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PROBABILISTIC ANALYSIS OF NUMERICAL
METHODS FOR INTEGRAL EQUATIONS

STEFAN HEINRICH

ABSTRACT. The approximate solution of Fredholm inte-
gral equations is analyzed from a probabilistic point of view.
With Wiener type measures on the set of kernels and right-
hand sides we determine statistical features of the approxima-
tion process the most likely rate of convergence and the dom-
inating individual behavior. The analysis is carried out for two
typical algorithms the Galerkin and the iterated Galerkin
method.

Introduction. The aim of the probabilistic analysis is best explained
in a concrete example. Therefore, we first describe the numerical
problem and the algorithms to be studied. We consider the Fredholm
integral equation

x(s) −
∫ 2π

0

k(s, t)x(t) dt = y(s),

where y ∈ L2(Γ), k ∈ L2(Γ2), and Γ is the unit circle. Let us write this
equation in the form

x − Tkx = y

and assume that I − Tk (I the identity) is invertible. The Galerkin
method seeks an approximate solution xG

n ∈ Xn satisfying

(xG
n − TkxG

n , z) = (y, z)

for all z ∈ Xn, where we let Xn be the space of trigonometric
polynomials of degree at most n, and ( , ) denotes the scalar product
in L2(Γ). A second algorithm, the iterated Galerkin method (see, e.g.,
[17]), uses xG

n to obtain a further approximation xI
n with

xI
n − TkxG

n = y.

The error analysis is usually based on smoothness assumptions. Let
r ≥ s ≥ 0 and let BHr(Γ2) and BHs(Γ) be the unit balls of the
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Sobolev spaces Hr(Γ2) and Hs(Γ) (which will be explained in Section
3). Then the following error estimates are well known:

(0.1) c1n
−s ≤ sup

k∈BHr(Γ2)/2
y∈BHs(Γ)

||x(k, y) − xG
n (k, y)|| ≤ c2n

−s

(see, e.g., [1]; Theorem 2, p. 51]) and

(0.2) c3n
−r−s ≤ sup

k∈BHr(Γ2)/2
y∈BHs(Γ)

||x(k, y) − xI
n(k, y)|| ≤ c4n

−r−s

(see [17, Theorem 3]), where we emphasized the dependence of exact
and approximate solutions on k and y. The constants c1−4 are positive
and independent of n. These estimates are typical worst case results.
They provide guaranteed error estimates, which means that the error
rate has to be determined by the performance on the “worst” element.
This raises the question of what happens during the approximation
process for “most” elements (k, y). It is the aim of this paper to answer
this question on the basis of a probabilistic analysis.

To make our work precise, we have to fix probability measures on the
set of right-hand sides and on the set of kernels. We shall use Wiener
type measures, which are naturally related to the scale of Sobolev
spaces. We choose them in such a way that they reflect smoothness
Hr(Γ2) and Hs(Γ) in a fair way. This allows us to extend a comparison
between worst and probabilistic cases.

It turns out that the worst case rate for the Galerkin method holds
for almost all data (k, y), while, for the iterated Galerkin method, the
typical convergence is by a factor n−1/2 faster than the worst case rate,
that is, the worst case seldom occurs. Moreover, the results also give
an insight into the individual behavior. Let us look at the Galerkin
method. By what was said so far, it is clear that, for almost all (k, y),
there is an n0 and a c1 > 0 such that ||x(k, y) − xG

n (k, y)|| ≤ c1n
−s,

n ≥ n0, and the exponent −s cannot be improved. But it turns out
that this last statement can be given a much stronger form. Namely,
the same order of lower estimate holds: For almost all (k, y) there are
n0 and c2 > 0 such that ||x(k, y) − xG

n (k, y)|| ≥ c2n
−s, n ≥ n0. Thus,

the global convergence rate is reproduced individually at almost all
data. The same is true for the iterated Galerkin method. Finally, all
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results are of quantitative nature not only in the sense that they give
the precise rate of convergence. They also provide estimates for the
distribution of the constants c1, c2, n0.

Quantitative probabilistic analysis was carried out for several numer-
ical problems. Let us mention, in particular, integration [20, 21, 9,
11], approximation [10, 25, 26, 13, 7], root-finding [18, 19]. For fur-
ther information we refer to the monograph [22]. Numerical methods
for integral equations have so far been studied from a qualitative point
of view (in the sense of almost sure convergence for general probability
measures), see, e.g., [2, 16, 23, 4] and their references. The present
paper gives the first quantitative analysis for concrete measures a task
formulated by S. Smale in [19, p. 96].

While in the case of integration and approximation the operator
mapping the data to the exact solution is linear, this is obviously
not true in our case. The solution operator (k, y) → x(k, y) depends
nonlinearly on k. This makes the analysis more complicated. A major
problem in this respect was the distribution of the norm of the inverse
Fredholm operator, which was solved in [6]. Another ingredient of
the present paper is a recent result of Maurey and Pisier on the
deviation of Gaussian measures from their mean [15]. This result will
be exploited at several levels to handle the probability of simultaneous
approximation of kernels and right-hand sides.

The paper is organized as follows. Section 1 reviews some basic
facts about Gaussian measures. Section 2 already deals with the
main problem, but so far only in terms of general Banach spaces and
Gaussian measures. This will be specified in Section 3, where the main
results are formulated. Sections 4 and 5 are devoted to their proofs.
There we provide a variety of estimates for our concrete situation which
then make the general results of Section 2 work.

1. Preliminaries. Throughout this paper we consider only Banach
spaces over the field of reals. Given Banach spaces X and Y we let
L(X, Y ) denote the space of all bounded linear operators, equipped
with the operator norm. K(X, Y ) is the space of compact operators,
and we write L(X) and K(X) if X = Y . X∗ stands for the dual space
of X, B(X) is the σ-algebra of all Borel subsets of X. The symbol 〈 , 〉
is used for the duality between X and X∗, while ( , ) always denotes
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scalar products. If X = H is a Hilbert space, we identify X∗ with H
in the usual way, so that 〈 , 〉 and ( , ) coincide. For x∗ ∈ X∗, y ∈ Y ,
x∗⊗y ∈ L(X, Y ) denotes the operator defined by (x∗⊗y)(x) = 〈x, x∗〉y.

In what follows we shall list some basic notions and facts about
Gaussian measures, the emphasis laid on the operator theoretic aspect.
We do this very briefly and refer to the literature. [6] contains
analogous, but more detailed, preliminaries. A Gaussian measure on
a Banach space X is a Radon probability measure μ such that each
x∗ ∈ X∗ is a symmetric Gaussian random variable on (X, μ) (which
may be degenerate, that is, = 0 almost everywhere). We shall consider
only symmetric, i.e., mean zero Gaussian measures. For a Hilbert space
H we let γH denote the standard Gaussian cylindrical probability (see
[8, I], [14, 25.5.1]). For T ∈ L(H, X) let

Eγ(T ) = sup
F⊂H

dim F<∞

∫
F

||Th||dγF (h)

and let Πγ(H, X) denote the set of all T ∈ L(H, X) with Eγ(T ) < ∞
(compare [12]). Eγ is a norm on Πγ(H, X) turning it into a Banach
space. It is easily checked that

(1.1) ||T || ≤ (π/2)1/2Eγ(T ).

For a further Hilbert space H0, a Banach space X0, S ∈ L(H0, H) and
U ∈ L(X, X0),

(1.2) Eγ(UTS) ≤ ||U ||Eγ(T )||S||

(Lemma 2 of [12]). Let Rγ(H, X) be the closure of the finite rank
operators in Πγ(H, X). For T ∈ L(H, X) let TγH denote the cylin-
drical probability measure induced on X by T , that is, TγH(B) =
γH(T−1(B)) for cylindrical sets B. Now T ∈ Rγ(H, X) if and only if
TγH has an extension T̃ γH to B(X) which is a Radon measure (such
an extension is unique). So T ∈ Rγ(H, X) implies that T̃ γH is Gaus-
sian. Conversely, if μ is a Gaussian measure on X, there is a separable
Hilbert space H and an injection J ∈ Rγ(H, X) with μ = J̃γH . H and
J are essentially unique (up to isometries). Note that (J, H, X) is then
an abstract Wiener space (see [8; I, §4]). Let us also mention that if
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μ = T̃ γH , T ∈ Rγ(H, X), then Cμ = TT ∗ is the covariance operator of
μ, the closure of Im T is the support of μ, and

(1.3) Eγ(T ) =
∫

X

||x|| dμ(x).

These facts can be found in [8, 12, 24] (compare also the guideline in
Section 1 of [6]). If X = G is a Hilbert space, then Rγ(H, G) coincides
with the class of Hilbert-Schmidt operators S2(H, G) and

(1.4) (1 + (π/2)3/2)−1σ2(T ) ≤ Eγ(T ) ≤ σ2(T ),

where σ2(T ) denotes the Hilbert-Schmidt norm. This is a consequence
of [15, Corollary 2.5 and inequality 2.7]. We shall use the following
result due to Maurey and Pisier (see [15, Theorem 2.1 and the remark
on p. 180]).

Proposition 1.1. Let X and Y be Banach spaces, let μ be a
Gaussian measure on X, μ = J̃γH , where J ∈ Rγ(H, X) and H is
a Hilbert space. Let T ∈ L(X, Y ). Then, for all t ≥ 0 and τ = ±1,

μ{x ∈ X : τ (||Tx|| − Eγ(TJ)) > t} ≤ exp(−t2/(2||TJ ||2)).

Remark . This statement contains a divisor which might be zero. There
are several places like this herein (Section 2). All of them make sense
and remain true also in the degenerate case if we agree to put a/0 = +∞
for each a ≥ 0, and exp(−∞) = 0.

We also need the following result of Chevet [3, Lemma 3.1] and
Gordon [5, Corollary 2.4].

Proposition 1.2. Let X and Y be Banach spaces, m, n ∈ N,
x∗

1, . . . , x
∗
m ∈ X∗, y1, . . . , yn ∈ Y . Define the operators U ∈ L(lm2 , X∗),

V ∈ L(ln2 , Y ) and W ∈ L(lmn
2 , L(X, Y )) by
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U(ξj) =
m∑

j=1

ξjx
∗
j

V (ηi) =
n∑

i=1

ηiyi

W (ζij) =
n∑

i=1

m∑
j=1

ζijx
∗
j ⊗ yi.

Then
Eγ(W ) ≤ ||U ||Eγ(V ) + Eγ(U)||V || ≤ 2Eγ(W ).

In the course of investigation we shall determine the asymptotic order
of certain functions with respect to different variables. Therefore, it is
necessary to use a suitable notation, which we want to explain here. If
A is a set and f, g : A → [0, +∞) are nonnegative functions, we write

f(a) ≺ g(a)

if there is a constant c > 0 such that f(a) ≤ cg(a) for all a ∈ A. Next,

f(a) � g(a)

means f(a) ≺ g(a) and g(a) ≺ f(a). If f and g depend on a further
variable (collection of parameters, etc.), say f(a, b), g(a, b), b ∈ B,

f(a, b)≺
a

g(a, b)

means that, for each b ∈ B, f(a, b) ≺ g(a, b) (consequently, the constant
c may depend on b). Analogously, �a is defined. Finally, if the choice
of A is ambiguous, we write ≺a∈A and �a∈A.

2. General estimates. We start with an abstract formulation of
the Galerkin and iterated Galerkin method. Let X be a Banach space,
which will be fixed throughout this section and denote the identity
operator on X by I. Let T ∈ K(X) and y ∈ X. Assume that the
Fredholm equation of the second kind,

(2.1) x − Tx = y,
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has a unique solution x = x(T, y). We want to approximate this
solution. For this purpose let (Pn)n∈N ⊂ L(X) be a sequence of
finite rank projections which will also remain fixed in this section (to
avoid ambiguity, N always means {1, 2, . . . }). Let n ∈ N and assume
that there is a unique xG

n = xG
n (T, y) ∈ Im Pn satisfying the Galerkin

equation

(2.2) PnxG
n − PnTxG

n = Pny.

We define the error of the Galerkin method by

δG
n (T, y) = ||x(T, y) − xG

n (T, y)||.

The iterated Galerkin method determines xI
n = xI

n(T, y) by

(2.3) xI
n − TxG

n = y,

and the error is defined as

δI
n(T, y) = ||x(T, y) − xI

n(T, y)||.

It is convenient to define δG
n and δI

n also in the case that (2.1) or (2.2)
does not have a unique solution. Then we put δG

n (T, y) = δI
n(T, y) =

+∞. The following simple (and well-known) lemma provides explicit
expressions for the approximate solutions.

Lemma 2.1. Let T ∈ K(X). Then I −PnT is invertible if and only
if I − TPn is invertible. If any of them is invertible, then, for each
y ∈ X, (2.2) has a unique solution and

xG
n (T, y) = (I − PnT )−1Pny

xI
n(T, y) = (I − TPn)−1y.

Proof. The first statement follows from the relations

(I − TPn)−1 = I + T (I − PnT )−1Pn

(I − PnT )−1 = I + Pn(I − TPn)−1T,
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which are easily checked by multiplying both sides by I − TPn and
I−PnT , respectively. Now, if I−PnT and I−TPn are invertible, then
(2.2) has the unique solution

xG
n (T, y) = (I − PnT )−1Pny.

Inserting this into (2.3) gives

xI
n(T, y) = y + T (I − PnT )−1Pny = (I − TPn)−1y,

where we used the expression for (I − TPn)−1 from above.

Next we fix the measures. Let G and H be Hilbert spaces, let
Φ ∈ Rγ(G, K(X)), J ∈ Rγ(H, X) and assume that J is an injection.
Put μ = Φ̃γG and ν = J̃γH . In order to analyze the behavior
of the algorithms we have to consider the stability aspect, i.e., the
invertibility of the operators involved and the consistency aspect, that
is, the approximability of the data. To handle stability, we introduce
the following sets. Let α1, α2, β1, β2 > 0 be reals, n0 ∈ N, and let
WG(α1, α2, β1, β2, n0) (respectively, W I(α1, α2, β1, β2, n0)) be the set
of all T ∈ K(X) satisfying

(i) T (J(H))⊆J(H) and ||J−1(I − T )J || ≤ α1,

(ii) I − T is invertible, (I − T )−1(J(H))⊆J(H), and ||J−1(I −
T )−1J || ≤ β1,

(iii) for all n > n0, ||I −PnT || ≤ α2 (respectively, ||I − TPn|| ≤ α2),

(iv) for all n > n0, I − PnT is invertible and ||(I − PnT )−1|| ≤ β2

(respectively, I − TPn is invertible and ||(I − TPn)−1|| ≤ β2).

Since H is a Hilbert space and J is compact, the image of the unit ball,
J(BH), is closed. From this, it is easily derived that WG and W I are
Borel sets.

For the quantitative analysis, we have to introduce certain operators
related to the approximation process. For n ∈ N, define ΠG

n , ΠI
n ∈

L(K(X)) by
ΠG

n T = (I − Pn)T
ΠI

nT = T (I − Pn)

for T ∈ K(X). Let, furthermore, ΨH,X ∈ L(K(X), L(H, X)) be given
by

ΨH,XT = TJ.



PROBABILISTIC ANALYSIS 297

Similarly, let ΨE
H,X be the same as ΨH,X , but considered as an operator

from K(X) to Rγ(H, X). We put, for the sake of brevity,

E1(n) = Eγ(ΠG
n Φ)(2.4)

L1(n) = ||ΠG
n Φ||(2.5)

E2(n) = Eγ(ΠI
nΦ)(2.6)

L2(n) = ||ΠI
nΦ||(2.7)

E3(n) = Eγ(ΨE
H,XΠI

nΦ)(2.8)

L3(n) = ||ΨE
H,XΠI

nΦ||(2.9)

E4(n) = Eγ(ΨH,XΠI
nΦ)(2.10)

L4(n) = ||ΨH,XΠI
nΦ||.(2.11)

Finally, we also need the quantities

E(n) = Eγ((I − Pn)J)(2.12)
L(n) = ||(I − Pn)J ||.(2.13)

Now we come to the probabilistic estimate of the stability sets WG

and W I . More precisely, we shall reduce it to the estimate of the set
U(β), defined for β > 0 by

(2.14) U(β) = {T ∈ K(X) : ||(I − T )−1|| ≤ β}.
Later on, we shall use the results of [6] where the probability of
this set was estimated. Define the (generally unbounded) operator
ΨX,H : Dom ΨX,H → L(X, H) as follows. Let Dom ΨX,H be the set of
those T ∈ K(X) such that T (X)⊆J(H). By the closed-graph theorem,
J−1T ∈ L(X, H). Now set

ΨX,HT = J−1T.

Lemma 2.2. Suppose that Im Φ⊆Dom ΨX,H and that ΨX,HΦ ∈
Rγ(G, L(X, H)). Let α > 0, β > 0, n0 ∈ N and define

α1 = ||J ||(α + Eγ(ΨX,HΦ)) + 1
α2 = α + Eγ(Φ) + 1/(2β) + 1
β1 = ||J ||(α + Eγ(ΨX,HΦ))β + 1
β2 = 2β.



298 S. HEINRICH

If E1(n) ≤ 1/(4β) for all n > n0, then

μ(WG(α1, α2, β1, β2, n0))
≥ μ(Uβ) − exp(−α2/(2||ΨX,HΦ||2))

− exp(−α2/(2||Φ||2)) −
∑

n>n0

exp(−1/(32β2L1(n)2)).

The same statement is true for W I(α1, α2, β1, β2, n0) provided E1(n)
and L1(n) are replaced by E2(n) and L2(n), respectively.

Proof. We define

A = {T ∈ K(X) : T (X)⊆J(H), ||J−1T || ≤ α + Eγ(ΨX,HΦ)}
B = {T ∈ K(X) : ||T || ≤ α + Eγ(Φ)},

and, for n ∈ N,

Cn = {T ∈ K(X) : ||T − PnT || ≤ 1/(2β)}.

Note that all these sets are Borel sets because they are closed. Assume
that

T ∈ U(β) ∩ A ∩ B ∩
(

∩
n>n0

Cn

)
.

Then T (X)⊆J(H) and

||J−1(I − T )J || = ||IH − J−1TJ || ≤ 1 + (α + Eγ(ΨX,HΦ))||J || = α1,

where IH denotes the identity operator on H. Because of

(I − T )−1 = I + T (I − T )−1,

it follows that (I − T )−1(J(H))⊆J(H), and

J−1(I − T )−1J = IH + J−1T (I − T )−1J,

hence

||J−1(I − T )−1J || ≤ 1 + (α + Eγ(ΨX,HΦ))β||J || = β1.
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Moreover, for n > n0,

||I − PnT || ≤ ||I − T || + ||T − PnT || ≤ 1 + α + Eγ(Φ) + 1/(2β) = α2.

Finally,

||(I − PnT )−1|| = ||(I − (I − T )−1(T − PnT ))−1(I − T )−1||
≤ ||(I − T )−1||/(1 − ||(I − T )−1|| ||T − PnT ||) ≤ 2β.

This shows

(2.15) U(β) ∩ A ∩ B ∩
(

∩
n>n0

Cn

)
⊆WG(α1, α2, β1, β2, n0).

Now we estimate probabilities. By assumption, ΨX,HΦ ∈ Rγ(G,
L(X, H)), so we define

η = (ΨX,HΦ̃)γG.

Let Θ : L(X, H) → K(X) be the embedding given by ΘT = JT
(observe that, since J ∈ Rγ(H, X), J is compact). Θ is a bounded
linear operator, and obviously ΘΨX,H is the identity on Dom ΨX,H .
Therefore, Φ = ΘΨX,HΦ, and with this it is easily checked that, for
each Borel set M ∈ B(K(X)),

μ(M) = η(Θ−1(M)) = η{S ∈ L(X, H) : JS ∈ M}.

Using this and Proposition 1.1, we get

μ(Ac) = η{S ∈ L(X, H) : ||S|| > α + Eγ(ΨX,HΦ)}
≤ exp(−α2/(2||ΨX,HΦ||2)),

where Ac denotes the complement of A. Also, by Proposition 1.1,

μ(Bc) ≤ exp(−α2/(2||Φ||2)).

Finally, for n > n0,

Eγ(ΠG
n Φ) = E1(n) ≤ 1/(4β),
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and Proposition 1.1 together with (2.4) and (2.5) give

μ(Cc
n) = μ{||T − PnT || > 1/(2β)}

≤ μ{||T − PnT || > Eγ(ΠG
n Φ) + 1/(4β)}

≤ exp(−1/(32β2L1(n)2)).

The last estimates together with (2.15) yield the desired result. With
the obvious changes the proof works also for W I .

Now we are ready for the convergence analysis of the Galerkin
method.

Proposition 2.3. Let α1, α2, β1, β2 > 0, n0 ∈ N, and assume that
T ∈ WG(α1, α2, β1, β2, n0). Then, for each n > n0,

ν{y ∈ X : (2α1α2)−1E(n) ≤ δG
n (T, y) ≤ (3/2)β1β2E(n)}

≥ 1 − 2 exp(−E(n)2/(8(α1α2β2β2L(n))2)).

Proof. By the assumption on T , we can define, for n > n0,

ΔG
n (T ) = (I − T )−1 − (I − PnT )−1Pn.

By (2.1) and Lemma 2.1,

(2.16) δG
n (T, y) = ||ΔG

n (T )y||.

Furthermore, one verifies directly that

ΔG
n (T )J = (I − PnT )−1((I − PnT ) − Pn(I − T ))(I − T )−1J

= (I − PnT )−1(I − Pn)(I − T )−1J

= (I − PnT )−1(I − Pn)J(J−1(I − T )J)−1.

By the definition of WG, (1.2) and (2.12) we get

(2.17)
(α1α2)−1E(n) = (α1α2)−1Eγ((I − Pn)J) ≤ Eγ(ΔG

n (T )J)
≤ β1β2Eγ((I − Pn)J) = β1β2E(n).
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With the operator norm in place of Eγ it follows analogously that

(2.18) (α1α2)−1L(n) ≤ ||ΔG
n (T )J || ≤ β1β2L(n).

Now we apply Proposition 1.1 to obtain

ν{y ∈ X : (1/2)Eγ(ΔG
n (T )J) ≤ ||ΔG

n (T )y|| ≤ (3/2)Eγ(ΔG
n (T )J)}

≥ 1 − 2 exp(−Eγ(ΔG
n (T )J)2/(8||ΔG

n (T )J ||2)).
Inserting (2.16 2.18) arrives at the desired result.

For the main results we need the following simple consequence on the
global, i.e., μ × ν probability.

Corollary 2.4. Let α1, α2, β1, β2 > 0, n0 ∈ N. Then

μ × ν{(T, y) : (2α1α2)−1E(n) ≤ δG
n (T, y) ≤ (3/2)β1β2E(n)

for all n > n0}
≥ μ[WG[α1, α2, β1, β2, n0)]]

− 2
∑

n>n0

exp(−E(n)2/(8(α1α2β1β2L(n))2)).

Proposition 2.3 can be used to obtain a first one-sided estimate for
the iterated Galerkin method.

Corollary 2.5. Let α1, α2, β1, β2 > 0, n0 ∈ N and T ∈
WG(α1, α2, β1, β2, n0). Then, for each n > n0,

ν{y ∈ X : δI
n(T, y) ≤ (3/2)β1β2||(I − TPn)−1|| ||T − TPn||E(n)}
≥ 1 − 2 exp(−E(n)2/(8(α1α2β1β2L(n))2)).

Proof. From (2.1) and Lemma 2.1 we have

δI
n(T, y) = ||(I − T )−1y − (I − TPn)−1y||

= ||(I − TPn)−1(T − TPn)(I − T )−1y||
= ||(I − TPn)−1(T − TPn)x(T, y)||
= ||(I − TPn)−1(T − TPn)(x(T, y) − xG

n (T, y))||
≤ ||(I − TPn)−1|| ||T − TPn||δG

n (T, y).
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Now the desired result follows from Proposition 2.3.

The next result provides two-sided estimates for the error.

Proposition 2.6. Let α1, α2, β1, β2 > 0, n0 ∈ N, and suppose that
T ∈ W I(α1, α2, β1, β2, n0). Then, for n > n0,

ν{y ∈ X : (2α1α2)−1Eγ((T − TPn)J)

≤ δI
n(T, y) ≤ (3/2)β1β2Eγ((T − TPn)J)}

≥ 1 − 2 exp(−Eγ((T − TPn)J)2/(8(α1α2β1β2||(T − TPn)J ||)2)).

Proof. Defining

ΔI
n(T ) = (I − T )−1 − (I − TPn)−1,

we get, again by (2.1) and Lemma 2.1,

δI
n(T, y) = ||ΔI

n(T )y||.

Moreover,

ΔI
n(T )J = (I − TPn)−1(T − TPn)(I − T )−1J

= (I − TPn)−1(T − TPn)J(J−1(I − T )J)−1.

Now we argue as in the proof of Proposition 2.3:

(α1α2)−1Eγ((T − TPn)J) ≤ Eγ(ΔI
n(T )J) ≤ β1β2Eγ((T − TPn)J)

(α1α2)−1||(T − TPn)J || ≤ ||ΔI
n(T )J || ≤ β1β2||(T − TPn)J ||

and, by Proposition 1.1,

ν{y ∈ X : (1/2)Eγ(ΔI
n(T )J) ≤ ||ΔI

n(T )y|| ≤ (3/2)Eγ(ΔI
n(T )J)}

≥ 1 − 2 exp(−Eγ(ΔI
n(T )J)2/(8||ΔI

n(T )J ||2)).
These three estimates together give the required result.

Similarly to Corollary 2.4 we also need global estimates of the μ × ν
probability. In the case of Galerkin’s method, this was simple because
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the estimate in Proposition 2.3 was already independent of T . For the
iterated Galerkin method this is not so, and we have to use Proposition
1.1 repeatedly to handle the quantities occurring in the estimates of
Proposition 2.6.

Proposition 2.7. Let α1, α2, β1, β2 > 0, n0 ∈ N. Then

μ × ν{(T, y) : (4α1α2)−1E3(n) ≤ δI
n(T, y) ≤ (9/4)β1β2E3(n)

for all n > n0}
≥ μ(W I(α1, α2, β1, β2, n0))

− 2
∑

n>n0

(exp(−E3(n)2/(72(α1α2β1β2E4(n))2))

+ exp(−E3(n)2/(8L3(n)2)) + exp(−E4(n)2/(8L4(n)2))).

Proof. By Proposition 1.1 together with 2.8 and 2.9,

μ{T ∈ K(X) : (1/2)E3(n) ≤ Eγ((T − TPn)J) ≤ (3/2)E3(n)}
≥ 1 − 2 exp(−E3(n)2/(8L3(n)2))

(replace X of Proposition 1.1 by K(X), Y by Rγ(H, X), J by Φ and
T by ΨE

H,XΠI
n). Analogously we obtain

μ{T ∈ K(X) : (1/2)E4(n) ≤ ||(T − TPn)J || ≤ (3/2)E4(n)}
≥ 1 − 2 exp(−E4(n)2/(8L4(n)2)).

Now the claim follows by inserting these estimates into that of Propo-
sition 2.6.

3. Main results. In this section we want to introduce specific
spaces, projections and measures, and formulate the main results. We
put X = L2(Γ) = L2(Γ, λ), where Γ = {eit : 0 ≤ t ≤ 2π} is the
unit circle and λ is the Lebesgue measure on Γ. Let (en)+∞

n=−∞ be the
normalized in L2(Γ) trigonometric basis, i.e.,

e0(t) = (2π)−1/2, en(t) = π−1/2 cosnt, e−n(t) = π−1/2 sin nt
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n ∈ N, and let Pn, n ∈ N, be the orthogonal projection onto
span{ej : |j| ≤ n}. With the choice of X and (Pn) the error functions
δG
n and δI

n are defined as well. Let L2(Γ2) = L2(Γ2, λ2). For k ∈ L2(Γ2)
let Tk ∈ K(L2(Γ)) be the integral operator with kernel k defined by

(3.1) (Tkx)(u) =
∫

Γ

k(u, v)x(v) dv.

The error-analysis will be carried out for such operators only, so it is
convenient to write δG

n (k, y) instead of δG
n (Tk, y) (and the same for δI

n).
For a real number s ≥ 0 let Hs(Γ) = Hs(Γ, λ) be the periodic Sobolev
space

Hs(Γ) = {f ∈ L2(Γ) : ||f ||2Hs(Γ) =
∑
j∈Z

(1 + j2)s(f, ej)2 < ∞},

where ( , ) denotes the scalar product of L2(Γ). The embedding
operator of Hs(Γ) into L2(Γ) is denoted by Js. The functions

emn(u, v) = em(u)en(v), m, n ∈ Z, u, v ∈ Γ,

form an orthonormal basis of L2(Γ2). We define the periodic Sobolev
space Hr(Γ2) = Hr(Γ2, λ2) for any real r ≥ 0 as

Hr(Γ2) =
{

g ∈ L2(Γ2) : ||g||2Hr(Γ2)

=
∑

m,n∈Z

(1 + m2 + n2)r|(g, emn)|2 < ∞}.

By Φr we denote the identical embedding Hr(Γ2) → L2(Γ2). We
assume r > 1 and s > 1/2. Then we have, by (1.4), Φr ∈
Rγ(Hr(Γ2), L2(Γ2)) and Js ∈ Rγ(Hs(Γ), L2(Γ)). Consequently, we
can define the Gaussian measures μr on L2(Γ2), by

μr = Φ̃rγHr(Γ2),

and νs on L2(Γ), by
νs = J̃sγHs(Γ).
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These measures are of Wiener type in the following sense. As the
classical Wiener measure they are generated by the identical embedding
of a Hilbert space of smooth functions into some function space (see [8;
I, §5]). Consequently, they represent a certain degree of smoothness.
To make this more precise, let σ ≥ 0 and let us consider Hσ(Γ) as a
subset of L2(Γ). Clearly, this is a Borel set, so νs(Hσ(Γ)) is defined.
Then the following holds:

(3.2) νs(Hσ(Γ)) =
{

1 for σ < s − 1/2
0 for σ ≥ s − 1/2.

The first statement is a consequence of (1.4), the second follows from
Lemma 2.9.1 in the Appendix of [22] (we do not give details since we
will not use (3.2) except for certain comments). Roughly speaking,
(3.2) means that νs corresponds to the smoothness Hs−1/2. Similarly,

(3.3) μr(Hρ(Γ2)) =
{

1 for ρ < r − 1
0 for ρ ≥ r − 1.

Now we can formulate the main results. First we provide estimates
for an individual, fixed operator Tk and the probability on the set of
right-hand sides only.

Theorem 3.1. Let ρ ≥ s > 1/2, k ∈ Hρ(Γ2), and assume that I−Tk

is invertible. Then there exist constants ci(k) > 0, i = 1, 2, 3, 4, and
n0(k) ∈ N such that, for each n > n0(k),

νs{y ∈ L2(Γ) : c1(k)n−s+1/2 ≤ δG
n (k, y) ≤ c2(k)n−s+1/2}

≥ 1 − exp(−c3(k)n),

and

νs{y ∈ L2(Γ) : δI
n(k, y) ≤ c4(k)n−ρ−s+1/2} ≥ 1 − exp(−c3(k)n).

Since νs corresponds to the smoothness Hs−1/2(Γ), by (0.1) the com-
parable worst-case rate of Galerkin’s method is n−s+1/2. So Theorem
3.1 shows that this rate occurs for most of the right-hand sides. More-
over, the exceptional set is of exponentially small probability. On the
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other hand, for the iterated Galerkin method we only have an upper
estimate. The next two results give global estimates, i.e., independent
of k, with probabilities on the set of kernels and right-hand sides. In
particular, we obtain lower bounds for the iterated Galerkin method
and estimates of the distribution of the k-dependent constants.

Theorem 3.2. Let r − 1/2 > s > 1/2. For each ε > 0 there exist
constants ci(ε) > 0, i = 1, 2, 3, 4, and ni(ε) ∈ N, i = 1, 2, such that

μr × νs{(k, y) : c1(ε)n−s+1/2 ≤ δG
n (k, y) ≤ c2(ε)n−s+1/2

for all n > n1(ε)} ≥ 1 − ε

and

μr × νs{(k, y) : c3(ε)n−r−s+1 ≤ δI
n(k, y) ≤ c4(ε)n−r−s+1

for all n > n2(ε)} ≥ 1 − ε.

The first statement confirms the interpretation given above that, for
the Galerkin method, the worst-case rate occurs with large probability,
in fact almost surely. Let us now look at the iterated Galerkin method.
Since μr corresponds to Hr−1(Γ2), (0.2) gives a comparable worst-
case rate of n−r−s+3/2. Consequently, the iterated Galerkin method
converges for almost all k and y by a factor n−1/2 faster than for the
worst case. That is, the worst case occurs seldom indeed.

At this point let us emphasize that the whole discussion of relation
to the worst case is based on the “rough” correspondence given by
(3.2) and (3.3), hence remains on a certain intuitive level. A precise
comparison is possible when the measures are restricted to those sets
over which the worst case supremum is taken (see, e.g., [22, 8.5.5] and
[7]). The conclusions, however, would be the same as above; therefore,
we have omitted these additional technicalities. The proof of Theorem
3.2 also provides estimates for the dependence on ε for ε → 0, namely,
the functions of ε occurring there can be chosen in such a way that the
following hold (here � stands for �ε∈(0,1/2)):

c1(ε) � c3(ε) � (log(1/ε))−1(3.4)

c2(ε) � c4(ε) � (log(1/ε))3/2+3/(2r)ε−2(3.5)

n1(ε) � n2(ε) � (log(1/ε))6+3/rε−4.(3.6)
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We shall prove Theorems 3.1 and 3.2 in the following two sections.
This will be accomplished by estimating the needed approximation
quantities and applying the results of Section 2. For this purpose we
have to establish a correspondence to the notation of Section 2. We
have already fixed X = L2(Γ) and Pn. Now we put H = Hs(Γ), J = Js

and get

(3.7) ν = J̃γH = νs.

Our main results are formulated in terms of μr, which is a measure on
the set of kernels L2(Γ2). In order to use Section 2, we need a measure μ
on the set of compact operators. For this let Λ ∈ L(L2(Γ2), K(L2(Γ)))
be the mapping assigning to each k ∈ L2(Γ2), the integral operator Tk

defined by (3.1). Then μ will be the measure induced on K(L2(Γ)) by
μr under the action of Λ. This means

(3.8) μ(B) = μr(Λ−1(B))

for every Borel subset B of K(L2(Γ)). Now we put G = Hr(Γ2),

Φ = ΛΦr,

and it follows readily that μ = Φ̃γG. With this, Ei(n), Li(n), i ∈
{1, 2, 3, 4}, E(n) and L(n) are defined as well. The following section is
devoted to them.

4. Approximation rates. In this section we define the order
of those quantities which are related to the approximation process.
We begin with E(n) and L(n), defined by (2.12), (2.13) and the
specifications of the previous section. This estimate is very simple.
Once we use (1.4), it reduces to the estimation of the norm and Hilbert-
Schmidt norm of a diagonal operator between Hilbert spaces. We omit
the details.

Lemma 4.1. E(n) � n−s+1/2, L(n) � n−s.

The estimation of Ei(n) and Li(n) is more complicated. We start
with two general results from which the concrete estimates will follow.
Let σ, τ ≥ 0 be reals and define the operator

Ψσ,τ : Dom Ψσ,τ → L(Hσ(Γ), Hτ (Γ))
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as follows. The domain DomΨσ,τ is the set of all T ∈ K(L2(Γ)) such
that Im(TJσ)⊆Hτ (Γ). Note that, by the closed graph theorem, this
implies J−1

τ TJσ ∈ L(Hσ(Γ), Hτ (Γ)). Now we set, for T ∈ Dom Ψσ,τ ,

Ψσ,τT = J−1
τ TJσ.

Proposition 4.2. Let σ, τ ≥ 0, r > τ + 1/2. Then

(i) Im Φ, Im(ΠI
nΦ)⊆Dom Ψσ,τ ,

(ii) Ψσ,τΦ, Ψσ,τΠI
nΦ ∈ Rγ(Hr(Γ2), L(Hσ(Γ), Hτ (Γ))),

(iii) ||Ψσ,τΠI
nΦ|| �n n−r−σ+τ ,

(iv) Eγ(Ψσ,τΠI
nΦ) �n n−r−σ+τ+1/2.

Proof. For i, j ∈ Z, we define

gij = (1 + i2 + j2)−r/2eij

hi = (1 + i2)−σ/2ei

fi = (1 + i2)−τ/2ei.

Then (gij), (hi), (fi) form orthonormal bases in Hr(Γ2), Hσ(Γ) and
Hτ (Γ), respectively. By the definition of Φr and Φ,

Φgij = (1 + i2 + j2)−r/2ej ⊗ ei,

ΠI
nΦgij =

{
0 |j| ≤ n

Φgij |j| > n.

Now let g ∈ Hr(Γ2), with representation

g =
∑

i,j∈Z

αijgij .

Then we have

Φg =
∑

i,j∈Z

αij(1 + i2 + j2)−r/2ej ⊗ ei,



PROBABILISTIC ANALYSIS 309

where the series on the right-hand side converges in the Hilbert-Schmidt
norm and, hence, also in the operator norm. The convergence is
unconditional, i.e., the sum is independent of the particular way of
summation. It is easily seen that the assumption r > τ + 1/2 implies

Im (Φg)⊆Hτ (Γ),

hence Im Φ⊆Dom Ψσ,τ , and similarly Im(ΠI
nΦ)⊆Dom Ψσ,τ , which

shows (i). Observe that
(4.1)

Ψσ,τΦg = J−1
τ (Φg)Jσ

=
∑

i,j∈Z

αij(1 + i2 + j2)−r/2(1 + j2)−σ/2(1 + i2)τ/2hj ⊗ fi,

where the convergence is also unconditional, in the Hilbert-Schmidt
and operator norm. Now we have
(4.2)

||Ψσ,τΠI
nΦg||2 ≤ σ2(Ψσ,τΠI

nΦg)2

=
∑
i∈Z

∑
|j|>n

α2
ij(1 + i2 + j2)−r(1 + j2)−σ(1 + i2)τ

≤ max
i∈Z,|j|>n

((1 + i2 + j2)−r(1 + j2)−σ(1 + i2)τ )||g||2

≤ (1 + (n + 1)2)−r−σ+τ ||g||2.
On the other hand,
(4.3)

||Ψσ,τΠI
nΦgn+1,n+1||

= ||(1 + 2(n + 1)2)−r/2(1 + (n + 1)2)−σ/2+τ/2hn+1 ⊗ fn+1||
�n n−r−σ+τ .

These two estimates give (iii). For the proof of (ii) and (iv) we have to
introduce some further notation. Let

D0 = {0, 1,−1}
Dk = {i ∈ Z : 2k−1 < |i| ≤ 2k}, k ∈ N.

Define S ∈ L(Hr(Γ2)) by setting

Sgij = 2r max(k,l)+σl−τk(1 + i2 + j2)−r/2(1 + j2)−σ/2(1 + i2)τ/2gij
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for i ∈ Dk, j ∈ Dl, k, l = 0, 1, 2, . . . . S is an isomorphism of Hr(Γ2)
onto itself. For k, l ∈ N ∪ {0} we define Ukl ∈ L(Hr(Γ2), L(Hσ, Hτ ))
by

Uklgij =
{

2−r max(k,l)−σl+τkhj ⊗ fi if i ∈ Dk, j ∈ Dl,
0 otherwise.

By (4.1) it follows that

(4.4) UklSgij = Ψσ,τΦgij , i ∈ Dk, j ∈ Dl.

Using Proposition 1.2 and relation (1.4), it is readily checked that

Eγ(Ukl) �
k,l

2−r max(k,l)−σl+τk(2l/2 + 2k/2)

�
k,l

2(−r+1/2)max(k,l)−σl+τk.

Furthermore, for each l ≥ 0,

l∑
k=0

Uklg =
l∑

k=0

∑
i∈Dk

∑
j∈Dl

αij(2−(r+σ)lgj) ⊗ (2τkhi),

and we can again apply Proposition 1.2 to get

Eγ

( l∑
k=0

Ukl)�
l

2−(r+σ)l2(τ+1/2)l + 2(−r−σ+1/2)l2τl

�
l

2(−r−σ+τ+1/2)l.

For any m ≥ 0 we obtain

2(−r−σ+τ+1/2)m �
m

Eγ(Um+1,m+1) ≤ Eγ

(∑
l>m

∑
k≥0

Ukl

)

≤
∑
l>m

(
Eγ

(∑
k≤l

Ukl

)
+

∑
k>l

Eγ(Ukl)
)

≺
m

∑
l>m

(
2(−r−σ+τ+1/2)l +

∑
k>l

2(−r+τ+1/2)k−σl

)
�
m

∑
l>m

2(−r−σ+τ+1/2)l �
m

2(−r−σ+τ+1/2)m.(4.5)
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This, together with (4.4), implies

Ψσ,τΠI
2mΦ =

∑
l>m

∑
k≥0

UklS ∈ Rγ(Hr(Γ2), L(Hσ(Γ), Hτ (Γ)))

and, similarly,

Ψσ,τΦ =
∑
l≥0

∑
k≥0

UklS ∈ Rγ(Hr(Γ2), L(Hσ(Γ), Hτ (Γ))),

which proves (ii). Clearly, we have

Eγ(Ψσ,τΠI
2mΦ) ≥ Eγ(Ψσ,τΠI

nΦ) ≥ Eγ(Ψσ,τΠI
2m+1Φ)

provided 2m ≤ n < 2m+1. Combined with (4.5) this gives (iv).

Now we define, for σ, τ ≥ 0, a further operator ΨE
σ,τ : Dom ΨE

σ,τ →
Rγ(Hσ(Γ), Hτ (Γ)). We let Dom ΨE

σ,τ be the set of those T ∈ K(L2(Γ))
for which Im(TJσ)⊆Hτ (Γ) and J−1

τ TJσ ∈ Rγ(Hσ(Γ), Hτ (Γ)). The
operator is defined for T ∈ Dom ΨE

σ,τ by

ΨE
σ,τT = J−1

τ TJσ.

Hence,
Dom ΨE

σ,τ ⊆Dom Ψσ,τ ,

and, for T ∈ Dom ΨE
σ,τ , ΨE

σ,τT and Ψσ,τT are the same operators.

Proposition 4.3. Let r > τ + 1. Then

(i) Im Φ, Im(ΠI
nΦ)⊆Dom ΨE

σ,τ ,

(ii) ΨE
σ,τΦ, ΨE

σ,τΠI
nΦ ∈ Rγ(Hr(Γ2), Rγ(Hσ(Γ), Hτ (Γ))),

(iii) ||ΨE
σ,τΠI

nΦ|| �n n−r−σ+τ ,

(iv) Eγ(ΨE
σ,τΠI

nΦ) �n n−r−σ+τ+1.

Proof. We have practically already proved (i) and (iii). Indeed, (i)
follows from the representation (4.1) in the previous proof, while (iii)
is a consequence of (4.2), (4.3) and (4.1). Now we put r1 = (r + τ )/2
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and r2 = (r − τ )/2. Then, by the assumption, r2 > 1/2, r1 − τ > 1/2
and r1 + r2 = r. We have

n2(−r−σ+τ+1) ≺
n

∑
n<|i|≤2n

∑
n<|j|≤2n

(1 + i2 + j2)−r(1 + j2)−σ(1 + i2)τ

≤ σ2(ΨE
σ,τΠI

nΦ)2

≤
∑
i∈Z

∑
|j|>n

(1 + i2 + j2)−r(1 + j2)−σ(1 + i2)τ

≤
∑
i∈Z

(1 + i2 + n2)−r1(1 + i2)τ
∑
|j|>n

(1 + j2)−σ−r2

≺
n

n−2r1+2τ+1n−2σ−2r2+1 = n2(−r−σ+τ+1).

This implies (iv) and the second statement of (ii), the first one follows
similarly.

Now we can easily derive the desired estimates for our concrete
situation. Recall the definitions (2.4) (2.11) and that we assumed
r − 1/2 > s > 1/2.

Corollary 4.4.

E1(n) � n−r+1/2, L1(n) � n−r,

E2(n) � n−r+1/2, L2(n) � n−r,

E3(n) � n−r−s+1, L3(n) � n−r−s,

E4(n) � n−r−s+1/2, L4(n) � n−r−s.

Proof. We apply Propositions 4.2 and 4.3. First we put σ = τ = 0,
which gives

E2(n) = Eγ(ΠI
nΦ) � n−r+1/2,

L2(n) = ||ΠI
nΦ|| � n−r.

Now let Ξ ∈ L(K(L2(Γ))) be defined by Ξ(T ) = T ∗, V ∈ L(G) by
V gij = gji, i, j ∈ Z. Clearly, Ξ and V are isometric isomorphisms and
ΞΦ = ΦV . Moreover, observe that

Ξ(T (I − Pn)) = (I − Pn)Ξ(T ).
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Thus, we get

E1(n) = Eγ(ΠG
n Φ) = Eγ(ΠG

n ΦV ) = Eγ(ΠG
n ΞΦ) = Eγ(ΞΠI

nΦ)

= Eγ(ΠI
nΦ) � n−r+1/2,

and similarly
L1(n) = ||ΠG

n Φ|| = ||ΠI
nΦ|| � n−r.

Now we put σ = s, τ = 0 and get, from Proposition 4.3,

E3(n) = Eγ(ΨE
s,0Π

I
nΦ) � n−r−s+1

L3(n) = ||ΨE
s,0Π

I
nΦ) � n−r−s,

while Proposition 4.2 gives

E4(n) = Eγ(Ψs,0ΠI
nΦ) � n−r−s+1/2

L4(n) = ||Ψs,0ΠI
nΦ|| � n−r−s.

We have to separate another immediate consequence of Proposition
4.2 (ii), which will be needed for the application of Lemma 2.2.

Corollary 4.5. Im Φ⊆Dom Ψ0,s and

Ψ0,sΦ ∈ Rγ(Hr(Γ2), L(L2(Γ), Hs(Γ))).

5. Proofs of the main results. On the basis of Sections 2 and 4
we give here the proofs of the main Theorems 3.1 and 3.2.

Proof of Theorem 3.1. It follows from the assumptions k ∈ Hρ(Γ2)
and ρ ≥ s that

Tk(L2(Γ))⊆Hρ(Γ)⊆Hs(Γ).

This also implies

(5.1) ||Tk − PnTk|| ≺ n−ρ,
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and, since ρ > 0, there is an n0 = n0(k) such that, for n > n0,

||Tk − PnTk|| ≤ 1/(2||(I − Tk)−1||).
With these relations it is readily checked that

Tk ∈ WG(α1, α2, β1, β2, n0)

for certain constants α1, α2, β1, β2 depending on k. Now the first part of
the theorem follows from Proposition 2.3 and Lemma 4.1. The second
part is a consequence of Corollary 2.5, Lemma 4.1 and the relation

||Tk − TkPn|| ≺ n−ρ,

which follows from (5.1) by dualizing.

Note that the proof could easily be refined to yield estimates of the
constants ci(k), i = 1, 2, 3, 4, and n0(k) in terms of ||k||Hρ(Γ2) and
||(I − Tk)−1||. For the proof of Theorem 3.2 we need an elementary
technical lemma.

Lemma 5.1. Let a > 0, b ≥ 1, ε > 0 be reals, n0 ∈ N. If

n0 ≥ ((log a + log(1/ε))a)1/b,

then ∑
n>n0

exp(−nb/a) ≤ ε.

Proof. The assumption implies

−nb
n/a ≤ − log a + log ε,

hence,
a exp(−nb

0/a) ≤ ε.

Now we get∑
n>n0

exp(−nb/a) ≤
∫ +∞

n0

exp(−a−1nb−1
0 x) dx

= an
−(b−1)
0 exp(−nb

0/a) ≤ ε.
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Proof of Theorem 3.2. We start with estimating the probability of
the sets WG and W I with the help of Lemma 2.2. By Theorem 3.3 of
[6] and (3.8), there is a function β : (0, 1/2) → (0, +∞) such that

(5.2) μ(U(β(ε))) = μr{k ∈ L2(Γ2) : ||(I − Tk)−1|| ≤ β(ε)} ≥ 1 − ε/6

and

(5.3) β(ε) � (log(1/ε))1/2+3/(4r)ε−1

(in this section � and ≺ always refer to ε ∈ (0, 1/2)). Furthermore,
it is clearly possible to choose a function α : (0, 1/2) → (0, +∞) such
that

(5.4) exp(−α(ε)2/(2||Ψ0,sΦ||2)) + exp(−α(ε)2/(2||Φ||2)) ≤ ε/6

and

(5.5) α(ε) � (log(1/ε))1/2.

Corollary 4.5 says that the assumptions of Lemma 2.2 are satisfied.
Then let α1(ε), α2(ε), β1(ε), β2(ε) be as defined in Lemma 2.2 when we
replace α and β by α(ε) and β(ε). Clearly,

α1(ε) � α2(ε) � (log(1/ε))1/2(5.6)

β1(ε) � (log(1/ε))1+3/(4r)ε−1(5.7)

β2(ε) � (log(1/ε))1/2+3/(4r)ε−1 .(5.8)

By Corollary 4.4 there is a constant c1 > 0 such that, for all n,

max(E1(n), E2(n)) ≤ c1n
−r+1/2

(we work simultaneously for WG and W I). Hence, if n > N1(ε) =
�(4c1β(ε))1/(r−1/2)�, then

(5.9) max(E1(n), E2(n)) ≤ 1/(4β(ε)),

where �a� stands for the smallest integer m ≥ a. By (5.3),

(5.10) N1(ε) � (log(1/ε))(2r+3)/(4r2−2r)ε−1/(r−1/2).
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Corollary 4.4 gives that there is a constant c2 > 0 such that

max(L1(n), L2(n)) ≤ c2n
−r.

Let N2(ε) be the smallest N ∈ N such that

(5.11)
∑
n>N

exp(−n2r/(32c2
2β(ε)2)) ≤ ε/6.

It follows that

(5.12)
∑

n>N2(ε)

exp(−1/(32β(ε)2 max(L1(n), L2(n))2)) ≤ ε/6.

From (5.11) and Lemma 5.1 with a = 32c2
2β(ε)2 and b = 2r we get

N2(ε) ≤ ((log(32c2
2β(ε)2) + log(6/ε))32c2

2β(ε)2)1/(2r) + 1,

hence, by (5.3),

(5.13) N2(ε) ≺ (log(1/ε))(4r+3)/(4r2)ε−1/r.

Lemma 2.2, together with (5.2), (5.4), (5.9) and (5.12), gives

(5.14) μ(WG/I(α1(ε), α2(ε), β1(ε), β2(ε), n0)) ≥ 1 − ε/2

for all n0 ≥ max(N1(ε), N2(ε)), where WG/I means that the statement
holds for both WG and W I . By Lemma 4.1 there is a constant c3 > 0
such that

E(n)/L(n) ≥ c3n
1/2.

Let N3(ε) be the smallest N ∈ N such that

(5.15)
∑
n>N

exp(−c2
3n/(8γ(ε))) ≤ ε/4,

where γ(ε) = (α1(ε)α2(ε)β1(ε)β2(ε))2. Thus

(5.16) γ(ε) � (log(1/ε))5+3/rε−4.
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We have

(5.17)
∑

n>N3(ε)

exp(−E(n)2/(8γ(ε)L(n)2)) ≤ ε/4.

By Lemma 5.1, (5.15) and (5.16),

(5.18)
N3(ε) ≤ (log(8γ(ε)/c2

3) + log(4/ε))8γ(ε)/c2
3 + 1

≺ (log(1/ε))6+3/rε−4.

We put
n1(ε) = max(N1(ε), N2(ε), N3(ε)),

apply Corollary 2.4 and get, by (5.14) and (5.17),

μ × ν{(T, y) :(2α1(ε)α2(ε))−1E(n) ≤ δG
n (T, y)

≤ (3/2)β1(ε)β2(ε)E(n) for all n > n1(ε)} ≥ 1 − ε

for all ε ∈ (0, 1/2). Now, the first part of Theorem 3.2 follows from
(3.6), (3.7) and Lemma 4.1, while the corresponding parts of (3.3) (3.5)
are a consequence of (5.6) (5.8), (5.10), (5.13) and (5.18). We pass to
the proof of the second part, which will be an application of Proposition
2.7. According to Corollary 4.4, there are constants c4, c5, c6 > 0 such
that

E3(n)/E4(n) ≥ c4n
1/2

E3(n)/L3(n) ≥ c5n

E4(n)/L4(n) ≥ c6n
1/2.

Let N4(ε) be the smallest N ∈ N such that∑
n>N

(exp(−c2
4n/(72γ(ε))) + exp(−c2

5n
2/8) + exp(−c2

6n/8)) ≤ ε/4.

Then

(5.19)∑
n>N4(ε)

(exp(−E3(n)2/(72γ(ε)E4(n)2)) + exp(−E3(n)2/(8L3(n)2))

+ exp(−E4(n)2/(8L4(n)2))) ≤ ε/4.
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Using Lemma 5.1 and (5.16), we get

(5.20)

N4(ε) ≤ max((log(72γ(ε)/c2
4) + log(12/ε))72γ(ε)/c2

4,

((log(8/c2
5) + log(12/ε))8/c2

5)
1/2,

(log(8/c2
6) + log(12/ε))8/c2

6) + 1

≺ log(1/ε))6+3/rε−4.

Now we let
n2(ε) = max(N1(ε), N2(ε), N4(ε)).

From Proposition 2.7, (5.14) and (5.19),

μ × ν{(T, y) : (4α1(ε)α2(ε))−1E3(n) ≤ δI
n(T, y)

≤ (9/4)β1(ε)β2(ε)E3(n) for all n > n2(ε)} ≥ 1 − ε

for all ε ∈ (0, 1/2). This, together with (3.7), (3.8) and Corollary 4.4
gives the second part of Theorem 3.2. The rest of (3.4) (3.6) follows
from (5.6) (5.8), (5.10), (5.13) and (5.20).
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