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ABSTRACT. This paper provides a new derivation of the
Leyvraz and Tschudi solution [1] of the discrete Smoluchowski-
Flory-Stockmayer equations of coagulation.

0. Introduction. Models of cluster growth appear in a wide variety
of applications. One well-known example is the Smoluchowski-Flory-
Stockmayer theory of gelation where it was found that all concentra-
tions decrease in time and the quantity representing mass density is
conserved for only a finite time after which it decreases [1, 2]. A re-
lated example is provided by Perelson [3] who uses Smoluchowski’s rate
equation as a model for the growth of an antigen-antibody aggregate.

The models themselves are coupled infinite systems of ordinary dif-
ferential equations (in the discrete case) or a single integro-differential
equation (in the continuous case). In this note I reconsider the classi-
cal Smoluchowski-Flory-Stockmayer discrete equations and derive their
solution via a simple summation identity. This approach provides a
shorter derivation of the result given earlier by Leyvraz and Tschudi
[1].

1. The equations. Let cj(t) ≥ 0, j = 1, 2, . . . , denote the expected
number of clusters consisting of j particles per unit of volume. The
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discrete coagulation-fragmentation equations are

(1.1) ċj =
1
2

j−1∑
k=1

[aj−k,k, cj−kck − bj−k,kcj ] −
∞∑

k=1

[aj,kcjck − bj,kcj+k]

for j = 1, 2, . . . . The coagulation rate aj,k and fragmentation rates bj,k

are nonnegative constants with aj,k = ak,j , bj,k = bk,j . The continuous
version of (1.1) may be found in the paper of Barrow [4] and is given
by

(1.2)

∂c

∂t
(j, t) =

∫ j

0

[a(j − k, k)c(j − k, t)c(k, t) − b(j − k, k)c(j, t)] dk

−
∫ ∞

0

[a(j, k)c(j, t)c(k, t) − b(j, k)c(j + k, t)] dk.

In (1.2), a(j, k), b(j, k) are symmetric nonnegative kernels. Existence
of solutions to (1.1) is discussed in the papers of Spouge [5], White
[6] and, most recently, Ball and Carr [7]. Unfortunately, these papers
do not apply to the Smoluchowski-Flory-Stockmayer theory described
below. Existence of solutions to the continuous model has been given
by Aizenman and Bak [8] under rather stringent conditions on the
kernels a, b. In the case a(j, k) = A + B(i + j) + Cij, b(j, k) = λ,
Barrow [4] solved the moment equation for the total number of clusters∫ ∞
0

c(k, t) dk and showed that the kinetic equation admits a nontrivial
stationary solution only when B = C = 0, λ �= 0.

In this note I consider (1.1) in the case of Smoluchowski’s pure
coagulation equations for which bjk ≡ 0. Furthermore, I restrict myself
to the special case ajk = jk, so that (1.1) becomes the Smoluchowski-
Flory-Stockmayer system

(1.3) ċj =
1
2

j−1∑
k=1

(j − k)kcj−kck − jcj

∞∑
k=1

kck.

For simplicity, the initial data is assumed to be monodisperse, i.e.,

(1.4) c1(0) = 1, cj(0) = 0, 2 ≤ j < ∞.

A solution for (1.3), (1.4) for 0 ≤ t ≤ 1 was given by McLeod [9] by the
following straightforward procedure: Formally, (1.1), in general, and
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(1.3), in particular, conserve the total density ρ(t) .=
∑∞

k=1 kck(t). If
density is indeed conserved, ρ(t) = ρ(0) = 1, one may solve (1.3) by
solving the simpler system

(1.5) ċj =
1
2

j−1∑
k=1

(j − k)kcj−kck − jcj ,

recursively. This yields the formula

(1.6) cj(t) =
jj−3

(j − 1)!
tj−1 exp(−jt), j = 1, 2, . . . .

However, as noted by McLeod, the desired conservation of density of
(1.6) breaks down for t > 1, and, hence, (1.6) is no longer a valid
solution past the critical “gelation” time t = 1.

The resolution of the problem was provided by Leyvraz and Tschudi
[1] who solved (1.3), (1.4) for all t ≥ 0 by setting ρ(t) =

∑∞
k=1 kck(t),

φj(t) = jcj(t) exp(j
∫ t

0
ρ(τ ) dτ ), and G(z, t) =

∑∞
k=1 φk(t)zk. A

straightforward computation shows that the generating function G sat-
isfies the quasilinear hyperbolic partial differential equation

(1.7)
∂G

∂t
= zG

∂G

∂z
, 0 ≤ z ≤ 1, t > 0,

with initial data

(1.8) G(z, 0) = z.

Equation (1.7) may be integrated via the method of characteristics to
obtain G(z, t) from which one may recover φj(t), j = 1, . . . , and finally
cj(t). The end result is that Leyvraz and Tschudi obtained that, while
(1.6) is indeed valid for 0 ≤ t ≤ 1, for t > 1, cj(t) should be given by

(1.9) cj(t) =
jj−3e−j1
(j − 1)!t

, t ≥ 1.

In this case the density ρ(t) satisfies

(1.10)
ρ(t) = 1, 0 ≤ t ≤ 1

ρ(t) =
1
t
, 1 ≤ t < ∞,
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indicating a decrease in density after the critical gelation time t = 1.

In the next section I give another derivation of (1.6), (1.9) which
makes no recourse to the generating function. In fact, a careful reading
of McLeod’s paper shows that he had almost computed the correct post-
gel solution in Section 3 of [9]. Unfortunately, as he was not searching
for density decreasing solutions, he did not take full advantage of his
formula to obtain (1.9) for t ≥ 1.

2. The solution. As in Section 1, define the density ρ(t) =∑∞
k=1 kck(t) so that (1.3) becomes

(2.1) ċj =
1
2

j−1∑
k=1

(j − k)kcj−kck − ρ(t)jcj

or, alternatively, with

φj(t) = exp
(

j

∫ t

0

ρ(τ ) dτ

)
cj(t),

we see

(2.2) φ̇j =
1
2

j−1∑
k=1

(j − k)kφj−kφk

with (1.4) implying

(2.3) φj(0) = 1, φj(0) = 0, 2 ≤ j < ∞.

Now solve (2.2), (2.3) recursively to obtain

φj(t) =
jj−3

(j − 1)!
tj−1;

hence,

(2.4) cj(t) =
jj−3tj−1

(j − 1)!
exp

(
− j

∫ t

0

ρ(τ ) dτ

)
.



KINETIC EQUATIONS 171

But, by definition, ρ(t) =
∑∞

k=1 jcj(t) so that ρ(t) must satisfy the
equation

ρ(t) =
∞∑

j=1

jj−2tj−1

(j − 1)!
exp

(
− j

∫ t

0

ρ(τ ) dτ

)

or, equivalently,

(2.5) tρ(t) =
∞∑

j=1

jj−1(t exp(− ∫ t

0
ρ(τ ) dτ ))j

j!
.

Next note the relevant identity

(2.6)
∞∑

j=1

jj−1(xe−x)j

j!
= x, 0 ≤ x ≤ 1,

which may be found in the collection of Jolley [10, p. 24, Series 130].
The interval of convergence 0 ≤ x ≤ 1 is not noted by Jolley but is
easily obtained by ratio test for 0 ≤ x < 1 and Stirling’s formula at
x = 1. In fact, this is proven in the paper of McLeod [9].

For the moment assume

(2.7) t exp
(
−

∫ t

0

ρ(τ ) dτ

)
≤ e−1, for all t > 0,

and let x(t) be that value x, 0 ≤ x(t) ≤ 1, which satisfies the equation

(2.8) x(t) exp(−x(t)) = t exp
(
−

∫ t

0

ρ(τ ) dτ

)
.

As the graph of xe−x is monotone increasing for 0 ≤ x ≤ 1 and
monotone decreasing for 1 ≤ x with a maximum e−1 at x = 1, (2.7)
will imply a solution of (2.8) and x(t) can always be uniquely found.
Thus (2.5), (2.6) imply

(2.9) tρ(t) = x(t).

Equations (2.8), (2.9) provide two equations in the two unknowns
x(t), ρ(t) for all t > 0. Now substitute the x(t) = tρ(t) from (2.9)
into (2.8) to obtain

(2.10) ρ(t) exp(−tρ(t)) = exp
(
−

∫ t

0

ρ(t) dτ

)
, t > 0,
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and, hence,

(2.11) log ρ(t) − tρ(t) = −
∫ t

0

ρ(t) dτ.

At points of differentiability of ρ(t), differentiate (2.11) to see that ρ(t)
satisfies

(2.12)
(

1
ρ(t)

− t

)
ρ̇(t) = 0,

where recall of the initial data is given by

(2.13) ρ(0) = 1.

For 0 ≤ t < 1, the solution of (2.12), (2.13) is ρ(t) = 1 and (2.7)
is satisfied. For 1 < t, a choice must be made between a function
satisfying ρ̇(t) = 0 (which, for continuous ρ(t), would mean ρ(t) = 1)
and ρ(t) = 1/t. If ρ(t) = 1 is chosen, then (2.9) becomes t = x(t),
i.e., x(t) > 1 which contradicts the definition of x(t). This necessitates
the choice ρ(t) = 1/t which yields x(t) = 1 and also satisfies (2.7).
Enforcing continuity at t = 1 yields

(2.14)
ρ(t) = 1, 0 ≤ t ≤ 1,

1
t
, 1 < t,

as the solution of (2.10). Finally, substitute (2.14) into (2.9). This
yields the Leyvraz and Tschudi solution

(2.15)
cj(t) =

jj−3tj−1 exp(−jt)
(j − 1)!

, 0 ≤ t ≤ 1,

=
jj−3e−j

(j − 1)!
1
t
, 1 < t,

j = 1, 2, . . . .

3. Remarks. One may ask what is the point of the above exercise
if the only result was to obtain a known formula. I would suggest
that what should be emphasized is the approach based on deriving
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equation (2.5). Hence, the problem became one of looking for a fixed
point ρ of the nonlinear integral equation (2.5). Of course, the ability
to solve (2.5) in explicit simple form is, to some extent, luck. However,
it may be that other problems involving cluster dynamics and gelation
in both the discrete and continuous cases can also be converted into
similar fixed point problems where the existence of a fixed point ρ(t)
in an appropriate function space yields the relevant solution.
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