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ABSTRACT. We show how a variety of linear control sys-
tems, basically of “hyperbolic type,” can be transformed to
neutral functional equations of various orders. Using this cor-
respondence, which makes essential use of the spanning prop-
erties of sets of complex exponentials, we are able to explore
the closed loop spectral assignment capabilities of a class of
linear feedback mechanisms which may be applied in the orig-
inal control system. We introduce a class of neutral equa-
tions of “negative order” and show that these serve as canon-
ical forms for certain “deficient” hyperbolic systems, some of
which arise quite naturally in applications.

1. Background on the control canonical form. The theory of
spectral assignment for constant coefficient, finite dimensional control-
lable (cf. [15]) linear systems

(1.01)
ẋ = Ax+Bu, x ∈ En, u ∈ Em, m ≤ n,

A : n× n, B : n×m, rankm,

is based on the so-called control canonical form presented, e.g., in [15]
and [5] and developed in its most complete form by Brunovsky in [1].
One shows that there are nonsingular n×n and m×m matrices P and
Q, respectively, such that the transformations

x = Pw, u = Qv

carry (1.01) into an equivalent system

ẇ = Âw + B̂v
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wherein the diagonal blocks Âk, k = 1, 2, . . . ,m, of Â, of dimensions
n1, n2, . . . , nm, n1 + n2 + · · ·+ nm = n, are in rational canonical form,
the rest of the entries of Â are zero except for arbitrary entries in the
n1-th, (n1 + n2)-th, . . . , and n-th rows, and

B̂ = (en1 , en1+n2 , . . . , en),

ek being the k-th column of the n× n identity matrix. In this form it
is very easy to select m× n feedback matrices K̂ such that, with

v = K̂w,

in the closed loop system,

ẇ = (Â+ B̂K̂)w,

Â+ B̂K̂ has any specified set {μ1, μ2, . . . , μn} of eigenvalues (there are
some restrictions on the Jordan form of this matrix, however).

Our purpose in this article is to discuss a certain approach to the
question of control canonical structure and eigenvalue specification for
certain infinite dimensional systems whose principal component is a
system of partial differential equations of hyperbolic type. Systems
corresponding to a single scalar equation of this type are discussed in
Section 2 Section 5 to follow.

For the moment we content ourselves with a very general system
description. We let X be a complex, separable Hilbert space and
consider a control system

(1.02) ẋ = Ax+ bu, x ∈ X, u ∈ Em,

where A generates a strongly continuous semigroup (generally a group
in the class of systems considered in this paper) S(t) on X, m is an
integer and B is an admissible input element (cf. [3, 21, 22]). We will
assume that the operator A has eigenvalues λj , j ∈ J , where J is a
countable index set, and corresponding eigenvectors φj forming a Riesz
basis for X. With restrictions one may also admit eigenvalues with
finite multiplicity and corresponding generalized eigenvectors. Further
restrictions on the forms of A and b will be introduced after we discuss
some background material.
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In [14] we studied a class of linear hyperbolic control systems of the
form

(1.03)
∂

∂t

(
w
v

)
−
(

0 1
1 0

)
∂

∂x

(
w
v

)
−A(x)

(
w
v

)
= g(x)u(t),

0 ≤ x ≤ 1, t ≥ 0,

wherein w, v, u are scalar, A(x) is a continuous 2×2 matrix and g(x) is a
two-dimensional vector function with entries in L2[0, 1]. The boundary
conditions were assumed to have the forms

(1.04) a0w(0, t) + b0v(0, t) = 0, a1w(1, t) + b1v(1, t) = 0

with
γ =

(a0 + b0)(a1 − b1)
(a0 − b0)(a1 + b1)

neither zero nor infinite, or the second of these might be replaced by

a1w(1, t) + b1v(1, t) = u(t)

and g(x) by zero if boundary control was to be studied.

The simplicity of the development in that study arose from the fact
that the eigenvalues of the operator appearing on the right-hand side
of (1.03) with the boundary conditions (1.04) take the form

γj =
1
2

log γ + jπi+O

(
1
|j|
)
, j ∈ J = {j | −∞ < j <∞},

and, as a consequence (see [4, 6, 8, 23]), the exponentials eλjt form a
Riesz basis for L2[0, 2]. Ultimately, every argument of that paper was
based on that fact.

It is easy to find hyperbolic systems which do not fit this pattern
involving a single wave equation and scalar control (m = 1), for
example, the forced wave equation

(1.05)
∂2w

∂t2
− ∂2w

∂x2
= g(x)u(t), 0 ≤ x ≤ 1, t ≥ 0,

with g ∈ L2[0, 1] and nontrivial boundary conditions

(1.06) a0w(0, t) + b0
∂w

∂x
(0, t) = 0, a1w(1, t) + b1

∂w

∂x
(1, t) = 0.
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With v = ∂w/∂t, the corresponding first order form is

∂

∂t

(
w
v

)
=
(

v
∂2w
∂x2

)
+
(

0
g(x)u(t)

)
≡ L

(
w
v

)
+ b(x)u(t).

If we take b0 = b1 = 0, the eigenvalues of the operator L are

λj = jπi, j ∈ J = {j | j = ±1,±2, . . . }.

The exponentials eλjt then miss being the standard Fourier basis in
L2[0, 2] for lack of the element e0t ≡ 1; i.e., they are “deficient.” On
the other hand, if b0 �= 0, b1 �= 0, the eigenvalues take the form

(1.07) λj = jπi+O

(
1
|j|
)
, j ∈ J = {j | j = 0,±1,±2, . . . }

together with an additional eigenvalue, which we will designate by σ
(or, when a0 = a1 = 0, the eigenvalue λ0 assumes multiplicity two),
which cannot be included in the sequence (1.07) without disturbing the
indicated asymptotic relationship between λj and jπi. In this case the
set of exponentials {eλjt}∪eσt is “excessive” and cannot be independent
in L2[0, 2] because {eλjt} is already a Riesz basis for that space.

The system (1.02) will be said to be of hyperbolic type if, in addition
to the earlier stated hypothesis that the generalized eigenvectors φj ,
j ∈ J , of A form a Riesz basis for the state space X, there is a finite
bound M on the multiplicity of any eigenvector λj , there exist positive
numbers α, δ, and Δ, and a real number ρ such that the λj lie in a
strip |Reλj − ρ| ≤ α of the complex plane and, for real numbers r1, r2
with r1 < r2, the number N(r1, r2), of λj for which r1 ≤ Imλj ≤ r2,
counting multiplicity, satisfies

(1.08) δ(r1 − r2) ≤ N(r1, r2) ≤ Δ(r2 − r1).

While this is a useful classification, it includes far too many systems
to allow any precise description of the control canonical forms. Conse-
quently, in later sections of this paper, we add some further restrictions
to arrive at classes for which we can provide such a description.

We will say that a system of hyperbolic type is, further, of scalar
hyperbolic type if, with μj the multiplicity of λj , the resolvent of A
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has a pole of order μj at λj (i.e., the corresponding “Jordan block”
has a full complement of superdiagonal 1’s) and one of the following
alternatives is valid:

(i) For some positive a (necessarily between πδ and πΔ (cf. [6]) the
generalized exponentials tleλjt, j ∈ J , l = 0, 1, . . . , μj −1, form a Riesz
basis in L2[−a, a];

(ii) Condition (i) is not valid but becomes valid if m(≥ 1) of the
simple λj are removed from the eigenvalue sequence or finitely many
of the multiplicities μj are reduced by decrement which total m;

(iii) Condition (i) is not valid but becomes valid if m(≥ 1) additional
complex numbers σ1, . . . , σm ARE adjoined to the eigenvalue sequence
or finitely many of the multiplicities μj , as used in (i), are increased by
increments which total m.

We will refer to these subclasses as being of exact, augmented and
deficient scalar hyperbolic type, respectively. In the case of (ii) and (iii)
we will refer to the system as having excess of order m and deficiency of
order m, respectively. Examples of augmented and deficient systems
corresponding to m = 1 have been presented in Section 3; examples
of augmented systems of arbitrary excess m, consisting of a partial
differential equation of “wave equation” type on a spatial interval
0 ≤ x ≤ 1, coupled to linear finite dimensional systems at the
boundary points, and example of deficient systems which arise out of
the separation of variables process applied to the wave equation in
a disc, have been given in [13], an earlier unpublished report which
includes some of the material presented here.

2. Basis properties of the Sobolev spaces on an interval. Let
[a, b], a < b, be a closed interval of the real line. By Hm[a, b], m a
non-negative integer, we denote the space of complex valued functions
z : [a, b] → C which, together with their derivatives z(k), defined in
the sense of the theory of distributions [18], lie in L2[a, b] ≡ H0[a, b].
While it is customary to endow these spaces with the inner product
and norm

(2.01) (z, ẑ)m =
m∑

k=0

∫ b

a

z(k)(t)ẑ(k)(t) dt, ‖z‖m = ((z, z)m)1/2
,

it is not convenient to use these in the present application. The
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inconvenience lies in the fact that the “coordinate” functions z(k),
k = 0, 1, 2, . . . ,m, cannot be independently specified, leading to some
difficulties in, e.g., computing adjoints of operators. Rather, we here
choose to represent the same member of Hm[a, b] by

(2.02)
(
z(c), z′(c), . . . , z(m−1)(c), z(m)(·)

)
∈ Em × L2[a, b].

Here c may be any point in [a, b]; different c give equivalent represen-
tations. Clearly, functions in Hm[a, b] can be uniquely specified in this
way and each of the elements in (2.02) can be selected independently
to construct elements of that space via the algebraic and topological
isomorphism F : Em × L2[a, b] → Hm[a, b] defined by

F (ξ0, ξ1, . . . , ξm−1, ξ(·))(t)

=
m−1∑
k=0

ξk
(t− c)k

k!
+

1
(m− 1)!

∫ t

0

(t− s)m−1ξ(s) ds.

It is not hard to verify that the usual inner product and norm in
Em ×L2[a, b] is equivalent to the inner product and norm (2.01) under
the mapping z = F (ξ0, ξ1, . . . , ξm−1, ξ(·)).

Rather than identify the dual space Hm[a, b]∗ with Hm[a, b] itself,
we choose to follow a procedure now familiar from [7], e.g. The map
J : Hm[a, b] → L2[a, b] defined as the injection of the first space into
the second is clearly continuous and one-to-one with dense range in
L2[a, b]. It follows that, for each f ∈ L2[a, b],

(2.03) 〈z, f〉 ≡
∫ b

a

z(t)f(t) dt, z ∈ Hm[a, b],

defines a continuous linear functional on Hm[a, b]. One defines

‖f‖−m = sup
z∈Hm[a,b]−{0}

{ |〈z, f〉|
‖z‖m

}
,

obtaining a norm on L2[a, b] for which, except in the case m = 0,
that space is not complete. Dm[a, b], the completion of L2[a, b] with
respect to this norm can be shown [9] to be a representation of
the dual space of Hm[a, b], the bilinear functional 〈z, f〉 defined for
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z ∈ Hm[a, b], f ∈ Dm[a, b] being the natural extension of 〈z, f〉 (cf.
(2.03)) arising from this completion. Representing elements of Hm[a, b]
as in (2.02), one may identify Dm[a, b] with a certain vector space
of distributions f ; namely, those having the form, for complex scalar
coefficients ϕ0, ϕ1, . . . , ϕm−1,

f = ϕ0δ{c} + ϕδ′{c} + · · · + ϕm−1δ
(m−1)
{c} + ϕ(·),

wherein ϕ ∈ L2[a, b] and δ
(k)
{c} denotes the k-th order “Dirac” distribu-

tion with support consisting of the set {c}. Then, for z ∈ Hm[a, b],
f ∈ Dm[a, b], 〈z, f〉 is equivalent to

(2.04)

〈z, f〉m ≡
m−1∑
k=0

ϕkz
(k)(c) +

∫ b

a

ϕ(s)z(m)(s) ds

=
m−1∑
k=0

ϕkζk +
∫ b

a

ϕ(s) ds.

We proceed next to define the spaces H−m[a, b] for m > 0. The
process begins with the specification of D−m[a, b]:

D−m[a, b] =
{
z ∈Hm[a, b] | z(k)(a)=z(k)(b)=0, k=0, 1, 2, . . . ,m− 1

}
.

This space is also referred to in the literature as Hm
0 [a, b]. The injection

map J : D−m[a, b] → L2[a, b] is again continuous and one-to-one with
dense range and we may use the same process as before to define
H−m[a, b] as the dual of D−m[a, b] with respect to L2[a, b]. From the
fat that D−m[a, b] is a closed subspace of Hm[a, b] we conclude that
we may identify H−m[a, b] with a closed subspace of Dm[a, b]; in fact,
it is the subspace complementary to the 2m-dimensional subspace of
Dm[a, b] spanned by δ(k)

{a}, δ
(k)
{b}, k = 0, 1, 2, . . . , (m− 1).

Our work on canonical forms for hyperbolic equations requires some
background on Riesz bases for the spaces Hm[a, b], H−m[a, b] consisting
of generalized exponential functions. To this end, it is convenient to
normalize the interval [a, b] to [−1, 1] and take c = 0. We assume
familiarity with the standard “nonharmonic Fourier series” results ([4,
6, 8, 23]) pertaining to such bases in the space L2[−1, 1]. The best



136 D.L. RUSSELL

known of these results can be summarized in the following way. If the
sequence Λ = {λj | −∞ < j < ∞} consists of distinct λj with the
property, for some complex θ, that

(2.05) lim sup
|j|→∞

|λj − (θ + jπi)| < π

4
,

then

(2.06) E(Λ) =
{
pj(t) ≡ eλjt | λj ∈ Λ

}
is a Riesz basis in L2[−1, 1]; each f ∈ L2[−1, 1] has a unique expansion,

(2.07) f =
∞∑

j=−∞
fjpj ,

convergent in that space, and there are positive numbers d, D, inde-
pendent of f , such that

(2.08) d−2‖f‖2 ≤
∞∑

j=−∞
|fj |2 ≤ D2‖f‖2.

It is known that the number π/4 in (2.05) is best possible within the
given context, but there are many other types of sequences which yield
Riesz bases (see, e.g., [2, 20, 23]). A very general result, presented in
R. M. Young’s book [23], is ideally suited to our purposes here. There
it is show that if χ(iλ) is a function of “sine type” having growth like
e|Im λ| in the upper and lower half planes with separated zeros (i.e.,
there is a positive lower bound on the distance between zeros of χ(iλ))
in a strip parallel to the real axis in the λ plane, then the functions
{eλkt}, where the λk are the zeros of χ(λ) itself (lying in a strip parallel
to the imaginary axis) form a Riesz basis for L2[−1, 1]. For the purposes
of this paper, the most significant application of this result concerns
the case where we define χ(λ) in the form

(2.09) χ(λ) = eλ + be−λ +
∫ 1

−1

eλs dv(s),

where v(s) is a function of bounded variation on (−∞,∞), assumed
to be right continuous without loss of generality. Associated with such
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a function v and a subinterval [a, b] we have the concept of the total
variation, V (v, [a, b]), of v on that subinterval [10]. If we assume that

(2.10) lim
ε→0

V (v, [−1,−1 + ε]) = lim
ε→0

V (v, [1 − ε, 1]) = 0

and that b �= 0, then χ(iλ) is a function of sine type with the indicated
growth properties. Further restrictions allow one to assert that χ(λ)
has separated zeros. For example, if there is a positive integer K such
that

(2.11)
dv

ds
= f(s) +

K−1∑
k=1

ϕkδ{−1+2(k/K)} (sum is absent if K = 1),

where f ∈ L2[−1, 1], δ{r} is the delta distribution with support con-
sisting of the single point r, and the ϕk are scalar coefficients such that
the polynomial

μK +
K−1∑
k=1

ϕkμ
k + b

has distinct zeros, then the zeros of χ(λ) are separated and all but
finitely many of them are of single multiplicity. If, in fact, all have
single multiplicity and we call them λk, then the eλkt in such a case
form a Riesz basis for L2[−1, 1].

It is also possible to introduce generalized exponentials into Riesz
bases of exponential functions. The strongest result in this direction
is contained in D. Ulrich’s paper [20]. A much more elementary
result is that if {pj | j ∈ J} is a Riesz basis for L2[−1, 1] consisting
of exponential functions, then finitely many of them, say n “simple
exponentials,” pj(t), may be removed from E(Λ) and r others, say
pj1 , pj2 , . . . , pjr

augmented to sets of generalized exponentials{
eλjν t, te

λjν
t

, . . . , (tμν−1/(μν − 1)!)eλjν t
}

with μ1 + μ2 + · · · + μr = n, and the Riesz basis property will remain
intact. In this context we can remove the requirement that χ(λ) have
distinct zeros in the example (2.09), (2.10), (2.11) discussed above.

In [16] these results are extended to the spaces Hm[−1, 1] and
H−m[−1, 1]. We will state the extended results here for distinct
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exponentials with the understanding that those results may be modified
to include generalized exponentials as noted above for L2[−1, 1]. In
Hm[−1, 1] the extended result is

THEOREM 2.1. Let J be a countable index set and Λ = {λj | j ∈ J} a
sequence of distinct complex numbers satisfying the conditions imposed
on systems of hyperbolic type in the discussion accompanying (1.02) and
such that E(Λ), defined as in (2.06), forms a Riesz basis for L2[−1, 1].
Let Σ = {σ1, σ2, . . . , σm} be a set of distinct complex numbers not
included in Λ, and let

(2.12) P (λ) =
m∏

k=1

(λ− σk).

Then

(2.13) E(Λ,Σ) =
{
eλt/P (λ) | λ ∈ Λ

}⋃{
eσt | σ ∈ Σ

}
forms a Riesz basis for Hm[−1, 1].

We will not repeat the proof here but we will indicate the basic
idea, which is very simple. Given z ∈ Hm[−1, 1], f = P (D)z ∈
L2[−1, 1], where D denotes differentiation and P is the polynomial
(2.12). We expand f in a series similar to (2.07) and let ζk = z(k)(0),
k = 0, 1, 2, . . . , (m− 1). Solving the initial value problems

P (D)z =
∑
j∈J

fjpj , pj(t) ≡ eλjt, j ∈ J,

z(k)(0) = ζk, k = 0, 1, 2, . . . ,m− 1,

in a term by term fashion readily yields an expansion of z in terms of
the functions in E(Λ,Σ), as shown in (2.13).

We turn next to a comparable result for the spacesH−m[−1, 1], which
is also proved in [16] and bears the same relationship to deficient hyper-
bolic systems as the preceding theorem does to augmented hyperbolic
systems, as will be made clear in later sections.

THEOREM 2.2. Let Λ and E(Λ) have the properties indicated in the
preceding theorem. Let a new sequence be obtained from Λ by deletion



CANONICAL REPRESENTATIONS 139

of m of the λ in Λ, the deleted set being indicated by the symbol
Σ ≡ {σ1, σ2, . . . , σm}. Then the functions P (λ)eλt, λ ∈ Λ − Σ, which
we will collectively refer to as E(Λ−Σ), constitute a Riesz basis for the
space H−m[−1, 1].

Again, we refer the reader to [16] for the complete proof, but we will
indicate what the proof is based on. We define P (λ), P (D) as before
(but with reference to deleted elements of Λ now) and we let Q (D) be
the adjoint differential operator for P (D) relative to the bilinear form
〈 , 〉 introduced in (2.03). We consider y solving

(2.14)
(Q (D)y)(s) = f(s), f ∈ L2[−1, 1],

y(k)(−1) = 0, k = 0, 1, 2, . . . ,m− 1.

From the fact that the roots of Q are −σj , we can see that we have

y(k)(1) = 0, k = 0, 1, 2, . . . ,m− 1,

and, hence, y ∈ D−m[−1, 1], just in case

(2.15)
∫ 1

−1

eσjsf(s) ds = 0, j = 1, 2, . . . ,m.

We recall that elements z in H−m[−1, 1] ⊂ Dm[−1, 1] are continuous
linear functionals on D−m[−1, 1]. But, from (2.02), it is also clear that
such functionals can be represented in the form
(2.16)

�(y) =
∫ 1

−1

(s)(Q (D)y)(s) ds =
∫ t

−1

ζ(s)f(s) ds, ζ ∈ L2[−1, 1],

where Q is the adjoint operator for P introduced earlier.

The norm of z in H−m[−1, 1] is equivalent to

(2.17) �ζ� ≡

∣∣∣∫ 1

−1
ζ(s)f(s) ds

∣∣∣
‖y‖L2[−1,1]

.

Since ζ ∈ L2[−1, 1] and E(Λ) is a Riesz basis for that space, we have
the expansion

ζ(t) =
∑
j∈J

ζje
λjt ≡

∑
λ∈Λ

ζλe
λt,
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convergent in L2[−1, 1], {ζj} ∈ �2(J) (equivalently, {ζλ ∈ �2(Λ)}). But,
in view of (2.15) and (2.16),

(2.18) �
∑

λ∈Λ−Σ

ζλe
λt −

∑
λ∈Λ

ζλe
λt� = 0.

Rewriting (2.16) in the form

�(y) =
∫ 1

−1

(P (D)ζ(s))y(s) ds,

we see that z = P (D)ζ and, in the H−m[−1, 1] norm, equivalent to
�ζ�,

z = P (D)ζ = P (D)
∑

λ∈Λ−Σ

ζλe
λt =

∑
λ∈Λ−Σ

ζλP (λ)eλt.

Distributions in H−m[−1, 1] may be thought of as m-th derivatives
of functions in L2[−1, 1], or as the result of applying an m-th order
operator P (D) to such functions. Such operators P (D) : L2[−1, 1] →
H−m[−1, 1] are bounded and boundedly invertible on domain D in
the space L2[−1, 1] obtained by specifying the values of m continuous
linear functionals on L2[−1, 1] which are linearly independent over the
m-dimensional kernel of P (D).

One may then proceed to identify H−m(−∞,∞) with distributions
whose Fourier transforms have the form (|λ|m + 1)ϕ(λ), with ϕ(λ) in
L2(−∞,∞), H−m[−1, 1] consisting of restrictions of elements of the
space H−m(−∞,∞) to [−1, 1].

3. Scalar linear functional equations of neutral type and
integral order. We will begin by studying scalar linear neutral
equations of non-negative integral order m on (w.l.o.g.) the interval
[−1, 1]:

(3.01)

m∑
k=0

ckζ
(k)(t+ 1) +

m∑
k=0

dkζ
(k)(t− 1)

+
m∑

k=0

∫ 1

−1

ζ(k)(t+ s) dvk(s) = u(t),
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where u is the control term. The ck, dk are scalar coefficients with

cm �= 0, dm �= 0,

and the vk are functions of bounded variation on [−1, 1] which may be
assumed right continuous. The basic requirement for the initial value
problem consisting of (3.01) and a specified initial state

(3.02) ζ(t+ s)
∣∣∣∣ t=0 = ζ0(s), ζ0 ∈ Hm[−1, 1],

should constitute a well-posed problem is that vm should satisfy the
second part of condition (2.10) of the preceding section.

We have seen in the preceding section that there are various ways in
which the elements of the space Hm[−1, 1] may be represented. There
is comparable freedom in the expression of a given neutral equation
(3.01). This leads us to adopt a standard form compatible with the
way in which we have chosen to represent elements of Hm[−1, 1]. First
of all, each of the integrals∫ 1

−1

ζ(k)(t+ s) dvk(s), k = 0, 1, . . . ,m− 1,

can be integrated by parts m− k times to yield an integral of the form∫ 1

−1

ζ(m)(t+ s)ṽk(s) ds, ṽk ∈ Hm−k−1[−1, 1],

plus boundary terms involving ζ(j)(t± 1), j = k, k + 1, . . . ,m− 1. As
a result, (3.01) can be rewritten as

(3.03)

cmζ
(m)(t+1) + dmζ

(m)(t−1) +
m−1∑
k=0

(
c̃kζ

(k)(t+1) + d̃kζ
(k)(t−1)

)

+
∫ 1

−1

ζ(m)(t+s) dvm(s) +
∫ 1

−1

ζ(m)(t+s)ṽ(s) ds = u(t),

where

ṽ =
m−1∑
k=0

ṽk ∈ L2[−1, 1].
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Next, selecting an arbitrary number c ∈ [−1, 1], we can write

ζ(k)(t+ 1) = ζ(k)(t+ c) +
∫ 1

c

(1 − s)m−k−1

(m− k − 1)!
ζ(m)(t+ s) ds,

k = 0, 1, . . . ,m− 1,

and ζ(k)(t−1) can be expressed similarly. Then (3.03) can be rewritten,
redefining the coefficients ck, as

(3.04)
ζ(m)(t+ 1) + cmζ

(m)(t− 1) +
m−1∑
k=0

ckζ
(k)(t+ c)

+
∫ 1

−1

ζ(m)(t+ s) dv(s) = u(t),

where we have absorbed the functions ṽ(s) and

(±1 − s)m−k−1

(m− k − 1)!
, k = 0, 1, . . . ,m− 1,

into the function of bounded variation v(s), which now satisfies the
second part of (2.10) with vm replaced by v.

If we let

z(t, s) = ζ(t+ s), t ∈ (−∞,∞), s ∈ [−1, 1],

it is clear that the functional equation (3.04) is equivalent to the partial
differential equation

(3.05)
∂zm

∂t
(t, s) =

∂zm

∂t
(t, s),

with the boundary conditions
(3.06)

zm(t, 1) + cmz
m(t,−1) +

m−1∑
k=0

ckz
k(t, c) +

∫ 1

−1

zm(t, s) dv(s) = u(t)

and the differential equations

(3.07)
dzk

dt
(t, c) = zk+1(t, c), k = 0, 1, . . . ,m− 1.
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The form (3.05), (3.06), (3.07) of our system allows us to place it in
the framework of strongly continuous semigroups in the Hilbert space
Hm[−1, 1]. Indeed, the system takes the form

dẑ

dt
= Q ẑ + b̂u, ẑ ∈ Hm[−1, 1],

where (with z0(t, c) ≡ z(t, c))

ẑ(t) = (z(t, c), z1(t, c), . . . , zm−1(t, c), zm(t, ·)),

A is the operator defined by

(3.08) A ẑ =
(
z1(t, c), z2(t, c), . . . , zm(t, c),

∂zm

∂s
(t, ·)

)

on the domain consisting of ẑ ∈ Hm+1[−1, 1] for which the homoge-
neous counterparts of the boundary condition (3.06) holds, and b̂ is the
admissible control input element (cf. [3, 21, 23]) such that

〈ŷ, b̂〉 = ym(1), ŷ ∈ D (A ∗) ∈ Hm+1[−1, 1].

We complete this section with a discussion of scalar neutral functional
equations of negative order −m,m = 1, 2, 3, . . . . We have seen that
scalar neutral equations of non-negative order m, with delay interval
normalized to length 2, may be viewed as having as their basic state
spaces the spaces Hm[−1, 1]. We will see in the next section that
their exponential eigenfunctions form a basis for those spaces, just as
described in Theorem 2.1. Since we have a parallel for Theorem 2.1 for
the spaces H−m[−1, 1] in Theorem 2.2, it will not be surprising that
there should be neutral functional equations with H−m[−1, 1] as their
basic state spaces. We define a scalar neutral equation of negative order
−m to be an equation of the form

(3.09)
∫ 1

−1

z(t, s) dν(s) = u(t),

where ν has support in [−1, 1], has an m-th derivative, in the distri-
butional sense, which is a function of bounded variation on (−∞,∞)
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(clearly, it continues to have support in [−1, 1]), which we will take to
be right continuous, and

(3.10) νm(−1) = νm(−1+) �= 0, νm(1−) exists and �= 0.

Of course, we need to demonstrate that equations of this sort give
well-posed initial value problems when we specify an initial state in
H−m[−1, 1]. The proof of this is an indirect one, but not complicated.
We will give only a sketch here.

As a convolution equation we can write (3.09) in the form

(3.11) N ∗ z = u, u ∈ L2
loc (−∞,∞).

We consider the differential equation, written in convolution form,

(3.12) δ
(m)
{0} (0) ∗ ζ = w, w ∈ H−m

loc (−∞,∞).

Multiplying (3.12), in the convolution sense, on the left by N , gives

(3.13) (N ∗ δ(m)
{0} (0)) ∗ ζ =

(
δ
(m)
{0} (0) ∗N

)
∗ ζ = N ∗ w.

Let us give an initial state z0 ∈ H−m[−1, 1] for the equation (3.11),
and let u ∈ H2

loc (−∞,∞) as indicated. Then we solve the equation (as
we may, nonuniquely, from the remarks at the end of Section 2)

(3.14) δ
(m)
{0} (0) ∗ ζ0 = z0

to obtain an initial state ζ0 ∈ L2[−1, 1] for (3.13). We also solve

(3.15) N ∗ w = u,

with the given u ∈ L2
loc (−∞,∞), to obtain w ∈ H−m(−∞,∞). Then

(3.13) becomes

(3.16)
(
δ
(m)
{0} (0) ∗N

)
∗ ζ = u,

a standard neutral equation of zero order which can be seen to have
form

ζ(t+ 1) + γζ(t− 1) +
∫ 2

−2

ζ(t+ s) dg(s),
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where g is a function of bounded variation having the property (3.10)
(actually, it suffices to assume only the second part of (3.10) here)
and γ �= 0. Equation (3.13) with initial state ζ0 determines a solution
ζ ∈ L2

loc (−∞,∞) with exponential growth (or decay) determined by
γ, g. Then z = δ

(m)
{0} (0)∗ζ ∈ H−m(−∞,∞) is the desired solution of the

original equation (3.11) with the given initial state z0 ∈ H−m[−1, 1].
Thus, existence, uniqueness, etc., for the negative order equation (3.09)
are related to comparable questions for (3.13), which are very well
studied in the literature.

4. Scalar neutral control systems. Our purpose in this section
is to study the system (3.05), (3.06), (3.07) and the analogous system
associated with the equation (3.09), as a control system, and to set forth
its properties from this point of view in order to obtain the background
we need for the main results of the next section. We consider the
systems of non-negative order first. Accordingly, we suppose that we
have

(4.01)
∂zm

∂t
(t, s) =

∂zm

∂t
(t, s),

with the boundary conditions (specializing c in (3.05) (3.07) to 0)
(4.02)

zm(t+ 1) + cmz
m(t,−1) +

m−1∑
k=0

ckz
k(t, 1) +

∫ 1

−1

zm(t, s) dv(s) = u(t),

and the differential equations

(4.03)
dzk

dt
(t, 0) = zk+1(t, 0), k = 0, 1, . . . ,m− 1.

THEOREM 4.1. Let it be assumed that cm �= 0 and that v(s) is a
function of bounded variation satisfying the condition (2.10) of Section
1. Let σk, k = 1, 2, . . . ,m, and λj, j ∈ J , be the (assumed separated)
zeros of the characteristic function

(4.04) χ(λ) = λmeλ + cmλ
me−λ +

m−1∑
k=0

ckλ
k +

∫ 1

−1

λmeλs dv(s),
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Then the system (4.01), (4.02), (4.03) can be equivalently represented
as a system in �2 of the form

(4.05)
dz̃k

dt
= σkz̃k + b̃ku, k = 1, 2, . . . ,m

(these equations are vacuous if m = 0, of course),

(4.06)
dzj

dt
= λjzj + b+ ju, j ∈ J,

where the “control distribution coefficients” b̃k, bj are bounded and
bounded below.

REMARK . The exponential functions eσks, eλjs corresponding to the
zeros of χ(λ), where χ(iλ) factors into the product of a polynomial of
degree m and a function of sine type, form a Riesz basis for the space
Hm[−1, 1]; equations (4.05), (4.06) constitute the expression of (4.01),
(4.02), (4.03) in terms of that basis.

PROOF. Recall 〈 , 〉m, the bilinear product in Hm[−1, 1], as defined
in (2.04), and consider a solution of (4.01), (4.02), (4.03), initially with
u(t) ≡ 0 and initial state z(0, s) = z0(s) in the domain of the operator
A , as described in (3.08), so that solutions have all derivatives shown
in the L2 sense, at least. Letting w(t, s) be a smooth function of t, s,
we compute that

(4.07)
d

dt
〈z(t, ·), w(t, ·)〉m

= z(t, 0)
dw

dt
(t, 0) +

m−2∑
k=0

z(k+1)(t, 0)
(
w(k)(t, 0) +

dw(k+1)

dt
(t, 0)

)

+ z(m)(t, 0)w(m−1)(t, 0)

+
∫ 1

−1

(
∂z(m)

∂s
w(m)(t, s)+z(m)(t, s)

∂w(m)

∂t
(t, s)

)
ds.

Noting that, for σ ∈ [−1, 1],

z(m)(t, 0) = z(m)(t, σ) −
∫ σ

0

∂z(m)

∂s
(t, s) ds,
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we have

(4.08)
z(m)(t, 0) =

1
2

∫ 1

−1

z(m)(t, s) ds− 1
2

∫ 1

−1

∫ σ

0

∂z(m)

∂s
(t, s) ds dσ

=
∫ 1

−1

z(m)(t, s) ds− 1
2

∫ 1

−1

(1 − |s|)∂z
(m)

∂s
(t, s) ds.

Substituting (4.08) into (4.07), integrating by parts and using the
equation (4.01), we obtain

(4.09)
d

dt
〈z(t, ·), w(t, ·)〉m

= z(t, 0)
(
dw

dt
(t, 0) − w(m)(t, 1)

)

+
m−2∑
k=0

z(k+1)(t, 0)
(
w(k)(t, 0) +

dw(k+1)

dt
(t, 0) − ck+1w

(m)(t, 1)
)

− z(m)(t,−1)
(
cmw

(m)(t, 1) + w(m)(t,−1)
)

+
∫ 1

−1

z(m)(t, s)
(
∂w(m)

∂t
(t, s) −−dw

(m)

ds
(t, s)

− 1
2
sgn (s)w(m−1)(t, 0) − v(s)w(m)(t, 1)

)
ds.

The derivative (4.09) is identically zero for all solutions z of (4.01),
(4.02), (4.03) just in case w satisfies the adjoint system

∂w(m)

∂t
(t, s) =

∂w(m)

∂s
(t, s) +

1
2
sgn (s)w(m−1)(t, 0) − v(s)w(m)(t, 1),

(4.10)

dw

dt
(t, 0) = w(m)(t, 1),(4.11)

dw(k)

dt
(t, 0) = ckw

(k−1)(t, 0), k = 1, 2, . . . ,m− 1,(4.12)

cmw
(m)(t, 1) + w(m)(t,−1) = 0.(4.13)

Once this adjoint equation has been identified, it is a simple matter to
verify from continuity considerations that the derivative (4.09) contin-
ues to be identically zero if z and w are solutions of the (homogeneous)
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original and adjoint equations, respectively, lying in the state space
Hm[−1, 1] for each t. It is also straightforward to see that, when z
satisfies (4.01), (4.02), (4.03) with u(t) in general nonzero, we have

(4.14)
d

dt
〈z(t, ·), w(t, ·)〉m = w(m)(t, 1)u(t).

Let us define (cf. (2.13))

p̃k(t) = eσkt, k = 1, 2, . . . ,m,(4.15)
pj(t) = eλjt/P (λj), j ∈ J.(4.16)

Our assumptions, along with Theorem 2.1, guarantee that these expo-
nential functions form a basis for Hm[−1, 1]. Correspondingly, we have
the dual Riesz basis of biorthogonal functions q̃k(t), qj(t). If we expand
a solution z of (4.01), (4.02), (4.03) in terms of the functions (4.15),
(4.16), viz.:

(4.17) z(t, s) =
m∑

k=1

z̃k(t)p̃k(s) +
∑
j∈J

zj(t)pj(s),

(4.18) z(�)(t, 0) =
m∑

k=1

σ�z̃k(t) +
∑
j∈J

λ�zj(t), � = 0, 1, . . . ,m− 1,

and successively use

w(t, s) = e−σktq̃k(s), k = 1, 2, . . . ,m,
w(t, s) = e−λjtqj(s), j ∈ J ;

in the bilinear product computation (4.14), we find that equations
(4.05) and (4.06) are satisfied with

b̃k = q̃
(m)
k (1), k = 1, 2, . . . ,m,(4.19)

bj = q
(m)
j (1), j ∈ J.(4.20)

It should be noted that the biorthogonal functions q̃k, qj are eigen-
functions of the operator (cf. (3.08)) A ∗ (−A∗ is the generator of the
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adjoint semigroup and, thus, is described by equations (4.10) (4.13))
whose domain is a subset of H(m+1)[−1, 1]. Consequently, the values
appearing on the right-hand sides of (4.19) and (4.20) are well defined
for k and j, as indicated.

Now we show that the b̃k, bj are bounded and bounded below (in par-
ticular, none of these are zero). For particular instances of the function
of bounded variation v appearing in (4.02) it would be possible to do
this by obtaining asymptotic formulae for the biorthogonal functions
q̃k, qj , at least insofar as the asymptotic boundedness properties as
j gets large are concerned. But this is a very unsatisfactory process
because of length, if nothing else. We will use a controllability argu-
ment. Considering (4.05), (4.06) as a control system in �2, indexed by
k = 1, 2, . . . ,m and j ∈ J , then states at time zero and at some later
time, say T , are related by

z̃k(T ) = eσkT z̃k(0) + b̃k

∫ T

0

eσk(T−t)u(t) dt, k = 1, 2, . . . ,m,

zj(T ) = eλjT zj(0) + bj

∫ T

0

eλj(T−t)u(t) dt, j ∈ J.

Results from [3] on admissible input elements along with density
properties of the zeros of χ(λ) following from Rouche’s theorem show
that, given a state z(0) in �2, we will have z(t) ∈ �2, t ∈ [0, T ], for
any u ∈ L2[0, T ] just in case the b̃k, bj are uniformly bounded (clearly,
this is only a restriction on the bj). On the other hand, if we consider
the problem of exact controllability, without loss of generality from the
initial state z(0) = 0 to terminal states z(T ), we are led, as in [11, 12],
e.g., to consider the moment problems

b̃k

∫ T

0

eσk(T−t)u(t) dt = z̃k(T ), k = 1, 2, . . . ,m,(4.21)

bj

∫ T

0

eλj(T−t)u(t) dt = zj(T ), j ∈ J.(4.22)

From the fact that the exponentials eλjt, j ∈ J , form a Riesz basis
for L2[−1, 1], and, hence, also for L2[0, 2], it can be seen quite readily
that the extended set, augmented by eσkt, is uniformly independent in
L2[−, 2 + ε] for any ε > 0, by which we mean that these functions form
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a Riesz basis for a closed subspace of that space. Then, expressing u(t)
in terms of functions biorthogonal to eσkt, eλjt, as in [11, 12], e.g.,
(these exist but are not unique; one would normally use those lying in
the same closed subspace as is spanned by the exponentials in question,
which are unique) one can see that it is possible to reach all states z(T )
in �2, T = 2 + ε > 2, just in case the b̃k, bj are all nonzero and, in fact,
uniformly bounded below.

Since (4.15), (4.16) is equivalent to the original system (4.01), (4.02),
(4.03), in that the Riesz basis property of the exponentials involved
shows that (4.17), (4.18) defines an isomorphism between �2 and
Hm[−1, 1], the desired properties of the b̃k, bj in (4.15), (4.16) must
follow if we can establish admissibility and exact controllability for
(4.01), (4.02), (4.03), considered as a control system in the space
Hm[−1, 1].

As far as admissibility is concerned, this is a standard result. Given
an initial state ζ0(s) in Hm[−1, 1], the property (2.10) of v(s) allows
one to establish, for u(t) locally square integrable, the existence and
uniqueness of a solution of (4.01), (4.02), (4.03), which may also be
written in the form

(4.23)
ζ(m)(t+ 1) + cmζ

(m)(t− 1) +
m−1∑
k=0

ckζ
(k)(t+ 1)

+
∫ 1

−1

ζ(m)(t+ s) dv(s) = u(t),

for t in a sufficiently small interval [0, τ ] by means of a very standard
fixed point argument. The linearity of the equations allows one to see
that τ may be taken independent of ζ0 and, be repeated repetition of
the process, solutions can be extended to any interval. There is no need
for us to give further details here.

The controllability question for (4.01), (4.02), (4.03) is also a very
easy one. One introduces a new input variable into (4.23) by means of
a “feedback” relation

(4.24)
u(t) = cmζ

(m)(t− 1) +
m−1∑
k=0

ckζ
(k)(t+ 1)

+
∫ 1

−1

ζ(m)(t+ s) dv(s) + f(t),
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thereby realizing a new, highly simplified, equation

(4.25) ζ(m)(t+ 1) = f(t).

Considering first an interval 0 ≤ t ≤ τ , it is easy to see that if we
take f(t) to be a polynomial in t of degree ≤ n − 1 on this interval
we can set up a one-to-one linear relationship between the coefficients
of that polynomial and ζ(k)(1 + τ ), k = 0, 1, . . . ,m− 1. Then, taking
f(t) to be an arbitrary element of L2[τ, τ + 2], we can realize ζ as
an arbitrary element of Hm[τ, τ + 2]. Then we can determine u(t)
from f(t) via (4.24) to recover the required control for (4.23). In the
context of (4.01), (4.02), (4.03) this is precisely the statement that we
can pass between arbitrary elements of Hm[−1, 1] using a control u(t)
in L2[0, 2 + τ ], τ > 0, assuming the initial state given at time t = 0.
It is also easy to see that we can bound the norm of u in that space
in terms of the norms of the initial and terminal states in Hm[−1, 1].
For a neutral equation of order zero, control interval [0, τ + 2] can be
reduced to [0, 2].

Thus, we have admissibility and exact controllability for (4.01),
(4.02), (4.03) and, therefore, as we have noted, for (4.05), (4.06), so
that the b̃k, bj must be bounded above and below, thus completing the
proof of the theorem.

THEOREM 4.2. A system (3.09) of negative order −m can be equiva-
lently represented as a system in �2 of the form

(4.26)
dzj

dt
= λjzj + bju, λj ∈ Λ − Σ,

where E(Λ − Σ) is a Riesz basis of exponentials for H−m[−1, 1], as
described in Section 2, and the “control distribution coefficients” b̃k, bj
are bounded and bounded below.

PROOF. As in Section 3, we replace the equation N ∗ z = u by
(δ(m)

{0} (0) ∗ N) ∗ ζ = u and solve δ
(m)
{0} ∗ ζ0 = z0 to obtain an initial

state for the resulting zero order neutral equation. Given a terminal
state z1 ∈ H−m[−1, 1], we solve δ(m)

{0} ∗ ζ1 = z1 to obtain a terminal
state which we then see, from the discussion earlier, can be reached by
employing a control u ∈ L2[0, 2]. Then ζ(t + 2) = ζ1(t), t ∈ [−1, 1];
applying the m-th derivative to ζ, ζ1, obtains the trajectory z for
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the original equation of order −m with the desired terminal state
z1 ∈ H−m[−1, 1]. Since N ∗ z = u can be written in the form
(4.06) using only the λj ∈ Λ − Σ by expanding z in terms of the
exponentials P (λj)eλj (cf. Theorem 2.2), the results on boundedness
and boundedness below of the control input coefficients bj follow from
the same arguments as used above for positive order equations.

5. Transformation to control canonical form; spectral as-
signment. Let us start with a system of augmented hyperbolic type,
as described in Section 1,

(5.01) ẋ = Ax+ gu, x ∈ X,

wherein g ∈ X or else is an admissible input element as described in
[3], for example, and expanded on a little more in the paragraphs to
follow. The operator A has eigenvalues σ1, σ2, . . . , σm and λj , j ∈ J ,
as described earlier. Assume that the corresponding eigenvectors ϕ̃k,
k = 1, 2, . . . ,m, ϕj , j ∈ J , form a Riesz basis for X, so that

x =
m∑

k=1

x̃kϕ̃k +
∑
j∈J

xjϕj , x ∈ X,(5.02)

g =
m∑

k=1

g̃kϕ̃k +
∑
j∈J

gjϕj ,(5.03)

the latter expansion to be understood as in [3] if g is not an element of
X. We also make the further

ASSUMPTION 5.1. The σk, k = 1, 2, . . . ,m, and λj, j ∈ J , are sepa-
rated and are the zeros of a function χ(λ) such that χ(iλ) is a function
of sine type having the form (4.04) for coefficients c0, c1, . . . , cm and a
function of bounded variation, v, having the property (2.10).

REMARK . It is not easy to give an adequately general sufficient
condition for Assumption 5.1 to be valid, mainly because it is difficult
to characterize Laplace transforms of bounded measures dv. In most
cases v and the coefficients ck will be reasonably apparent from analysis
of the system (5.01).
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We then have the equivalent representation of (5.01) as a system in
the space �2:

dx̃k

dt
= σkx̃k + g̃ku, k = 1, 2, . . . ,m,(5.04)

dxj

dt
= σjxj + gju, j ∈ J.(5.05)

If b ∈ X we have, of course,
∑

j∈J |gj |2 <∞, while if g is an admissible
input element, the characterization in [3, 21, 22] shows that gj , j ∈ J ,
must be bounded. In either case,

(5.06) g̃k = 〈g, ψ̃k〉, k = 1, 2, . . . ,m, gj = 〈g, ψj〉, j ∈ J,

where the ψ̃k, ψj , are the elements of the dual Riesz basis biorthogonal
to the ϕ̃k, ϕj .

The main result which we wish to establish concerns spectral as-
signment in augmented or deficient hyperbolic systems by means of
continuous linear, or otherwise admissible (cf. [17]) state feedback.
We will again treat the augmented case, as described in the preced-
ing paragraphs, first. Continuous linear state feedback means that we
synthesize the control u in (5.01) by means of a feedback relation

(5.07) u(t) = 〈x(t), f〉X ,

where, parallel to the more specialized Hm[−1, 1] situation described
in Section 3, 〈x(t), f〉X = (x(t), f̄)X , where ( , )X is the inner product
in the space X; thus, 〈 , 〉 is linear in both x and f . In other cases of
interest, f is an admissible output element, as described in [3, 21, 22],
in a certain restricted class of linear functionals on X and 〈 , 〉 denotes
the linear functional relationship. In either case, we have an expansion
(cf. (5.03), (5.06)), convergent in X when f ∈ X,

f =
m∑

k=1

f̃kψ̃k +
∑
j∈J

fjψj ,(5.08)

f̃k = 〈ϕ̃k, f〉X , k = 1, 2, . . . ,m, fj = 〈ϕj , f〉X , j ∈ J.(5.09)

Admissibility again requires that the f̃k, fj be uniformly bounded.
Such an element f can be taken in a larger Hilbert space W with norm



154 D.L. RUSSELL

‖ ‖W in which X is densely and continuously embedded, each element
of W being the limit, with respect to ‖ ‖W , of a sequence {fk} in X
and 〈x, f〉X = limk→∞〈x, fk〉X , defined for x in a subspace V densely
and continuously embedded in X with respect to which W is the dual
relative to X (see [7], e.g.), so that we have the familiar inclusions

V ⊂ X ⊂W.

It is further required that D (A) ⊂ V so that f , as a linear functional,
is defined on a domain which includes that of A. The corresponding
requirement for the admissibility of the input element g is that g ∈
W and has domain including D (A∗), which is also required to be
contained in V . The additional requirements imposed in [3, 21, 22]
are covered by our assumptions on the spectral decomposition of A and
the boundedness assumptions, imposed earlier, on the coefficients g̃k,
gj , f̃k, fj in (5.02), (5.03), (5.08), (5.09).

In all cases described, combining (5.01) with (5.07) yields a closed
loop system

(5.10) ẋ = (A+ g ⊗ f)x ≡ Âx,

where g ⊗ f denotes the dyadic operator

g ⊗ f ≡ 〈x, f〉Xg.

We should remark that, in general, further conditions must be met in
order that Â should generate a strongly continuous semigroup on X
when f and g are admissible elements rather than elements of X (see
[17], e.g.). These are automatically met in our present situation. Now,
suppose we specify another set of complex numbers

(5.11) ρ1, ρ2, . . . , ρm, τj , j ∈ J,

which are associated with coefficients d0, d1, . . . , dm and a function of
bounded variation w, also satisfying the condition (2.10), in the same
way as the original spectrum was associated with c0, c1, . . . , cm and the
function of bounded variation v. We ask: under what circumstances can
this sequence of complex numbers actually be realized as the spectrum
of Â in (5.10) by appropriate choice of f (assuming g given; given f
the problem would be to determine g similarly).
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THEOREM 5.2. Let the control distribution coefficients (5.02), (5.03)
for the system (5.01) all be nonzero. Then:

(i) By appropriate choice of the output element f ∈ X, one may re-
alize as eigenvalues of the closed loop system any collection of numbers
(5.11) for which

(5.12)
∑
j∈J

∣∣∣∣τj − λj

gj

∣∣∣∣
2

<∞;

(ii) If g is taken to be an admissible input element for which the con-
trol input coefficients gj are bounded and bounded below, the condition
(5.12) may be replaced by the weaker requirement that the differences
τj − λj, j ∈ J , should be square summable;

(iii) If, in addition to what is assumed under (ii), f is permitted to
be an admissible output element, then any spectrum (5.11), subject to
the conditions set forth there, can be realized in the closed loop system.

PROOF. Our assumptions imply that we can find a system (4.01),
(4.02), (4.03) with associated operator A described by (3.08) such that
A has precisely the eigenvalues σk, k = 1, 2, . . . ,m, σj , j ∈ J . From
the Riesz basis property of the associated exponentials (cf. Theorem
2.1)

(5.13)
p̃k(t) = eσkt, k = 1, 2, . . . ,m,
pj(t) = eλjt/P (λj), j ∈ J,

in Hm[−1, 1], we see that the linear operator T0 : Hm[−1, 1] → X given
by

(5.14)
T0(p̃k) = ϕ̃k, k = 1, 2, . . . ,m,

T0(pj) = ϕj , j ∈ J,

is an isomorphism. Setting x = T0y, (5.01) is carried into

(5.15) ẏ = T−1
0 AT0y + T−1

0 gu = A y + T−1
0 gu,

which is in the form (4.01), (4.02), (4.03) except, in general, for the
control term.
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Let us first consider the case wherein g, f ∈ X. Then

(5.16) T−1
0 g = ĝ(s) =

m∑
k=1

g̃kp̃k(s) +
∑
j∈J

gjpj(s)

is convergent in Hm[−1, 1] and has a representation

ĝ(s) = (ĝ(0), ĝ′(0), . . . , ĝ(m−1)(0), ĝ(m)(·)).
Taking account of the form of A as shown in (3.05), (3.06), (3.07),
(5.15) becomes

∂y(m)

∂t
(t, s) =

∂y(m)

∂x
(t, s) + ĝ(m)(s)u(t),(5.17)

dy(k)

dt
(t, 0) = y(k+1)(t, 0) + ĝ(k)(0)u(t), k = 0, 1, . . . ,m− 1,

(5.18)

together with the homogeneous boundary condition
(5.19)

y(m)(t, 1) + cmy
(m)(t,−1) +

m−1∑
k=0

cky
(k)(t, 0) +

∫ 1

−1

y(m)(t, s)v̂(s) ds = 0.

In the above process the feedback relation (5.07) transforms via

(5.20) u(t) = 〈x(t), f〉X = 〈T0y(t), f〉X = 〈y(t), T ∗
0 f〉Hm[−1,1].

The element f ∈ X is expressed via (5.08), (5.09) as a convergent series
in the dual basis elements ψ̃k, ψj , biorthogonal to the eigenvectors ϕ̃k,
ϕ̃j of A. Letting q̃k(), k = 1, 2, . . . ,m, qj(s), j ∈ J , be the dual Riesz
basis for Hm[−1, 1] biorthogonal to the p̃k, pj , as shown in (5.13), we
see easily that

(5.21)
T ∗

0 ψ̃k = q̃k, k = 1, 2, . . . ,m,
T ∗

0 ψj = qj , j ∈ J,

so that

(5.22) T ∗
0 f = f̂(s) =

m∑
k=1

f̃kq̃k(s) +
∑
j∈J

fjqj(s).
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At this point the whole problem of spectral assignment has been
transferred from (5.01), (5.07), to the system (5.17), (5.18), (5.19),
since the fact that T0 is an isomorphism guarantees that the eigenvalues
of the corresponding closed loop systems will be identical.

Next we will construct a transformation which carries (5.17), (5.18),
(5.19) into a system of the form (4.01), (4.02), (4.03), which serves as
the control canonical form for the original system (5.01). We have seen
that the control input coefficients for (4.01), (4.02), (4.03) are certain
complex numbers b̃k, bj , bounded and bounded away from zero. We
define a transformation T1 on Hm[−1, 1] by specifying

(5.23)
T1(b̃kp̃k) = g̃kp̃k, k = 1, 2, . . . ,m,
T1(bjpj) = gjpj , j ∈ J.

Since the b̃k, bj are bounded and bounded away from zero, since the
p̃k, pj form a Riesz basis for Hm[−1, 1], and since the g̃k, gj are square
summable under our present assumptions, T1 is bounded and one-to-
one and has an inverse T−1

1 defined on its range. It is clear, however,
that T−1

1 must be unbounded relative to the norm in Hm[−1, 1].

We transform (5.17), (5.18), (5.19) in the same way, setting

(5.24) y = T1z.

Since T1 commutes with A , (5.15) transforms to

(5.25) ż = A z + T−1
1 T−1

0 gu.

But (5.14), (5.23) shows that

T−1
1 T−1

0 g =
m∑

k=1

b̃kp̃k +
∑
j∈J

bjpj ,

so that the control distribution coefficients are the same as for (4.01),
(4.02), (4.03). We conclude that (5.24) transforms (5.17), (5.18), (5.19)
over to (4.01), (4.02), (4.03).

The feedback relation (5.07), (5.20), transforms to

(5.26) u(t) = 〈y(t), T ∗
0 f〉Hm[−1,1] = 〈z(t), T ∗

1 T
∗
0 f〉Hm[−1,1].
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Clearly,

(5.27)

T ∗
1 T

∗
0 f ≡ F (s) =

m∑
k=1

g̃kf̃k

b̃k
q̃k(s) +

∑
j∈J

gjfj

bj
qj(s)

≡
m∑

k=1

F̃k q̃k(s) +
∑
j∈J

Fjqj(s).

It will be observed that the square summability of the fj , together with
the fact that the bj are bounded and bounded below and (5.27), implies
that

(5.28)
∑
j∈J

|Fj/gj |2 <∞.

It is also clear that if F is given by the last expression in (5.27)
and (5.28) obtains, then we can find f so that the first identity in
holds.

The essential part of the proof lies in showing that, as we pass from
the system (4.01), (4.02), (4.03) to the closed loop system, which
we realize by adjoining the feedback relation (5.26), we may, in so
doing realize any closed loop eigenvalues (5.11), as described and
restricted there, which satisfy the additional condition (5.12). From
the specification of these desired eigenvalues, we know that there is
another system, in a form comparable to (4.01), (4.02), (4.03), which
has these eigenvalues, namely,

∂ζ(m)

∂t
(t, s) =

∂ζ(m)

∂s
(t, s), −1 < s < 1, −∞ < t <∞,(5.29)

dζ(k)

dt
(t, 0) = ζ(k+1)(t, 0), k = 0, 1, . . . ,m− 1,(5.30)

(5.31)

ζ(m)(t, 1) + dmζ
(m)(t,−1) +

m−1∑
k=0

dkζ
(k)(t, 0)+

∫ 1

−1

ζ(m)(t, s) dw(s) = 0.

If we make the designations

C = (c0, c1, . . . , cm−1, dv), D = (d0, d1, . . . , dm−1, dw),
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then (4.02) has the formal structure

(5.32) z(m)(t, 1) + cmz
(m)(t,−1) + 〈z, C〉m = u(t)

while (5.31) has the comparable form

(5.33) ζ(m)(t, 1) + dmζ
(m)(t,−1) + 〈ζ,D〉m = 0.

If we also write (cf. (5.27))

F = (F (0), F ′(0), . . . , F (m−1)(0), F (m), (·)),

then the feedback relation (5.26) assumes the form

(5.34) u(t) = 〈z, F 〉m.

The closed loop system obtained from substituting (5.34) into (5.32) is
then

(5.35) z(m)(t, 1) + cmz
(m)(t,−1) + 〈z, C − F 〉m = 0.

Since there is a one-to-one correspondence between elements C, D, etc.
and characteristic functions χ(λ) (cf. (4.04)), the systems (5.33) and
(5.35) have the same spectrum if and only if they are, in fact, identical,
which requires

(5.36) dm = cm, D = C − F.

In the case currently under consideration, F (m) ∈ L2[−1, 1]. The
coefficients ck − F (k)(0) can be matched to dk, k = 0, 1, . . . ,m − 1,
without restriction, by appropriate choice of F . But since dv and
dw are, in general, bounded measures, matching C − F to D entails
matching the measure dv(s)−F (m)(s) to dw(s), which can be done only
with some assumptions relating dv and dw, i.e., dv and dw may differ
only by an absolutely continuous measure ϕ(s) ds with ϕ ∈ L2[−1, 1].
There arises the question as to just when this is the case.

If we let

C = δ
(m)
{1} + cmδ

(m)
{−1} + C, D = δ

(m)
{1} + cmδ

(m)
{−1} +D,
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where δ(k) denotes the k-th order Dirac distribution and { } indicates
its support, then χ(λ), the characteristic function for (5.32), has the
form

χ(λ) = 〈eλ·, C〉,
while the characteristic function for the system (5.33) is

Ξ(λ) = 〈eλ·,D 〉.
Thus,

χ(λ) − Ξ(λ) = 〈eλ·, C − D 〉 = 〈eλ·, C −D〉
and D = C − F just in case

χ(λ) − Ξ(λ) = 〈eλ·, F 〉 = 〈eλ·, F 〉m.

Representing F in the form (5.27), clearly (cf. (5.13)),

(5.37) Fj = 〈eλj ·/P (λj), F 〉m, j ∈ J.

On the other hand, the exponentials eρkt, k = 1, 2, . . . ,m, eτjt/R (τj),
j ∈ J , also form a Riesz basis for H(m)[−1, 1], with corresponding dual
basis r̃k, k = 1, 2, . . . ,m, rj , j ∈ J , and we may also write

(5.38)
F ≡

m∑
k=1

Φ̃kr̃k(s) +
∑
j∈J

Φjrj(s),

Φj = 〈eλj ·/R (τj), F 〉m, j ∈ J,

where

R (λ) =
m∏

k=1

(λ− ρk).

LEMMA 5.3. There is a positive constant K such that, for k =
0, , 1, . . . ,m,

(5.39) |λk
j e

λjt/P (λj)−τk
j e

τjt/R (τj)| ≤ K|λj−τj |, j ∈ J, t ∈ [−1, 1].

PROOF. Let Lj be the straight line segment joining λj to τj in the
complex plane. For λ ∈ Lj , we let

P j(λ) =
m∏

k=1

(
λ−

(
λ− λj

τj − λj
ρk +

τj − λ

τj − λj
σk

))
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if τj �= λj ; otherwise, P j(λ) ≡ P (λ). Clearly,

P j(λj) = P (λj), P j(τj) = R (τj).

Then

λk
j e

λjt/P (λj) − τk
j e

τjt/R (τj) =
∫ λj

τj

d

dλ

(
λkeλt

P j(λ)

)
dλ.

For |λj | sufficiently large and t ∈ [−1, 1], the functions λkeλtP j(λ),
k = 0, 1, . . . ,m, are uniformly bounded in a neighborhood of Lj whose
radius is independent of j. Applying the Cauchy estimate for the
derivative and performing the indicated integrations, we have (5.39).

Continuation of Proof of Theorem 5.2. We have

(5.40) λm
j e

λj/P (λj) + cmλ
m
j e

−λj/P (λj) + 〈eλj ·/P (λj), C〉 = 0,

(5.41) τm
j e

τj/R (τj) + cmτ
m
j e

−τj/R (τj) + 〈eτj ·/R (τj), D〉 = 0.

From our earlier remark, D = C − F just in case

(5.42) τm
j e

τj/R (τj) + cmτ
m
j e−τj/R (τj) + 〈eτj ·/R (τj), C − F 〉 = 0.

Subtracting (5.40) from (5.42) gives
(5.43)

〈eτj ·/R (τj), F 〉 = τm
j eτj/R (τj) + cmτ

m
j e

−τj/R (τj) + 〈eτj ·/R (τj), C〉
− λm

j e
λj/P(λj)−cmλm

j e
−λj/P(λj)−〈eλj ·/P(λj), C〉.

Taking account of the form of C and applying the estimate (5.39), we
have

Φj = 〈eτj ·/R (τj), F 〉 = O(|λj − τj |).
Assuming that F lies in Hm[−1, 1], use of the estimate (5.39) again
shows that

(5.44)
Fj = 〈eλj ·/P (λj), F 〉

= 〈eτj ·/R (τj), F 〉 + 〈(eλj ·/P (λj) − eτj ·/R (τj)
)
, F 〉

= O(|λj − τj |),
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and we conclude that if (5.12) is true, then (5.28) is true also. Then,
as remarked earlier, we can achieve the relationship (5.27) between f
and F with f ∈ X and we have completed the proof of the first part of
the theorem.

We remark that the results so far proved can be obtained by a
different procedure developed by Sun in [19] and, in the zero order case,
were obtained by the present author in [14] using a similar procedure
to that just outlined.

The proof of part (ii) is really no different from that given above, the
only (agreeable) difference being that the transformation T1 in (5.23)
is boundedly invertible.

The proof of (iii) is trivial in the functional equation context; in fact,
we do not need to set cm = dm as assumed earlier in (5.36). Given
C,D, cm and dm, we simply set F = cmδ

(m)
{−1} +C − dmδ

(m)
{−1} −D. The

only question is whether f , the output element indirectly found, via
F and (5.27), for the original system, is admissible. From the results
in [3] (dualized from input to output), [21] and [22, with the density
results (cf. discussion preceding (4.21)) for the spectra of Theorem 4.1
and (5.11), it is sufficient to show that the coefficients fj , and, hence,
in view of (5.27) and the assumption that the gj are bounded below,
the Fj are bounded. From (5.40) (5.44),

Fj = 〈eλj ·/P (λj), C −D〉m.

Now

〈eλj ·/P (λj), C〉m =

(
cmλ

m
j e

−λj +
m−1∑
k=1

ckλ
k
j +
∫ 1

−1

eλjs dv(s)

)
/P (λj)

is bounded because P has degree m and v is a function of bounded
variation. The same argument applies with C replaced by D and cm
by dm, and we see that the Fj , hence the fj , are bounded.

Part (iii) of Theorem 5.2 almost says that we can pass from the
spectrum of Theorem 4.1 to (5.11) if the differences τj − λj are just
bounded. It does not quite say that, and there is good reason for it;
the Riesz basis property of exponentials in Hm[−1, 1], as described in
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Section 2, is not, in general, preserved by bounded perturbations of the
λj . The classical example is given by Levinson in [6], where he shows
that the exponential set

{
eπi[k+1/2+sgn (k+1/2)/4] | −∞ < k <∞} is not

a Riesz basis for L2[−1, 1].

THEOREM 5.4. The results of Theorem 5.2 remain valid for systems
(5.01) of deficient hyperbolic type.

SKETCH OF THE PROOF. Mappings T0 and T1 carrying system (5.01)
into a system corresponding to a neutral equation of negative order are
constructed in much the same way as they are in Theorem 5.2; there
is no need to repeat the process. It is sufficient to consider the details
of passing from a neutral system of order −m to another system of the
same type by means of linear feedback control synthesis.

Suppose we are given such a system, say

(5.45) N ∗ z = u, u ∈ L2
loc (−∞,∞),

and a second, homogeneous, system of the same (negative) order:

(5.46) M ∗ z = 0.

We use a procedure similar to that used at the end of Section 3. Let
P (λ) be a polynomial of degree m with distinct zeros σ1, σ2, . . . , σm

different from any of the zeros of the characteristic functions N (λ) of
(5.45) or the characteristic function M (λ) for (5.46). Multiplying both
equations, in the convolution sense, on the right by P (δ′{0}) yields

(P (δ′{0}) ∗N) ∗ ζ = P (δ′{0}) ∗ u ≡ w,(5.47)

(P (δ′{0}) ∗M)ζ = 0.(5.48)

Since M and N have the form indicated in (3.09), the equations (5.47)
and (5.48) are standard scalar neutral equations of order zero; they
correspond to systems consisting of (4.01) with m = 0 and respective
boundary conditions

z(t, 1) + cz(t,−1) +
∫ 1

−1

z(t, s) dν(s) = w(s)
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and

z(t, 1) + dz(t,−1) +
∫ 1

−1

z(t, s) dμ(s) = 0,

where ν and μ are functions of bounded variation as described in (2.10).
Writing (5.47) and (5.48) as (cf. (5.32), (5.33))

z(t, 1) + 〈z, cδ{−1} + C〉 = w,(5.49)
z(t, 1) + 〈z, dδ{−1} +D〉 = 0,(5.50)

a feedback relation

(5.51) w(t) = 〈z(t, ·), eδ{−1} + E〉
carries (5.49) into (5.50) just in case e = c − d and E = C − D.
Since P (λ) is a common polynomial factor of M (λ) and N (λ), if we
determine e and E in this way, P (λ) will be a factor of E (λ), the
characteristic function of eδ{−1} + E. Consequently,

eδ{−1} + E = P (δ′(0))F,

and the feedback relation

(5.52) u(t) = 〈z(t, ·), F 〉
then carries (5.45) into (5.46). The results of Theorem 5.2 apply to
(5.49), (5.50), and (5.51), the only special circumstance being that the
zeros σ1, σ2, . . . , σm are left invariant. All three parts of Theorem 5.2
will then have counterparts in Theorem 5.4. With a condition of the
form (5.12), which requires c = d, we can take e = 0 and E an element
of H0[−1, 1] = l2[−1, 1], and then F will be an element of H−m[−1, 1],
the state space for the systems (5.45), (5.46). This gives counterparts of
parts (i) and (ii). The counterpart of (iii) allows c and d to be different.
In this case, comparing with the originally given form (3.09) for neutral
equations of negative order, the feedback relation F will take the form

u(t) =
∫ 1

−1

z(t, s) dϕ(s),

where ϕ satisfies the conditions imposed on ν (with m = 0) in (3.10),
except that �= in the second condition of (3.09) for ν is replaced by =
in the corresponding conditions on ϕ.
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