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SUPERCONVERGENCE OF MODIFIED
PROJECTION METHOD FOR INTEGRAL

EQUATIONS OF THE SECOND KIND

M. THAMBAN NAIR AND R.S. ANDERSSEN

ABSTRACT. Recently, Nair proposed a modification for
the projection (Galerkin) method for the approximate solu-
tion of second kind integral equations and established con-
ditions under which it was superconvergent (relative to the
corresponding projection approximation). Its advantage over
other superconvergent methods for such equations is its sim-
plicity of implementation in requiring virtually no more com-
putation than that implicit in the determination of the corre-
sponding projection approximation. In this paper, we propose
two variants of Nair’s modification and establish conditions
under which they are superconvergent.

1. Introduction. Using operator notation, second kind Fredholm
integral equations take the form

(1.1) x − Kx = y,

where the operator K is defined, in terms of its (known) kernel k(s, t),
by

(1.2) (K v)(s) =
∫ b

a

k(s, t)v(t)dt, a ≤ s ≤ b.

It is assumed that K is defined on a suitable Banach space X, that K
is compact as a mapping from X into X, and that 1 is not an eigenvalue
of K . Then, by Fredholm theory, (1.1) has a unique solution x in X
for every y in X.

Approximate solutions are sought using a sequence of finite dimen-
sional spaces Xn which, in practice, will be generated by polynomials
or piecewise polynomials. Let πn be a projection of X onto Xn. Then,
assuming (I −πnK )−1 exists, the projection (Galerkin) approximation
xP

n of x is defined by the equation

xP
n − πnKxP

n = πny.
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The iterated projection (or Sloan) approximation x̃P
n = xS

n and the
Kantorovich approximation xK

n are defined by

xS
n = y + K xP

n and xK
n = y + zP

n ,

respectively, where zP
n is the projection solution of the equation z −

K z = K y; i.e., zP
n satisfies

zP
n − πnK zP

n = πnK y.

Recently, Nair [7] introduced the modified projection approximation
xM

n , defined by
xM

n = xP
n + (I − πn)y,

and showed that it satisfies the relation

(1.3) x − xM
n = πn(x − xS

n) + (I − πn)(x − xK
n ).

Thus, if πn is uniformly bounded, then (Theorem 2.1 in [7])

(1.4) ||x − xM
n || ≤ c max{||x − xS

n||, ||x − xK
n ||},

where c denotes (here and below) a generic constant.

In the standard superconvergence arguments (e.g., Sloan and Thomeé
[13]), it is assumed that the projections are evaluated exactly. When
numerical approximations are used, the proof of such results usually
becomes technically more difficult. The advantage of Nair’s [7] modifi-
cation is that it is performed exactly using the information derived in
constructing the projection approximation xP

n . However, this practical
advantage is achieved through a partial loss of full superconvergence,
which is the topic of Nair [7] as well as of this paper.

It is known that, under certain smoothness assumptions on K and
y, the Sloan approximation xS

n converges to the exact solution x faster
than xP

n ; i.e., xS
n exhibits superconvergence (see Chandler [1], Chatelin

and Lebbar [2], Graham et al. [6], Joe [5], and Sloan [12]). In
addition, the speed of convergence of xS

n also depends on the form of
the projection method used (e.g., xS

n does not always have the better
convergence when collocation methods are applied).

If y has less regularity, then it is preferable to use the Kantorovich
approximation xK

n rather than xP
n , for in the Kantorovich method we
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approximate z = K x rather than x itself (see Schock [8] and Sloan
[11]). Moreover, the Kantorovich approximation, in general, has better
global (uniform) convergence behaviour than the projection and Sloan
approximations (see Schock [9]). In the light of these comments, xM

n

is likely to have better convergence rates than xP
n under conditions

favorable to xS
n and xK

n and, in addition, xM
n requires (virtually) no

more computation than xP
n (see computational results in [7]). It should

be noted, however, that xM
n can never be better than xK

n . This is an
immediate consequence of the result that

(I − πnK )(x − xK
n ) = (I − πn)K x = (I − πn)(x − xK

n ),

since, using (1.3), it yields

(1.5) (I − πnK )(x − xK
n ) = (I − πn)(x − xM

n ).

Thus, whenever (I − πnK )−1 and πn are uniformly bounded, we
obtain, using (1.3), (1.4) and (1.5), that

c||x − xK
n || ≤ ||x − xM

n || ≤ c′ max{||x − xS
n||, ||x − xK

n ||},
where c′ is a constant satisfying ||(I −πnK )−1(I −πn)|| ≤ 1/c′. Thus,
whenever xS

n has a better order of convergence than xK
n , the order of

convergence of xM
n is exactly that of xK

n . An example given by Sloan
[11] can be used to illustrate this point. However, one iteration of xK

n

(i.e., the iterated Kantorovich approximation) x̃K
n = y + K xK

n is best
among all the former approximations (see Sloan [11, 12]). In [13 ],
Sloan and Thomeé have shown that, in situations where the smoothing
of powers of K is not optimal, partial superconvergence of xS

n can be
guaranteed under appropriate circumstances. They have also shown
that the higher iterates of xP

n , namely

x(k)
n = y + K x(k−1)

n , x(0)
n = xP

n , k = 1, 2, . . . ,

have improving rates of convergence provided the powers of K have
appropriate smoothing properties.

In this paper, we introduce two new approximations which are vari-
ants of the modified approximation of Nair [7] and establish conditions
for their superconvergence in terms of that for

x̃K
n = y + K xK

n and x̃S
n = y + K xS

n.
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The two new approximations are

(1) x̂M
n = y + zM

n ,

(2) x̃M
n = y + K xM

n ,

where
zM
n = zP

n + (I − πn)K y

is the modified projection solution of z − K z = K y. The approxima-
tions x̂M

n and x̃M
n can also be written as

x̂M
n = (y + zP

n ) + (I − πn)K y = xK
n + (I − πn)K y,(1.6)

x̃M
n = y + K (xP

n + (I − πn)y) = xS
n + K (I − πn)y.(1.7)

In fact, both of these approximations can be viewed as particular cases
of

wn = xn + (K − K n)y,

where xn is the solution of

(1.8) xn − K nxn = y,

with K n = πnK , for x̂M
n , and K n = K πn for x̃M

n . Because of the
form of expressions (1.6) and (1.7) for x̂M

n and x̃M
n , we shall refer to

these approximations as the modified Kantorovich approximation and
the modified Sloan approximation, respectively.

In the next section, we obtain error estimates for x̂M
n and x̃M

n in an
abstract setting, while, in the final section, we examine their application
to the integral equation (1.1).

2. Error bounds for x̂M
n and x̃M

n . We recall the basic assumption
which we will invoke in the remainder of this paper. Let K denote a
compact operator on a Banach space X and πn a projection of X onto
Xn. In addition, it is assumed that

(i) 1 is not an eigenvalue of K , and

(ii) for sufficiently large n, the (I −πnK )−1 exist and are uniformly
bounded.

Under these assumptions, each of the equations

u − K u = v
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and

(2.1) u − πnK u = v

has a unique solution in X for any given v in X. Thus, xP
n and zP

n

exist uniquely as solutions of (2.1), with v = πny and v = πnK y,
respectively. Thereby, the approximations

x̂M
n = y + zM

n , zM
n = zP

n + (I − πn)K y

and
x̃M

n = y + K xM
n , xM

n = xP
n + (I − πn)y

are well defined, for sufficiently large n.

The error bounds to be given in Theorem 2.1 involve the iterated
Kantorovich approximation

x̃K
n = y + K xK

n , xK
n = y + zP

n

and the iterated Sloan approximation

x̃S
n = y + K xS

n, xS
n = y + K xP

n .

The following relations are easily derived from their definitions:

x − x̃K
n = K (x − xK

n ),
x − x̃S

n = K (x − xs
n) = K 2(x − xP

n),
K (I − πn)x = (I − K πn)(x − xS

n),
(I − πn)K x = (I − πnK )(x − xK

n ),(2.2)
K (I − πn)K x = (I − K πn)(x − x̃K

n ).(2.3)

Theorem 2.1.

(a) If the sequence πn is uniformly bounded, then

c1||(I −πn)K 2x|| ≤ ||x− x̂M
n || ≤ c2 max

{||x− x̃K
n ||, ||(I −πn)K 2x||}

for some constants c1 and c2.
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(b) If the sequence (K πn) is uniformly bounded, then

||x − x̃M
n || ≤ c max

{||K (I − πn)(x − xS
n)||, ||x − x̃K

n ||, ||x − x̃S
n||

}

for some constant c.

Proof. Let K n represent πnK or K πn, and let xn be the unique
solution of (1.8). Then

(I − K n)(x − xn) = (K − K n)x.

Denoting wn = xn + (K − K n)y, we obtain

(2.4)

x − wn = (x − xn) − (K − K n)y
= (x − xn) − (K − K n)(x − K x)
= (x − xn) − (I − K n)(x − xn) + (K − K n)K x

= K n(x − xn) + (K − K n)K x.

Now, taking K n = πnK , we obtain

x − x̂M
n = πnK (x − xK

n ) + (I − πn)K 2x.

In addition,
(I − πn)(x − x̂M

n ) = (I − πn)K 2x.

Together these relations yield

||x − x̂M
n || ≤ ||πn|| ||x − x̃K

n || + ||(I − πn)K 2x||
and

||(I − πn)K 2x|| ≤ (1 + ||πn||)||x − x̂M
n ||.

Thus, the result in (a) follows by taking c1 and c2 such that

1 + ||πn|| ≤ 1/c1 and c2 = 1/c1.

Now, taking K n = K πn in (1.8), we obtain, using (2.3),

x − x̂M
n = K πn(x − xS

n) + K (I − πn)K x

= K (x − xs
n) − (K − K πn)(x − xS

n) + K (I − πn)K x

= (x − x̃S
n) − K (I − πn)(x − xS

n) + (I − K πn)(x − x̃K
n ).
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Thus, the result in (b) follows on taking a c satisfying

3 + ||K πn|| ≤ c.

Remark 2.2. It can be seen that the order of convergence of ||(I −
πn)K 2x|| to zero is the same as that of ||x−x̂K

n ||, where x̂K
n denotes the

second order Kantorovich approximation considered by Schock [10]:

x̂K
n = y + K y + ẑn, ẑn − πnK ẑn = πnK 2y.

Schock [10] has also characterized a class of operators K for which x̂K
n

is a better approximation of x than xK
n .

We remark that the assumptions in Theorem 2.1 are satisfied if
||(I − πn)u|| → 0 as n → ∞, for every u in X. However, this is
a much stronger condition than is required. For example, in [14],
Sloan and Burn considered the (Lagrange) interpolatory projection πn

with n Tchebychev’s points as the nodes in [−1, 1] and showed that
||K (I − πn)u|| → 0 as n → ∞ for every u in X = C[−1, 1], which
implies that (K πn) is uniformly bounded. In this case, πn is not
uniformly bounded. On the other hand, if we take Xn to be the space
of piecewise polynomials of degree ≤ r− 1 with r Gaussian quadrature
points placed on each subinterval as the nodes, then the interpolatory
projections πn onto Xn are known to be uniformly bounded (see
Graham et al. [6]). But, ||(I − πn)u|| → 0 does not hold for all u
in X = C[−1, 1].

The key point is that the assumptions used to obtain the results in
Theorem 2.1 are minimal. In fact, Theorem 2.1 has been structured
to give the interrelationships between the errors associated with the
different approximations without considering whether convergence is
guaranteed.

3. Superconvergence of x̂M
n and x̃M

n . In this section, we apply
the results of §2 to the integral equation (1.1). We now assume that
the Banach space X = Lp = Lp[a, b], 1 ≤ p ≤ ∞, and take Xn as the
space Sr,n of all piecewise polynomials of degree ≤ r−1 defined on the
mesh

Δn := {a = t0 < t1 < · · · < tn = b}
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with no continuity requirement at the nodes. Let πn be the projection
of Lp onto Sr,n defined by

〈πnv, un〉 = 〈v, un〉, for all v ∈ Lp, un ∈ Sr,n,

where 〈., .〉 denotes the L2-inner product. We further assume that
the sequence of meshes Δn is quasiuniform (i.e., hi ≥ ch, where
h = max1≤i≤n hi), hi = ti − ti−1. As a consequence, πn is uniformly
bounded (see Werschulz [15, Lemma 3.1]). It also follows that

||(I − πn)v|| = ||(I − πn)(v − un)||, for all un ∈ Sr,n,

and hence

(3.1) ||(I − πn)v|| ≤ c inf
un∈Sr,n

||v − un||,

where c ≥ 1 + ||πn||, for all n. Here ||v|| denotes the Lp-norm of the
function v.

For non-negative integers l, we let W l
p denote the Sobolev space of

functions defined on [a, b] and equipped with the norm

||v||l,p = max
0≤j≤l

||v(j)||p,

where v(j) is the j-th distributional derivative of v. In order to describe
the smoothing properties of K , we consider, as in [13], a class K p,m,l

of operators K which maps Lp into Wm
p and satisfies

||K v||m,p ≤ c||v||−l,p, ϑ ∈ Lp,

for some constant c. Here, the negative Sobolev norm ||·||−l,p is defined
by

(3.2) ||v||−l,p := sup
u∈W l

q

|〈v, u〉|
||u||l,q , v ∈ Lp,

with 1/p + 1/q = 1. We recall the following well- known result on the
approximation properties of Sr,n (see de Vore [3] or Demko [4]).
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Proposition 3.1. If ϑ ∈ W l
p, then, for each n ≥ 0,

dp(v, sr,n) = inf
un∈Sr,n

||v − un|| ≤ chν ||v||l,p,

where ν = min{l, r}, 1 ≤ p ≤ ∞, and c is a constant.

From this result, using the compactness of K and uniform bounded-
ness of the πn, one gets ||(I − πn)K || → 0 as n → ∞, so that, for n
sufficiently large, (I −πnK )−1 exists that is uniformly bounded. Here,
and in what follows, ||A || denotes the norm of the operator A induced
by the norm of the Lp space. Unless otherwise specified, ||v|| denotes
the Lp-norm of the function v.

Throughout the remainder of this paper, we shall impose the following
smoothness conditions on K :

(1) K ∗, the adjoint of K , maps W l
p into itself for every non-negative

integer l ≤ r, where 1/p + 1/q = 1;

(2) K is of class of K p,0,l1 and K p,m1,0 for some non-negative integers
l1, m1 ≤ r; and

(3) K 2 is of class K p,0,l2 and K p,m2,0 for some non-negative integers
l2, m2 ≤ r.

For later reference, we state the following result. The proof follows
from Theorem 1 of Sloan and Thomeé [13], on using the fact that K
is of class K p,O,l if K ∗ maps Lp into W l

q [13, p. 9].

Proposition 3.2. Let v ∈ Lp and uP
n be the projection solution of

the equation u − K u = v. Then

||u − uP
n ||−l,p ≤ chl||u − uP

n ||p,

where l ∈ {l1, l2}, and v ∈ Lp.

We are now in a position to state and prove

Theorem 3.3. Under the above smoothness assumptions on K , it
follows that
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(i) ||x − xK
n || ≤ chm1 ||x||,

(ii) ||x − xS
n|| ≤ chl1 ||x − xP

n ||,
(iii) ||x − x̃K

n || ≤ chl1+m1 ||x||,
(iv) ||x − x̃S

n|| ≤ chl2 ||x − xP
n ||,

where c denotes a generic constant.

Proof. (i). From the relations (2.2) and (3.1), we have

||x − xK
n || ≤ ||(I − πnK )−1|| ||(I − πn)K x||

≤ ||(I − πnK )−1||(1 + ||πn||)dp(K x, Sr,n).

Since K is of class K p,m1,0, we have

K x ∈ Wm1
p , ||K x||m1,p ≤ c||x||.

Hence, by Proposition 3.1, we obtain

dp(K x, Sr,n) ≤ chm1 ||K x||m1,p ≤ chm1 ||x||,

which yields the required result.

(ii). Since K is of class K p,0,l1 ,

||x − xS
n|| = ||K (x − xP

n)|| ≤ c||x − xP
n ||−l1,p.

Applying Proposition 3.2, we obtain the required result.

(iii) Since K is of class K p,0,l1 ,

||x − x̃K
n || = ||K (x − xK

n )|| = ||K (z − zP
n )|| ≤ c||z − zP

n ||−l1,p,

where z = K x and zP
n is the projection approximation of the solution

of z − K z = K y. Now, by Proposition 3.3 and (i), we obtain the
required result,

||x − x̃K
n || ≤ chl1 ||z − zP

n || = chl1 ||x − xK
n || ≤ chl1+m1 ||x||.

(iv). Since K 2 is of class K p,0,l2 , we have, on using Proposition 3.2,
that
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||x − x̃S
n|| = ||K 2(x − xP

n)|| ≤ c||x − xP
n ||−l2,p ≤ chl2 ||x − xP

n ||,

which is the required result.

Next, we state and prove the main theorem of this section.

Theorem 3.4. Under the above smoothness assumptions on K , it
follows that

(i) ||x − x̂M
n || ≤ c max{hl1+m1 , hm2},

(ii) ||x − x̃M
n || ≤ c max{hl1+m1 , hl2 ||x − xP

n ||, hl1+m1 ||x − xP
n ||}.

Proof. Initially, we show that

(a) ||(I − πn)K 2x|| ≤ chm2 ||x|| and

(b) ||K (I − πn)(x − xS
n) ≤ chl1+m1 ||x − xP

n ||.
The required results (i) and (ii) then follow from Theorems 2.1 and 3.3.

Using Proposition 3.1 and the fact that K 2 is of class K p,m2,0, we
obtain

||(I − πn)K 2x|| ≤ chm2 ||K 2x||l2,p ≤ chm2 ||x||,
which proves (a). Since K is of class K p,0,l1 ,

||K (I − πn)(x − xS
n)|| = ||K (I − πn)K(x − xP

n)||
≤ c||(I − πn)K (x − xP

n)||−l1,p.

It now follows from (3.2) (the definition of the negative norm || · ||−l1,p),
that it is sufficient to prove that

|〈(I − πn)K (x − xP
n), v〉| ≤ chl1+m1 ||x − xP

n || ||v||l1,q

for every v ∈ W l1
q . Note that

〈(I − πn)K(x − xP
n), v〉 = 〈(I − πn)K (x − xP

n), v − un〉
≤ ||(I − πn)K (x − xP

n)||0,p||v − un||o,q,
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for every un ∈ Sr,n. Hence,

|〈(I − πn)K (x − xP
n), v〉| ≤ ||(I − πn)K (x − xP

n)||dq(v, Sr,n)
≤ c dp(K (x − xP

n), Sr,n)dq(v, Sr,n)
≤ chl1+m1 ||K (x − xP

n)||m1,p||v||l1,p

≤ chl1+m1 ||x − xP
n || ||v||l1,q.

Here we have used the relation (3.1), Proposition 3.1, and the fact that
K is of class K p,m1,0.

If the non-homogeneous part y in (1.1) belongs to W ρ
p , for some non-

negative integer ρ, then we find that

x = y + K x ∈ W β
p , β = min{ρ, m1}.

Thus,
||(I − πn)x|| ≤ (1 + ||πn||)dp(x, Sr,n)

≤ chβ||x||β,p,

so that

||x − xP
n || = ||(I − πnK )−1(I − πn)x|| ≤ chβ||x||β,p.

Now, as a corollary to the above two theorems we can state

Theorem 3.5. In addition to the above smoothness conditions on
K , let y ∈ W ρ

p for some non-negative integer ρ. Then, for a generic
constant c depending on x, we obtain the following inequalities:

(i) ||x − xP
n || ≤ chβ, β = min{ρ, m1},

(ii) ||x − xK
n || ≤ chm1 ,

(iii) ||x − xS
n|| ≤ chl1+β ,

(iv) ||x − x̃K
n || ≤ chl1+m1 ,

(v) ||x − x̃S
n|| ≤ chl2+β ,

(vi) ||x − x̂M
n || ≤ c max{hl1+m1 , hm2},

(vii) ||x − x̃M
n || ≤ c max{hl1+m1 , hl2+β}.
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Remark 3.6. From Theorem 3.5, we find that if m2 ≥ l1 + m1

(respectively l2 + β ≥ l1 + m1), then x̂M
n (respectively x̃M

n ) has a
better order of accuracy than xP

n , xK
n , and xS

n and has the same order
of accuracy as x̃K

n .

Thus, if y and K are not so smooth, but K 2 is, then x̂M
n and x̃M

n

have better order of convergence than xK
n and xS

n, and they do not
require as much computation as for x̃K

n and x̃S
n. We also remark that

if X = L∞, y ∈ Cρ, k ∈ Cl1 with ρ < l1 = m1, then the results in
Theorem 3.5, (i) (iv), are the same as those in Sloan [11, (4.4) (4.7)].

Example 3.7. Consider the following example of Sloan and Thomeé
[13], where X = L2[0, 2π] and

(K v)(s) = λ

∫ 2π

0

log |
(s − t

2

)
|v(s) ds,

assuming λ is not an eigenvalue of K . They show that

(i) K = K ∗ is of class K p,0,1 and K p,1,0, and

(ii) K i is of class K p,m,l for i ≥ m + l.

Thus we have l1 = 1 = m1 and l2 = 2 = m2 = l1 + m1.

Computational Remarks 3.8. The following expressions show explic-
itly the quantities to be computed:

x̃K
n = y + K xK

n = y + K y + K zP
n ,

x̃S
n = y + K xS

n = y + K y + K 2xP
n ,

x̂M
n = y + zM

n = y + K y + (zP
n − πnK y),

x̃M
n = y + K xM

n = y + K y + K (xP
n − πny).

We note that πnK y is required to compute zP
n , and πny is needed to

compute xP
n . Thus x̂M

n and x̃M
n require less computations than x̃K

n and
x̃S

n .

The following table shows the operations to be performed in obtaining
x̃K

n , x̃S
n, x̂M

n and x̃M
n except for the common expression y + K y:
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Method Solve Compute

x̃K
n un − πnK un = πnK y K un

x̃S
n vn − πnK vn = πny K 2vn

x̂M
n un − πnK un = πnK y un − πnK y

x̃M
n vn − πnK vn = πny K (vn − πny)
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