
stability (3.8) and the continuity of Ãh imply that R(Ãh) is also closed.
Thus, R(Ãh) = Sd

h and Ãh is a homeomorphism.

The final theorem of this section describes the convergence of the
approximate collocation solution ũh.

Theorem 3.3. Assume d > 0. Let u ∈ Hs(Γ), 1/2 < s ≤ d + 1 be
the solution of (1.2) and suppose that the assumptions (A1), (A2) are
valid. Then we have the estimates

||ũh − uh|| 1
2
≤ chs+ 1

2 ||u||s + chτ+ 1
2 ||F (u)||τ(3.14)

||u− ũh||t ≤ chs−t||u||s + chτ+1−max(t, 1
2 )||F (u)||τ ,(3.15)

for 0 ≤ t ≤ s, t < d+ 1/2, provided that F (u) ∈ Hτ (Γ), 0 ≤ τ ≤ d+ 1.

Proof. Using the stability result [12]

||ũh − uh|| 1
2
≤ c||IhA(ũh) − IhA(uh)|| 1

2
,

the relation Ãh(ũh) = IhA(uh) and the approximation property of Ih,
we are able to estimate
(3.16)
||ũh − uh|| 1

2
≤ c||IhA(ũh) − IhA(uh)|| 1

2

= c||IhV (I − Ph)F (ũh)|| 1
2

≤ c||(Ih − I)V (I − Ph)F (ũh)|| 1
2

+ c||V (I − Ph)F (ũh)|| 1
2

≤ ch
1
2 ||V (I − Ph)F (ũh)||1 + c||(I − Ph)F (ũh)||− 1

2

≤ ch
1
2 ||(I − Ph)F (ũh)||0 + c||(I − Ph)F (ũh)||− 1

2

=: T1 + T2.

Here we have by (3.7)

T2 = c||(I − Ph)(I − Ph)F (ũh)||− 1
2

≤ ch
1
2 ||(I − Ph)F (ũh)||0 ≡ T1.
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Since I − Ph is bounded and F is Lipschitz continuous in L2(Γ), we
obtain

T1 ≤ ch
1
2 {||(I − Ph)(F (ũh) − F (uh))||0 + ||(I − Ph)(F (uh) − F (u))||0

+ ||(I − Ph)F (u)||0}
≤ ch

1
2 {||F (ũh) − F (uh)||0 + ||F (uh) − F (u)||0 + ||(I − Ph)F (u)||0}

≤ ch
1
2 {||ũh − uh||0 + ||uh − u||0 + ||(I − Ph)F (u)||0}

≤ ch
1
2 {||ũh − uh|| 1

2
+ ||uh − u||0 + ||(I − Ph)F (u)||0}.

The approximation property of the orthogonal projection Ph and the
convergence result for uh imply the estimate
(3.17)
||ũh − uh|| 1

2
≤ T1 ≤ ch

1
2 ||ũh − uh|| 1

2
+ chs+ 1

2 ||u||s + chτ+ 1
2 ||F (u)||τ .

The convergence estimate (3.14) is proved. Finally, Theorem 3.1
together with (3.14) and the inverse property (2.2) imply (3.15).

By (3.15), the rate of the convergence depends on the regularity of
the solution u and of the regularity of the function F (u). But the
regularity of u and of F (u) are related to each other. For example,
if u ∈ Hs(Γ), g ∈ Hs−1(Γ), we conclude from equation (1.2) by the
mapping properties of K and V , that F (u) ∈ Hs−1(Γ) with

||F (u)||s−1 ≤ c(||u||s + ||g||s−1).

Hence, we have

Corollary 3.1. Suppose that (A1) and (A2) are valid. Let u ∈ Hs(Γ)
be the solution of (1.2) and let g ∈ Hs−1(Γ), 1 ≤ s ≤ d + 2. Then we
have

(3.18) ||u− ũh||t
≤ chmin(s,d+1)−t||u||min(s,d+1) + chs−max(t, 1

2 )(||u||s + ||g||s−1),

for all 0 ≤ t ≤ s, t < d+1/2. In particular, for the L2-norm, we obtain

(3.18′) ||u− ũh||0 ≤ chd+1(||u||d+ 3
2

+ ||g||d+ 1
2
).
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On the other hand, assume that (A2) is valid. If only the regularity
g ∈ Hs−1(Γ) is known, we can still conclude that u ∈ Hs(Γ), 1/2 <
s ≤ 1. Thus, we obtain

Corollary 3.2. Suppose that (A1) and (A2) are valid. Let u ∈
H1/2(Γ) be the solution of (1.2) and let g ∈ Hs−1(Γ), 1/2 < s ≤ 1.
Then we have u ∈ Hs(Γ) and

(3.19) ||u− ũh||t ≤ chs−t||u||s + ch1−max(t, 1
2 )||F (u)||0,

for all 0 ≤ t ≤ s.

In this case we obtain the following estimate

(3.19′) ||u− ũh||0 ≤ ch
1
2 (||u||1 + ||g||0).

These estimates can be improved by assuming more smoothness on the
Nemitsky operator, e.g., (A3).

4. A modified equation. Here we will slightly generalize our
results. Decomposing the single layer operator V into the principal
part with logarithmic singularity and the smooth part, we write the
equation (1.2) to an explicit form

(4.1)

1
2
u(x(t)) − 1

2π

∫ 1

0

u(x(τ ))n(τ ) · (x(τ ) − x(t))
|x(τ ) − x(t)|2 |x

′(τ )| dτ

− 1
2π

∫ 1

0

(F (u))(x(τ )) ln
|x(t) − x(τ )|

|τ − t|∗ |x′(τ )| dτ

− 1
2π

∫ 1

0

(F (u))(x(τ )) ln |t− τ |∗|x′(τ )| dτ = V g(x(t)).

Here the modified distance defined by

|t− τ |∗ = min(|t− τ |, |t− τ + 1|, |t− τ − 1|)
makes the kernel

ln
|x(t) − x(τ )|

|τ − t|∗
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a smooth function. We approximate with splines the product v(t) =
u(x(t))κ(t), where κ(t) := |x′(t)| is the Jacobian of the parametric
representation. This computational method is frequently used since the
integrals corresponding to the logarithmic singularity can be integrated
exactly. Thus, numerical integration is needed only for the remaining
part with a smooth kernel.

Writing (1.2) in terms of v, we obtain

(4.2)
1
2
v − κK

1
κ
v + κV F

1
κ

(v) = κV g.

We define the operator

(4.3) Aκ(v) := κA
1
κ

(v) =
1
2
v − κK

1
κ
v + (κV κ)

(
1
κ
F

1
κ

)
(v).

Denoting gκ = κV g we are led to the equation

(4.4) Aκ(v) =
1
2
v −Kκv + VκFκ(v) = gκ,

where

Kκ = κK
1
κ
, Vκ = κV κ, Fκ =

1
κ
F

(
1
κ

)
.

We remark that the operator Aκ is of the form needed in [14]. Ap-
propriate choices for function spaces in order to make assumptions
(C1) (C5) in [14] hold are

X0 = L2(Γ), X = H
1
2 (Γ), X∗ = H− 1

2 (Γ), Z = H1(Γ).

Lemma 4.1. We have

(1) Kκ : H
1
2 (Γ) → H1(Γ) is bounded.

(2) Vκ : H− 1
2 (Γ) → H

1
2 (Γ) is an isomorphism and Vκ : L2(Γ) →

H1(Γ) is bounded.

(3) Fκ : L2(Γ) → L2(Γ) is bounded.

(4) (Aκ(w) −Aκ(w′)|(V −1
κ )∗(w − w′))0 ≥ c||w − w′||2

H
1
2 (Γ)

.
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(5) Kκ : L2(Γ) → H1(Γ) is bounded.

Proof. We note that multiplication by regular functions κ and 1/κ
defines an isomorphism from Hs(Γ) → Hs(Γ) for all s. Clearly Kκ

is a bounded linear operator from Hs(Γ) → Hs+1(Γ) for all s, which
implies (1) and (5). The Lipschitz continuity of F implies the Lipschitz
continuity of Fκ from L2(Γ) → L2(Γ). Thus (3) is valid. The properties
(2) of Vκ follow easily from the mapping properties of V . Finally, since
the operator A is strongly V −1 monotone, we obtain
(4.5)

(Aκ(w)−Aκ(w′)|(V −1
κ )∗(w − w′))0

=
(
κ

(
A

(w
κ

)
−A

(
w′

κ

))
|
(

1
κ
V −1 1

κ

)∗
(w − w′)

)
0

=
(
A

(w
κ

)
−A

(
w′

κ

)
| V −1

(
w

κ
− w′

κ

))
0

≥ c

∥∥∥∥wκ − w′

κ

∥∥∥∥
2

1
2

≥ c||w − w′||21
2
,

which proves (4).

Let vh ∈ Sd
h be the collocation approximation of v such that

(4.6) IhAκvh = Ihgκ.

We have

Theorem 4.1. Assume d > 0. Let v ∈ Hs(Γ), 1/2 < s ≤ d + 1, be
the solution of (4.4) and suppose that (A1), (A2) are valid. Then, for
sufficiently small h, there exists a unique collocation solution such that

(4.7) ||v − vh||t ≤ chs−t||v||s,

where 0 ≤ t ≤ s and t < d+ 1/2.

Proof. According to Lemma 4.1, the assumptions of [14] Theorem 2
are fulfilled and the estimate (4.7) follows by interpolation.
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Correspondingly, let ṽh ∈ Sd
h be the approximate collocation solution

of v such that

(4.8) Ãκh
(ṽh) :=

1
2
ṽh − IhKκṽh + IhVκPhFκ(ṽh) = IhκV g.

Theorem 4.2. Let d > 0. There exists a positive constant c1 such
that

(4.9) ||Ãκh
(χ) − Ãκh

(ψ)|| 1
2
≥ c1||χ− ψ|| 1

2
,

for all χ, ψ ∈ Sd
h when 0 < h ≤ h0. Moreover, equation (4.8) has a

unique solution for 0 < h ≤ h0.

Theorem 4.3. Assume d > 0. Let v ∈ Hs(Γ), 1/2 < s ≤ d + 1 be
the solution of (4.4), and suppose that the assumptions (A1), (A2) are
valid. Then we have the estimates

||ṽh − vh|| 1
2
≤ chs+ 1

2 ||v||s + chτ+ 1
2 ||Fκ(v)||τ(4.10)

||v − ṽh||t ≤ chs−t||v||s + chτ+1−max(t, 1
2 )||Fκ(v)||τ ,(4.11)

for 0 ≤ t ≤ s, t < d+1/2, provided that Fκ(v) ∈ Hτ (Γ), 0 ≤ τ ≤ d+1.

The proofs of Theorems 4.2 and 4.3 are analogous to the proofs of
Theorems 3.2 and 3.3, respectively. We remark that also Corollary 3.1
and Corollary 3.2 can be correspondingly extended to v, vh instead of
u, uh.

5. The effect of numerical integration. There is still the effect of
numerical integration to be estimated. Here we assume that the mesh
is uniform. Let μ be the characteristic function of the unit interval.
The basis functions μd

j of the space Sd
h are defined as translations

μd
j (t) = μd

0(t − jh), where μd
0 is the 1-periodic extension of the d-

fold convolution μd
0(t) = μd(t/h) := (μ ∗ · · · ∗ μ)(t/h), 0 ≤ t ≤ 1. Let

K(·, ·) be the kernel corresponding to the double layer operator and let
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S(·, ·) be the kernel of the smooth part of the single layer operator. We
introduce the representations

ṽh =
N−1∑
j=0

αjμ
d
j , Ph

(
F

(
ṽh

κ

)
κ

)
=

N−1∑
j=0

Ph

(
F

(
ṽh

κ

)
κ

)
j

μd
j .

The approximate collocation problem (4.8) is equivalent to the follow-
ing set of nonlinear equations:

1
2

N−1∑
j=0

αjμ
d
j (ti) −

h

2π
κ(ti)

N−1∑
j=0

αj

∫ d+1

0

K(ti, hτ + hj)μd(τ ) dτ

− h

2π
κ(ti)

N−1∑
j=0

Ph

(
F

(
ṽh

κ

)
κ

)
j

∫ d+1

0

S(ti, hτ + hj)μd(τ ) dτ

− h

2π
κ(ti)

N−1∑
j=0

Ph

(
F

(
ṽh

κ

)
κ

)
j

∫ d+1

0

μd(τ ) ln |
(
ρ(i, j)+τ− d+1

2

)
h|dτ

= κ(ti)V g(x(ti)), i = 0, 1, . . . , N − 1,

where ρ(i, j) = min(|i−j|, |i−j+N |, |i−j−N |). By using the notation
(5.1)

kij = h

∫ d+1

0

K(ti, hτ + hj)μd(τ ) dτ,

sij = s0ij + s1ij ; s
0
ij = h

∫ d+1

0

μd(τ ) ln |
(
ρ(i, j) + τ − d+ 1

2

)
h| dτ,

s1ij = h

∫ d+1

0

S(ti, hτ + hj)μd(τ ) dτ,

the nonlinear system can be rewritten as
(5.2)

1
2

N−1∑
j=0

αjμ
d
j (ti) −

κ(ti)
2π

N−1∑
j=0

αjkij − κ(ti)
2π

N−1∑
j=0

Ph

(
F

(
ṽh

κ

)
κ

)
j

s1ij

− κ(ti)
2π

N−1∑
j=0

Ph

(
F

(
ṽh

κ

)
κ

)
j

s0ij

= κ(ti)V g(x(ti)), i = 0, . . . , N − 1.
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We replace the integrals by numerical quadratures,

k̃ij = h
∑

l

βlK(ti, τjl), s̃1ij = h
∑

l

βlS(ti, τjl),

where the numbers βl are weights and the points τjl are corresponding
abscissae of the numerical quadrature rule. We suppose that the
quadrature satisfies

(5.3) |kij − k̃ij | ≤ chσ, |s1ij − s̃1ij | ≤ chσ.

For the right hand side of (5.2) we use the orthogonal projection
approximation κV g(xi) ≈ κV Phg(xi). The resulting set of nonlinear
equations is
(5.4)

1
2

N−1∑
j=0

α̂jμ
d
j (ti) −

κ(ti)
2π

N−1∑
j=0

α̂j k̃ij − κ(ti)
2π

N−1∑
j=0

Ph

(
F

(
v̂h

κ

)
κ

)
j

s̃1ij

− κ(ti)
2π

N−1∑
j=0

Ph

(
F

(
v̂h

κ

)
κ

)
j

s0ij

= κ(ti)V Phg(xi), i = 0, 1, . . . , N − 1.

The system (5.4) defines the mapping Âκh
: Sd

h → Sd
h such that

(5.5) Âκh
(v̂h) = IhκV Phg.

We deduce the solvability of (5.5) from the stability and continuity of
the operator Âκh

.

Theorem 5.1. Let d > 0. There exists a positive constant c2 such
that

(5.6) ||Âκh
(χ) − Âκh

(ψ)|| 1
2
≥ c2||χ− ψ|| 1

2
,

for all χ, ψ ∈ Sd
h when 0 < h ≤ h0. Moreover, equation (5.5) has a

unique solution for 0 < h ≤ h0.
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Proof. By using the (V −1
κ )∗-stability of the operator Ãκh

we have
(5.7)

(Âκh
(χ) − Âκh

(ψ)|(V −1
κ )∗(χ− ψ))0

= (Ãκh
(χ) − Ãκh

(ψ)|(V −1
κ )∗(χ− ψ))0

+ ((Âκh
− Ãκh

)(χ) − (Âκh
− Ãκh

)(ψ)|(V −1
κ )∗(χ− ψ))0

≥ c||χ− ψ|| 1
2
||(V −1

κ )∗(χ− ψ)||− 1
2

− c||(Âκh
− Ãκh

)(χ) − (Âκh
− Ãκh

)(ψ)|| 1
2
||(V −1

κ )∗(χ− ψ)||− 1
2

for all splines χ, ψ. For further estimation, we compare the operators
Ãκh

and Âκh
componentwise. With χ =

∑N−1
j=0 αjμ

d
j , we have

(5.8)

(Ãκh
(χ))i =

αi

2
− κ(ti)

2π

N−1∑
j=0

kijαj − κ(ti)
2π

N−1∑
j=0

s1ijPh

(
F

(χ
κ

)
κ
)

j

− κ(ti)
2π

N−1∑
j=0

s0ijPh

(
F

(χ
κ

)
κ
)

j
,

(Âκh
(χ))i =

αi

2
− κ(ti)

2π

N−1∑
j=0

k̃ijαj − κ(ti)
2π

N−1∑
j=0

s̃1ijPh

(
F

(χ
κ

)
κ
)

j

− κ(ti)
2π

N−1∑
j=0

s0ijPh

(
F

(χ
κ

)
κ
)

j
.

Writing ψ =
∑N−1

j=0 ωjμ
d
j , we obtain

(5.9)

((Âκh
− Ãκh

)(χ))i − ((Âκh
− Ãκh

)(ψ))i =
κ(ti)
2π

N−1∑
j=0

(k̃ij − kij)(αj −ωj)

+
κ(ti)
2π

N−1∑
j=0

(s̃1ij−s1ij)
{
Ph

(
F

(χ
κ

)
κ
)

j
− Ph

(
F

(
ψ

κ

)
κ

)
j

}
.

The norm equivalence [5]

(5.10) c1||χ||0 ≤
{
h

N−1∑
j=0

α2
j

} 1
2

≤ c2||χ||0, χ ∈ Sd
h
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gives the estimate
(5.11)
||(Âκh

− Ãκh
)(χ) − (Âκh

− Ãκh
)(ψ)||0

≤ c

⎧⎪⎨
⎪⎩h

N−1∑
i=0

⎡
⎣N−1∑

j=0

(k̃ij − kij)(αj − ωj)

⎤
⎦

2
⎫⎪⎬
⎪⎭

1
2

+ c

{
h

N−1∑
i=0

[ N−1∑
j=0

(s̃1ij−s1ij)
{
Ph

(
F

(χ
κ

)
κ
)

j
−Ph

(
F

(
ψ

κ

)
κ

)
j

}]2} 1
2

≤ c

{ N−1∑
i=0

N−1∑
j=0

(k̃ij − kij)2
} 1

2
{
h

N−1∑
j=0

(αj − ωj)2
} 1

2

+ c

{ N−1∑
i=0

N−1∑
j=0

(s̃1ij−s1ij)2
} 1

2
{
h

N−1∑
j=0

[
Ph

{
F

(χ
κ

)
κ−F

(
ψ

κ

)
κ

}
j

]2} 1
2

≤ chσ−1

(
||χ− ψ||0 +

∥∥∥∥
(
F

(χ
κ

)
− F

(
ψ

κ

))
κ

∥∥∥∥
0

)
≤ chσ−1||χ− ψ||0.

The stability estimate (5.6) follows from (5.7) combined with (5.11),
(2.2) and the Schwarz inequality. Existence of the solution as well as
uniqueness are proved as in Theorem 3.2.

The following consistency estimate is valid.

Lemma 5.1. We have
(5.12)

||(Ãκh
− Âκh

)(χ)||0 ≤ c

[ N−1∑
i=0

N−1∑
j=0

|kij − k̃ij |2
] 1

2

||χ||0

+ c

[ N−1∑
i=0

N−1∑
j=0

|s1ij − s̃1ij |2
] 1

2 ∥∥∥Ph

(
F

(χ
κ

)
κ
)∥∥∥

0

≤ chσ−1
(
||χ||0 +

∥∥∥F (χ
κ

)
κ
∥∥∥

0

)
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for all χ ∈ Sd
h. Furthermore,

(5.13) ||(IhκV g − IhκV Phg)||0 ≤ chs||g||s−1

for any g ∈ Hs−1(Γ), 1/2 < s ≤ d+ 1.

Proof. As in the proof of the previous theorem (cf. (5.11)), we obtain

||(Ãκh
− Âκh

)(χ)||0 ≤ ||T1(χ)||0 + ||T2(χ)||0,

where
(5.14)

||T2(χ)||0 ≤ c

{
h

[ N−1∑
i=0

N−1∑
j=0

(s1ij − s̃1ij)
2

][ N−1∑
j=0

(
Ph

(
F

(χ
κ

)
κ
)

j

) ]2} 1
2

≤ c

[ N−1∑
i=0

N−1∑
j=0

(s1ij − s̃1ij)
2

] 1
2
{
h

[ N−1∑
j=0

(
Ph

(
F

(χ
κ

)
κ
)

j

)2 ]} 1
2

≤ c

[ N−1∑
i=0

N−1∑
j=0

(s1ij − s̃1ij)
2

] 1
2 ∥∥∥Ph

(
F

(χ
κ

)
κ
)∥∥∥

0

≤ chσ−1
∥∥∥F (χ

κ

)
κ
∥∥∥

0
.

Analogously, we have ||T1(χ)||0 ≤ chσ−1||χ||0. Thus, (5.12) is valid.
The estimate (5.13) follows directly from the approximation properties
(3.3), (3.7) and from the mapping properties of V .

Having found the spline approximation v̂h of v = κu, we define for
u = (1/κ)v the (nonspline) approximation by setting ûh = (1/κ)v̂h.
We summarize all convergence results in the following theorem.

Theorem 5.2. Assume d > 0. Let g ∈ Hs−1(Γ) and let v ∈ Hs(Γ),
1/2 < s ≤ d+1 be the solution of (4.4) and suppose that the assumptions
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(A1), (A2) are valid. Then we have the estimates

||ṽh − v̂h|| 1
2
≤ chs− 1

2 ||g||s−1 + chσ− 3
2 (||v|| 1

2
+ ||F (0)||0)

(5.15)

||u− ûh||t ≤ c||v − v̂h||t ≤ chs−t(||v||s + ||g||s−1)
(5.16)

+ chτ+1−max(t, 1
2 )||Fκ(v)||τ

+ chσ−1−max(t, 1
2 )(||v|| 1

2
+ ||F (0)||0),

for 0 ≤ t ≤ s, t < d+1/2, provided that Fκ(v) ∈ Hτ (Γ), 0 ≤ τ ≤ d+1.

Proof. Stability and consistency imply convergence and the order
of convergence is at least the order of consistency. Since the identities
Ãκh

(ṽh) = IhκV g and Âκh
(v̂h) = IhκV Phg are valid, we have by (5.12),

(5.13)

||v̂h − ṽh|| 1
2
≤ c||Âκh

(v̂h) − Âκh
(ṽh)|| 1

2

≤ c||IhκV (Ph − I)g|| 1
2

+ ||(Ãκh
− Âκh

)(ṽh)|| 1
2

≤ chs− 1
2 ||g||s− 1

2
+ chσ− 3

2 (||v|| 1
2

+ ||F (0)||0).

Thus, (5.15) is proved. Since

||u− ûh||t ≤ c||v − v̂h||t,
the estimate (5.16) follows from Theorem 4.3 combined with (5.15) and
(2.2).

6. Numerical results. Finally, we present some numerical results
in order to illustrate our asymptotic convergence estimates. First, we
consider the following nonlinear integral equations of type A(u) = V g
on the boundary of a disk of radius r. We denote Fabc(u) = au+ bu3 +
cu5, |u| ≤M , where a, b, c are real numbers such that Fabc is monotone.
We define the nonlinearity

F (u) =

⎧⎨
⎩
Fabc(u), if |u| ≤M

Fabc(M) + F ′
abc(M)(u−M), if u > M

Fabc(M) + F ′
abc(−M)(u−M), if u < −M
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and the right side V g = gabc by the formula

gabc(t) =
[
4 + 4ar + 3br + 5cr

8

]
cos(2πt)

+
[
br

24
+

5cr
96

]
cos(6πt) +

cr

160
cos(10πt).

Then the function u(t) = cos(2πt) is the solution of the nonlinear inte-
gral equation (1.2). Numerical solution leads to a system of nonlinear
equations which is solved with the Newton method. We use piecewise
linear approximations. For numerical integration, we apply the low or-
der spline-weighted grid-point rule with three points in the reference
interval. This formula gives the accuracy σ = 5 [1]. The results in
the following table are typical of this family of model problems. For
nonzero values of c, the table remains essentially the same. Only the
number of Newton iterations will increase.

TABLE 1.

a = 1.0, b = 1.0, c = 0.0, r = 0.4
Nodes L2-error Rate

16 0.009149
2.004

32 0.002281
2.003

64 0.000569

Our second example is taken from [4]. Here we have the nonlinear
potential problem (1.1) with g(x, u) = u + sin(u). The function f is
chosen such that the true solution will be u0(x, y) = ex cos(y). We use
the elliptical region Ω = {x | (x/a)2+(y/b)2 < 1} with the values a = 1
and b = 2. In the following table we give the L2-error for the boundary
density.
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TABLE 2.

a = 1.0, b = 2.0
Nodes L2-error Rate

16 0.1531
1.82

32 0.0434
1.95

64 0.0112

In both examples the convergence measured with respect to L2-norm
is quadratic. Finally, we remark that the use of spline-weighted grid-
point rule corresponding to the accuracy σ = 3 also gives the quadratic
convergence with respect to L2-norm. In this case our theoretical rate
of convergence is 3/2.
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