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ABSTRACT. The characteristic equation

z + s + a + c

[
1 − e−(z+s)

z + s

]
= 0,

with s ≥ 0, arises in the analysis of stability of equilibria of
some integrodifferential equations which model the spread of
infectious diseases. We obtain some results giving conditions
on the parameters a and c for which all roots have negative
real part, thus implying stability of an equilibrium.

1. The characteristic equation

(1) z + a + c

(
1 − e−z

z

)
= 0

analyzed in [2, 6, 7] has arisen in a variety of epidemic models which
are formulated as integrodifferential equations. Recently, it has arisen
in an S-I-R-S model with a nonlinear incidence rate of the form βIpS,
a recovery rate γI, and temporary immunity to reinfection for a fixed
period ω [6]. For this model, there is always a disease-free equilibrium;
the number of nontrivial equilibria depends on the values of p and
σ = β/γ. More specifically, if p < 1, there is one nontrivial equilibrium.
If p = 1, there is no nontrivial equilibrium if σ ≤ 1 and one nontrivial
equilibrium if σ > 1. If p > 1, there is a critical value σ∗ such that
there is no nontrivial equilibrium if σ < σ∗, one nontrivial equilibrium
if σ = σ∗, and two nontrivial equilibria if σ > σ∗ [8, 9].

If births and deaths are introduced in the above model, with birth
rate μ and constant total population size, similar results hold for the
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240 D.-Y. HAO AND F. BRAUER

number of equilibria, except that now σ = β/(y+μ). The characteristic
equation determining the stability of each nontrivial equilibrium is now

(2) z + s + a + c

[
1 − e−(z+s)

z + s

]
= 0

with s > 0. The behavior of the roots of (2) is considerably more
complicated than in the special case (1) corresponding to s = 0. By
writing (2) in the form

z + s + a = −c

[
1 − e−(z+s)

z + s

]

and using the estimates∣∣∣∣−c
1 − e−(z+s)

z + s

∣∣∣∣ ≤ |c|
(

1 − e−s

s

)
,

|z + s + a| ≥ s + a

if a ≥ 0, Rz ≥ 0, it is easy to show that, if a > 0 and

(3) |c|
(

1 − e−s

s

)
< s + a,

the roots of (2) must lie in the left-half plane Rz < 0. However, in
the characteristic equation for the equilibria of the model of [8], the
parameter a is not necessarily positive, and a more general result is
needed.

2. The problem of finding conditions under which all zeros of a given
transcendental function have negative real part has been studied by
many authors using a variety of approaches, see, for example, [1, 2,
3, 4, 10]. We shall use a geometric approach to analyze equation (2).
Our goal is to find the largest region in the a − c plane such that all
roots of equation (2) have negative real part for (a, c) in the region.

If we consider s > 0 as a parameter, equation (2) defines a mapping
from the complex z-plane, with z = x + iy, into the a − c plane:

(4)
a(x, y) = −2(x + s) + {[y2 + (x + s)2]e−(x+s) sin y}/Δ(x, y)

c(x, y) = −y{y2 + (x + s)2}/Δ(x, y),
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where

(5) Δ(x, y) = (x + s)e−(x+s) sin y − y{1 − e−(x+s) cos y}

When x + s = 0, the mapping (4) reduces to

(6) a = − y sin y

1 − cos y
, c =

y2

1 − cos y
.

To find the imaginary root curve (the curve in the a − c plane along
with (2) has pure imaginary roots), we let x = 0 in (4), and we obtain

(7)
a(0, y) = −2s +

(y2 + s2)e−s sin y

se−s sin y − y(1 − e−s cos y)

c(0, y) =
−y(y2 + s2)

se−s sin y − y(1 − e−s cos y)
.

The function Δ(x, y) has the properties Δ(x, y) = −Δ(x,−y) and
Δ(x, 0) = 0, but Δ(x, y) �= 0 for y �= 0. In fact, if y �= 0,

|Δ(x, y)| = |y|
∣∣∣∣(x + s)e−(x+s) sin y

y
− (1 − e−(x+s) cos y)

∣∣∣∣
≥ |y||1 − e−(x+s) cos y| − |y|

∣∣∣∣(x + s)e−(x+s) sin y

y

∣∣∣∣
≥ |y|

[
1 − e−(x+s) − (x + s)e−(x+s)

]
= |y|e−(x+s)

[
e(x+s) − 1 − (x + s)

]
> 0.

The imaginary root curve is given parametrically by the functions
a(0, y), c(0, y). Because a(0, y) + 2s = a(0,−y) + 2s and c(0, y) =
c(0,−y) > 0, the imaginary root curve is traversed twice as y varies
from −∞ to +∞, once as y varies from −∞ to 0 and once as y varies
from 0 to ∞.

We also have a(0, kπ)+2s = 0 and, for sufficiently large k, c(0, (2k +
2)π) > c(0, 2kπ) > c(0, (2k + 1)π) because

(2k + 2)2π2 + s2

1 − e−s
>

(2k)2π2 + s2

1 − e−s
>

(2k + 1)2π2 + s2

1 + e−s
.
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FIGURE 1.

Thus, the imaginary root curve intersects itself and “spirals upward”
as shown in Figure 1.

In order to determine the orientation of the mapping (4), we must
calculate its Jacobian. We write equation (2) with z = x + iy in the
form

V (x, y, a, c) + iW (x, y, a, c) = 0,

with

V (x, y, a, c) = a(x + s) + c(1 − e−(x+s) cos y) + (x + s)2 − y2,

W (x, y, a, c) = 2y(x + s) + ay + ce−(x+s) sin y.
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By the Cauchy-Riemann equations for the analytic function V + iW ,
we have

∂(a, c)
∂(x, y)

=
1

Δ(x, y)

[(
∂v

∂x

)2

+
(

∂v

∂y

)2
]

If ∂v/∂x = ∂v/∂y = 0, then

y = tan y, cos y =
1

es +
√

e2s − (1 + s)2
.

If either of these equations is not satisfied, then ∂(a, c)/∂(x, y) �= 0.
Because Δ(x, y) < 0, if y > 0 and Δ(x, y) > 0, if y < 0, we see
that ∂(a, c)/∂(x, y) is negative if y > 0 and positive if y < 0. Thus,
if we give an orientation to the imaginary root curve corresponding
to the direction of increasing y as y varies from 0 to +∞, since
∂(a, c)/∂(x, y)|x=0,y>0 < 0, there are roots of equation (2) with positive
real part to the left of the imaginary root curve.

The zero root curve for (2) is the curve in the a − c plane on which
z = 0 is a root of (2). It is obtained by substituting z = 0 in (2), which
gives the line

(8) s2 + as + c(1 − e−s) = 0.

Because

a(0, 0) = lim
y→0

a(0, y) = −2s +
s2e−s

se−s − 1 + e−s
= −2s − s2

es − 1 − s
,

c(0, 0) = lim
y→0

c(0, y) = − s2

se−s − 1 + e−s
=

s2es

es − 1 − s
,

the point (a(0, 0), c(0, 0)) is on the zero root line (8) as well as on the
imaginary root curve (7).

LEMMA 1. The imaginary root curve (7) lies above the zero root line
(8) except for an intersection at (a(0, 0), c(0, 0)).
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PROOF. The region above the zero root line is characterized by
s2 + as + c(1 − e−s) > 0. We calculate the quantity

D = s2 + sa(0, y) + c(0, y)(1 − e−s)

= s2 + s

[
−2s +

e−s(y2 + s2) sin y

Δ(0, y)

]
+ (1 − e−s)

−y(y2 + s2)
Δ(0, y)

=
1

Δ(0, y)
[−s2Δ(0, y) = se−s(y2 + s2) sin y − (1 − e−s)(y3 + ys2)

]
=

1
Δ(0, y)

[−y3(1 − e−s) + s2e−sy(1 − cos y) + se−sy2 sin y
]

=
−y3

Δ(0, y)

[
1 − e−s − s2e−s 1 − cos y

y2
− se−s sin y

y

]
.

Because

1−e−s − s2e−s 1 − cos y

y2
− se−s sin y

y
≥ 1 − e−s − se−s − 1

2
s2e−s

= e−s(es − 1 − s − 1
2
s2) > 0

and −y3/Δ(0, y) > 0, we have D > 0 for s > 0, 0 < y < ∞. Thus, the
imaginary root curve lies above the zero root line.

Using the calculations of this section, we may now divide the a − c
plane into four parts, as follows:

(i) the region below the zero root line,

(ii) the region above the zero root line and to the left of the imaginary
root curve,

(iii) the region surrounded by the imaginary root curve, and

(iv) the region above the zero root line and to the right of the
imaginary root curve.

It is well known that, for a pathwise connected region G in the a− c
plane such that neither the zero root line nor the imaginary root curve
passes through any point of G, if equation (2) has a root with positive
real part at one point (a0, c0) of G, then equation (2) has a root with
positive real part at every point of G.
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We have already seen that if (a, c) is in the region surrounded by the
imaginary root curve, there are roots of equation (2) with positive real
part. If (a, c) is below the zero root line, the function

f(z) = z2 + (2s + a)z + as + s2 + c[1 − e−(z+s)]

is negative for z = 0 and limt→∞ f(z) = +∞. Thus, there is a positive
real root of f , and, since f(z) = 0 is equivalent to (2) for z �= −s, there
is a positive real root of (2) if (a, c) is below the zero root line. The
line

(4) (x + s)2 + a(x + S) + c[1 − e−(x+s)] = 0

in the a − c plane has slope

− x + s

1 − e−(x+s)
< − s

1 − e−s

and intersects the a-axis at −(x+s) < −s for every x > 0. For suitable
x > 0, this line contains points above the zero root line and to the left
of the imaginary root curve. The line (9) is the locus of points in the
a− c plane for which x > 0 is a root of (2) and enters the region above
the zero root line and to the left of the imaginary root curve. This
region cannot contain points for which all roots of (2) have negative
real part because it is possible to go from a point where all roots of (2)
have negative real part to a point where (2) has positive roots only by
crossing either the zero root line or the imaginary root curve.

The point (0, 0) is above the zero root line and to the right of the
imaginary root curve. For a = 0, c = 0, equation (2) has only the root
z = −s < 0. Thus, the region of the a − c plane in which all roots of
equation (2) have negative real part is the set of points which can be
reached from the origin without crossing either the zero root line or the
imaginary root curve. We have now established the following result.

THEOREM 1. All roots of equation (2) have negative real part if and
only if the point (a, c) lies above the zero root line and to the right of
the imaginary root curve.

3. As we may see from Figure 1, the imaginary root curve is rather
complicated. In order to examine the stability of nontrivial equilibria
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of the infectious disease model studied in [6], it is necessary for us to
obtain a more explicit characterization of a region in which all roots of
(2) have negative real part.

The condition that z = iy is a root of (2) is (iy + s)2 + iay + as+ c−
ce−(iy+s) = 0. Separation into real and imaginary parts gives

(10)
ce−s cos y = s2 + as + c − y2,

ce−s sin y = −2sy − ay.

Squaring and adding the two equations of (10) gives the condition

(11) y4 + y2[a2 + 2as + 2s2 − 2c] + [(s2 + as + c)2 − c2e−2e−2s] = 0.

This quadratic equation for y2 must have a positive real root in order
for (2) to have a pure imaginary root. Thus, a region of the a− c plane
in which (11) does not have a positive real root for y2 does not contain
any points of the imaginary root curve.

If

(12) a2 + 2as + 2s2 − 2c > 0, (s2 + as + c)2 − c2e−2s > 0,

the roots for y2 are real and negative. If

2c < (a + s)2 + s2, s2 + as + c(1 − e−s) > 0,

that is above the zero root line (8) and below the parabola,

(13) 2c = (a + s)2 + s2,

the conditions (12) are both satisfied. The parabola (13) and the zero
root line intersect for

a = a1 = −2s +
s

es − 1
(√

2es − 1 − 1
)
,

a = a2 = −2s − s

es − 1
(√

2es − 1 − 1
)
,

and
a2 < a(0, 0) < a1.
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From this, we see that, in the region above the zero root line (8) and
below the parabola (13) lying to the right of a = a1, the roots of (2)
all have negative real part.

If 2c ≥ (a + s)2 + s2, but

(14) (s2 + as + c)2 − c2e−2s − 1
4
[(a + s)2 + s2 − 2c]2 > 0,

the root for y2 of (11) are complex, and, again, there can be no pure
imaginary roots of (2). The inequality (14) is equivalent to

(15) (a + 2s)2
(

c − a2

4

)
> c2e−2s.

The quadratic equation for c

(16) (a + 2s)2
(

c − a2

4

)
= c2e−2s

has real roots if (a + 2s)2e2s − a2 ≥ 0, which is true if

(17) a ≥ a3 = −2s +
2s

es + 1
= − 2ses

e2 + 1
.

If (17) is satisfied, the roots of (16) are

(18) c =
1
2

[
(a + 2s)2e2s ± es|a + 2s|

√
(a + 2s)2e2s − a2

]
.

The curves described by (18) have left extreme points on the left (a3, c3)
with

c3 =
2s2e2s

(es + 1)2
.

The point (a3, c3) is above the parabola (13) and a(0, 0) < a3 < a1.
The region described by (14) is above this parabola and is described
by

a ≥ a3, c < c2 =
1
2

[
(a + 2s)2e2s + es|a + 2s|

√
(a + 2s)2e2s − a2

]
.
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In this region, the roots for y2 of (11) are complex, and, thus, the roots
of (2) have negative real part.

By combining the considerations of this section, we obtain the fol-
lowing explicit characterizations of some regions in the a − c plane for
which the roots of (2) all have negative real part.

THEOREM 2. All roots of equation (2) have negative real part if the
coefficients a and c satisfy either

a > a1, s2 + as + c(1 − e−s) > 0, 2c < (a + s)2 + s2

or

a > a3, c < c2, s2 + as + c(1 − e−s) > 0, 2c > (a + s)2 + s2.

As this result covers negative values of a, it extends the simple
estimate (3) of the stability region for (2). In the special case s = 0
of (2), studied in [7], a1 = a3 = 0 and the parabola (13) reduces to
c = a2/2. Thus, for s = 0, Theorem 2 reduces to a result of [7].

On the imaginary root curve given by (7), we have

a + 2s

c
= −e−s sin y

y
= f(y).

We let yk = (2k + 1)π + ŷk, with 0 < ŷk < π/2, be the zeros of f ′(y)
for which f(y) is a relative maximum. Because yk = tan yk,

f(yk) = −e−s sin yk

yk
= −e−s cos yk = e−s cos ŷk.

Also, {ŷk} is an increasing sequence, and therefore, the maximum of
f(y) is attained at y0 = π + ŷ0 = 4.493409. We may then estimate

max
0≤y<∞

f(y) = e−s cos ŷ0 = 0.217233e−s.

Thus, on the imaginary root curve,

a + 2s

c
≤ 0.217233e−s
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and the imaginary root curve is above the line

(19) c = 4.60334es(a + 2s).

Another line which lies below the imaginary root curve is the tangent
line to this curve at (a(0, π), c(0, π)), as y = π is the first value for
which a(0, y) = −2s. It is easy to calculate

a(0, π) = −2s, c(0, π) =
π2 + s2

1 + e−s
.

The slope of the tangent line at this point is c′(0, π)/a′(0, π)), and a
routine calculation gives

c′(0, π)
a′(0, π)

= es

[
2π2

π2 + s2
− se−s

1 + e−s

]
.

Thus, the tangent line to the imaginary root curve at (a(0, π), c(0, π))
is

(20) c =
π2 + s2

1 + e−s
+ es

[
2π2

π2 + s2
− se−s

1 + e−s

]
(a + 2s).

We obtain two further estimates for the stability region of (2).

THEOREM 3. All roots of equation (2) have negative real part if

s2 + as + c(1 − e−s) > 0

and either
(i) c < 4.60334es(a + 2s)

or

(ii) c <
π2 + s2

1 + e−s
+ es

[
2π2

π2 + s2
− se−s

1 + e−s

]
(a + 2s).

In each case, the result is valid for a to the right of the intersection of
the zero root line and the line (19) or (20), respectively.

For s = 0, the lines (19) and (20) are

c = 4.60334a, c =
π2

2
+ 2a,
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respectively, and both parts of Theorem 3 are valid for a > 0. Theorems
2 and 3 overlap; their regions of applicability in the a−c plane intersect,
but their relation depends on the value of s. In general, Theorem 3 is
more useful if a is negative or positive and small, while Theorem 2 is
more useful if a is large.

4. The infectious disease model formulated in [6] is

(21) I ′(t) = −(γ +μ)I(t)+βIp(t)
[
1− I(t)−γ

∫ t

t−ω

I(x)e−μ(t−x) dx

]
.

In this model it is assumed that there is a nonlinear rate βIpS of
incidence of the disease, a recovery rate γI and a period ω of immunity
to reinfection. The total population size is a constant normalized
to 1 with a birth rate μ of susceptibles and a corresponding death
rate divided proportionally among susceptible, infective, and removed
members of the population. The special case μ = 0, p = 1 of a closed
population is studied in [6], while population dynamics are added in
work now in progress by the authors of [6].

The equilibria of (21) satisfy the equation

(22) Ip−1 − (1 + r)Ip =
γ + μ

β
,

where

(23) r = γ(1 − e−ωμ)/μ

and corresponding susceptible equilibrium S = 1 − (1 + r)I > 0. The
function f(I) = Ip−1−(1+r)Ip has a maximum at I0 = (p−1)/p(1+r)
if p > 1, and from this it follows that there is a single nonzero
equilibrium I1 if p < 1, two equilibria I1, I2 with I1 < I0 < I2 if
p > 1, and f(I0) > (γ + μ)/β, one equilibrium I0 if f(I0) = (γ + μ)/β,
and no nonzero equilibrium of p > 1 and f(I0) < (γ + μ)/β. At each
nonzero equilibrium, I, the characteristic equation is (2) with

(24)
a = ω[γ − p(γ + μ) + βIp],
c = ω2[βγIp,

s = ωμ.
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From (22), we see that

(25) c = ωγ(a + 2s) − ωγ[(1 − p)ωγ + (2 − p)s].

THEOREM 4. If p < 1 and ωγ ≤ 4.60334, or if

(26) p ≤ 1 − γ − 2μ2s

2e2s(γ + μ)
,

the nonzero equilibrium is asymptotically stable.

PROOF. We have a + s = (1 − p)ωγ + (1 − p)s + βωIp > 0, so
that a + 2s > 0 and s2 + as + c(1 − e−s) > 0. If ωγ ≤ 4.60334,
c < 4.60334(a + 2s) and the equilibrium is asymptotically stable by
Theorem 3. The condition (26) implies

ωγ(a + 2s) − ωγ[(1 − p)ωγ + (2 − p)s] ≤ e2s(a + 2s)2/2 < c2

so that c2 < e2s(a + 2s)2, and, since a + 2s > s > (2s)/(es + 1), we
have a > a3. Then the conditions of Theorem 2 are satisfied, and the
asymptotic stability of the nonzero equilibrium follows.

If μ = 0, the condition (26) reduces to p ≤ 1/2 and the result is
Theorem 5.2 of [6]. Thus, the introduction of births and deaths, or
increasing μ, tends to stabilize the equilibrium. The other part of
Theorem 4 is a refinement of the results of [6], even for μ = 0.

THEOREM 5. If p > 1 and f(I0) > (γ + μ)/β, the smaller nonzero
equilibrium, I1, is unstable.

PROOF. Using (22) and (24) obtains

s2 + as + c(1 − e−s = ω2μβ

[
Ip−1
1 − p

(
γ + μ

β

)]

= ω2μβp

[
Ip−1
1

p
− γ + μ

β

]
.
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Because I1 < I0,

f ′(I1) = Ip−2
1 [(p − 1) − (1 + r)pI1] > 0,

and, therefore, (p − 1) − p(I + r)I1 > 0. From (22),

Ip−1

p
− γ + μ

β
=

Ip−1

p
− [Ip−1

1 − (1 + r)IP
1 ]

= −1
p
Ip−1
1 [(p − 1) − (1 + r)I1] < 0.

Thus, s2 + as + c(1 − e−s) < 0, and the equilibrium I1 is unstable.

If p > 1 and f(I0) > (γ +μ)/β, the stability of the larger equilibrium
I2 is more complicated. For this equilibrium, s2 + as + c(1 − e−s) > 0
by reasoning analogous to the proof of Theorem 5 but using f ′(I2) < 0.
However, (a + 2s) may be negative. The following result gives a
sufficient condition for stability.

THEOREM 6. If p > 1 and f(I0) > (γ + μ)/β, the larger equilibrium
I2 is locally asymptotically stable if

ωγ < es

[
2π2

π2 + s2
− se−s

1 + e−s

]
,(27)

−ωγ[ωγ(1 − p) + (2 − p)s] <
π2 + s2

1 + e−s
.(28)

PROOF. From (25), we have

−ωγ[ωγ(1 − p) + (2 − p)s] = c − ωγ(a + 2s),

and the result follows directly from Theorem 3(ii).

In the case μ = 0, r = ωγ and s = 0. The conditions (27) and
(28) become r < 2 and r2(p − 1) < π2/2, respectively, and Theorem 6
reduces to Theorem 5.4 of [6].
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As a and c vary, the point (a, c) may cross the imaginary root curve.
Because, as we have seen,

∂(a, c)
∂(x, y)

∣∣∣∣
x=0,y>0

�= 0,

there is a local homeomorphism between the x−y and a−c planes in a
neighborhood of each point (a(0, y), c(0, y)). Thus, the real parts of the
roots of (2) vary from negative to positive. According to the theorem on
Hopf bifurcation [5], Hopf bifurcation may occur and periodic solutions
may arise as the imaginary root curve is crossed.

5. The infectious disease model (21) has not yet been analyzed com-
pletely. Theorems 4 and 6 give convenient estimates of the stability
region and extend earlier results. It would be of interest to examine
the analogous model with nonlinear population dynamics and/or non-
exponential recovery rates. It is not known whether the behavior of
such models is the same as the behavior of model (21).
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