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ABSTRACT. In this paper we investigate the reg-
ularity properties of the Fredholm equation φ(s) −∫ b

a
gα(|s−t|)k(s, t)φ(t)dt = f(s), a ≤ s ≤ b. The ker-

nel is the product of the smooth function k and the
singular function gα defined as gα(|s−t|) = |s−t|α−1,
for 0 < α < 1, and gα(|s − t|) = log |s − t|, for
α = 1. The forcing function f is in L∞. We ob-
tain a decomposition of the solution as the sum of
two functions one with a discontinuity reflecting
that of the forcing function and the other a reg-
ular function. Our results extend those of C. Schnei-
der [6], who assumes a condition that is stronger
than f ∈ C[a, b] ∩ Cm(a, b) (for some integer m).

1. Introduction. In this paper, we study the solution φ = φ(s) of
the Fredholm integral equation

(1.1) φ(s) −
∫ b

a

gα(|s− t|)k(s, t)φ(t) dt = f(s), a ≤ s ≤ b,

where gα satisfies

(1.2) gα(|s− t|) =
{ |s− t|α−1, if 0 < α < 1,

log |s− t|, if α = 1,

and k and f satisfy

(1.3) k ∈ Cm+1([a, b] × [a, b]), f ∈ L∞[a, b].

In order to describe regularity results for (1.1) we need to define
a class of functions and an auxiliary function. For 0 < α ≤ 1 and
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nonnegative integer m, we define C(m,α)[a, b] to be the class of all
functions x ∈ Cm[a, b] such that there exist constants A > 0 and
B > |a− b| with

(1.4)
∣∣∣x(m)(s) − x(m)(t)

∣∣∣ ≤ A

{ |s− t|α, if 0 < α < 1,
|s− t| log(B/|s− t|), if α = 1,

for all s, t ∈ [a, b]. Define the function h(s) = (s− a)(b− s). If 1 is not
an eigenvalue of the operator Kα, defined by

(1.5) (Kαφ)(s) =
∫ b

a

gα(|s− t|)k(s, t)φ(t) dt, a ≤ s ≤ b,

Schneider [6] proved that if k ∈ Cm+1([a, b] × [a, b]), f ∈ C(0,α)[a, b] ∩
Cm(a, b) and hif (i) ∈ C(0,α)[a, b], then the solution φ of (1.1) satisfies

φ ∈ C(0,α)[a, b] ∩ Cm(a, b), hiφ(i) ∈ C(0,α)[a, b], i = 0, 1, . . . ,m.

That this result also holds for the solution of the Hammerstein equation

(1.6) φ(s) −
∫ b

a

gα(|s− t|)k(s, t)ψ(t, φ(t)) dt = f(s), a ≤ s ≤ b,

where ψ satisfies a Lipschitz condition, is proved in [3]. Numerical
results for (1.1) and (1.6) are contained in [7] and [4].

In this paper we provide an analysis of (1.1) in the case of singular
f . In particular, we will merely assume that f ∈ L∞[a, b]. To do
this, we will decompose the solution into the sum of a discontinuous
part corresponding to the discontinuity in f and a regular part. The
regularity results are given in Sections 2 and 3, the main results being
Theorems 1 and 2. The numerical analysis based on the results of this
paper will be presented in a follow-up paper. Other characterizations
of the solution of the Fredholm integral equation have been studied in
[2] and [5].

2. Decomposition of the solution, 1/2 < α ≤ 1. We assume that
1 is not an eigenvalue of the operator Kα, considered as an operator
on L∞[a, b], so that (1.1) has a unique solution φ ∈ L∞[a, b]. Before
stating our main result, we introduce the notation

(2.1) f0 = f, f1 = Kαf, fi+1 = Kαfi, i ≥ 1.
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THEOREM 1. Let n ≥ 0 be an integer, k ∈ Cn+1([a, b] × [a, b]) and
f ∈ L∞[a, b]. Let 1/2 < α ≤ 1 and assume that 1 is not an eigenvalue
of Kα. Let φ be the solution of (1.1). Then

(2.2) φ =
2n∑
i=0

fi + u,

where u is the solution of the equation

(2.3) u(s) −
∫ b

a

gα(|s− t|)k(s, t)u(t) dt = f2n+1(s)

and satisfies the conditions

u ∈ C(0,α)[a, b] ∩ C n(a, b),(2.4)

hiu(i) ∈ C(0,α)[a, b], for i = 0, 1, . . . , n.(2.5)

The proof of Theorem 1 depends on the lemmas that follow. We
assume the hypotheses of Theorem 1 throughout the rest of the section
without further mention.

LEMMA 1. Assume that k ∈ C1([a, b] × [a, b]).

(i) If f ∈ L∞[a, b], then Kαf ∈ C(0,α)[a, b].

(ii) If f ∈ C(0,μ)[a, b], 0 < μ ≤ 1 − α < 1, and if, for all s, t in
[a, b], the inequality |mα(s) − mα(t)| ≤ const|s − t|α+μ holds, where
mα(s) =

∫ b

a
gα(|s− t|)k(s, t) dt, then Kαf ∈ C(0,α+μ)[a, b].

(iii) If the function f satisfies f ∈ C(0,μ)[a, b], 0 ≤ 1−α < μ ≤ 1 and
the limit limr→s f(r)(mα(s) −mα(r))/(s− r) exists and is continuous
as a function of s on [a, b], then Kαf ∈ C1[a, b].

PROOF. Lemma 1(ii), (iii) are due to Giraud [1] and are also used
by Schneider [6]. Lemma 1(i) is also in [1] and [6] in the case where
f ∈ C[a, b]. In the proof of (i), we let M denote a constant, the exact
value of which may change each time that it appears. Using the triangle
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inequality and the mean value theorem we have

|Kαf(s) − Kαf(r)| =

∣∣∣∣∣
∫ b

a

[gα(|s− t|)k(s, t) − gα(|r − t|)k(r, t)]f(t) dt

∣∣∣∣∣
≤

∫ b

a

|gα(|s− t|)k(s, t) − gα(|s− t|)k(r, t)
+ gα(|s− t|)k(r, t) − gα(|r − t|)k(r, t)||f(t)| dt

≤M

∫ b

a

gα(|s− t|)|k(s, t) − k(r, t)| dt

+M

∫ b

a

|gα(|s− t|) − gα(|r − t|)| dt

≤M |s− r|
∫ b

a

gα(|s− t|) dt

+M

∫ b

a

|gα(|s− t|) − gα(|r − t|)| dt
≡ T1 + T2.

Clearly, |T1| ≤M |s− r|, which is α-Hölder continuous. It only remains
to show that T2 is α-Hölder continuous. For T2 we assume, without
loss of generality, that a < s < r < b. Then, by a change of variables,
we have

|T2| = M

∣∣∣∣∣
∫ s

a

+
∫ r

s

+
∫ b

r

∣∣∣∣∣ = M

∣∣∣∣∣
∫ s−a

0

−
∫ r−a

r−s

+
∫ b−s

r−s

−
∫ b−r

0

gα(x) dx

∣∣∣∣∣
= M

∣∣∣∣∣
∫ b−s

b−r

+
∫ s−a

r−a

gα(x) dx

∣∣∣∣∣
≤M

∫ r−s

0

|gα(x)| dx,

where the last inequality uses the monotonicity of gα. Since this last
integral term equals

{
(r − s)α/α, if 0 < α < 1,
(r − s) log(r − s) − (r − s), if α = 1,

the term T2 is also α-Hölder continuous, completing the proof.
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The next lemma follows by a direct calculation and may be found in
[3]. We let δi,j = 1 for i = j, and 0 for i �= j.

LEMMA 2.

(i) (s− t) ∂
∂sgα(|s− t|) = (α− 1)gα(|s− t|) + δ1,α;

(ii) ∂
∂s

∫ t

a
gα(|s− y|) dy = gα(s− a) − gα(|s− t|);

(iii) d
dsmα(s) = k(s, a)gα(s− a) − k(s, b)gα(b− s) +

∫ b

a
[∂k(s, t)/∂t+

∂k(s, t)/∂s]gα(|s− t|) dt.

Lemma 1 easily implies our next lemma.

LEMMA 3.

(i) If f ∈ L∞[a, b], then fn ∈ C(0,α)[a, b], n ≥ 1.

(ii) If hf ∈ C1[a, b], then

d

ds
[Kα(hf)(s)] =

∫ b

a

gα(|s− t|) d
dt

(k(s, t)h(t)f(t)) dt

and

Kα(hf) =
∫ b

a

gα(|s− t|)k(s, t)h(t)f(t) dt ∈ C(1,α)[a, b].

(iii) If f ∈ C(0,α)[a, b], then
∫ b

a
gα(|s − t|)(s − t)k(s, t)f(t) dt ∈

C(1,α)[a, b].

PROOF. By (i) of Lemma 1, f1 = Kαf ∈ C(0,α)[a, b] and then, for
n ≥ 1, fn+1 ∈ C(0,α)[a, b], by Lemma 1 (see (2.1) for the definition of
fn+1). This proves (i). For (ii) and (iii) we only prove the case k ≡ 1.
The general case follows with minor modifications. Since h(b) = 0, an
integration by parts yields

(2.6) Kα(hf)(s) = −
∫ b

a

∫ t

a

gα(|s− t1|) dt1 d
dt

(h(t)f(t)) dt.
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Hence, by directly integrating with respect to t1 in (2.6) and then
differentiating, we have

∂

∂s
Kα(hf)(s) = −

∫ b

a

(gα(s− a) − gα(|s− t|)) d
dt

(h(t)f(t)) dt

=
∫ b

a

gα(|s− t|) d
dt

(h(t)f(t)) dt ∈ C(0,α)[a, b],

where we have used (i) of Lemma 1, since d
dt (h(t)f(t)) ∈ C[a, b]. To

prove (iii), we have, by Lemma 2,

d

ds

∫ b

a

gα(|s− t|)(s− t)f(t) dt

=
∫ b

a

∂

∂s
gα(|s− t|)(s− t)f(t) dt+

∫ b

a

gα(|s− t|)f(t) dt

= (α− 1)
∫ b

a

gα(|s− t|)f(t) dt+ δ1,α

∫ b

a

f(t) dt

+
∫ b

a

gα(|s− t|)f(t) dt

= α

∫ b

a

gα(|s− t|)f(t) dt+ δ1,α

∫ b

a

f(t) dt.

Hence,
∫ b

a
gα(|s− t|)(s− t)f(t) dt ∈ C(1,α)[a, b].

The next two lemmas are of primary importance for the proof of
Theorem 1.

LEMMA 4. Let f ∈ L∞[a, b] and m ≥ 1 be an integer. Assume
1/2 < α ≤ 1. Then

(i) for i = 1, . . . ,m, if i is odd, h(i−1)/2fi ∈ C((i−1)/2,α)[a, b], and if
i is even, hi/2fi ∈ Ci/2[a, b].

Moreover,

(ii) hif
(i)
m ∈ C(0,α)[a, b], for i = 0, 1, . . . , (m − 1)/2 if m is odd,

and if m is even, hif
(i)
m ∈ C(0,α)[a, b] for i = 0, . . . ,m/2 − 1 and

hm/2f
(m/2)
m ∈ C[a, b].
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PROOF. We prove this lemma in the special case where k ≡ 1. The
proof for general k follows with minor modifications. (i). First, we
observe that, for each positive integer i,

(2.7) h(s)fi(s) = Kα(hfi−1)(s) + Fi−1(s),

where

(2.8) Fi(s) =
∫ b

a

gα(|s− t|)(s− t)(a+ b− s− t)fi(t) dt.

By (iii) of Lemma 3, Fi−1 ∈ C(1,α)[a, b] for i ≥ 1.

The case i = 1 follows directly from (i) of Lemma 1. Let i = 2 in
(2.7) to obtain h(s)f2(s) = Kα(hf1)(s) + F1(s). Since α > 1/2, if we
let μ = α, then 0 ≤ 1 − α < μ ≤ 1. Since Lemma 2(iii) implies that
h(Kαf)m′

α ∈ C[a, b], Lemma 1(iii) shows that Kα(hf1) ∈ C1[a, b].
Hence, hf2 ∈ C1[a, b], proving (i) in the case i = 2. In (2.7) let
i = 3 to obtain h(s)f3(s) = Kα(hf2)(s) + F2(s). Since hf2 ∈ C1[a, b],
Lemma 3(ii) shows that Kα(hf2) ∈ C(1,α)[a, b]. If follows that hf3 ∈
C(1,α)[a, b], proving (i) in the case i = 3.

For i = 4 we use (2.7) and Lemma 3(ii) to obtain

(2.9)
d

ds
[h(s)f4(s)] =

∫ b

a

gα(|s− t|) d
dt

[h(t)f3(t)] dt+ F ′
3(s) ∈ C(0,α)[a, b].

Observe that
(2.10)

h(s)
d

ds
[h(s)f4(s)] =

∫ b

a

gα(|s− t|)h(t)
d

dt
[h(t)f3(t)] dt

+
∫ b

a

gα(|s− t|)(s−t)(a+b−s−t) · d
dt

[h(t)f3(t)] dt

+ h(s)F ′
3(s).

Since d
ds (hf3) ∈ C(0,α)[a, b], Lemma 2(iii) implies that h d

ds (hf3) d
dsmα ∈

C[a, b]. Thus, Lemma 1(iii) shows that the first term on the right side
of (2.10) is in C1[a, b]. By Lemma 3(iii), the second term on the right
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in (2.10) is in C(1,α)[a, b]. For the last term on the right in (2.10) we
use Lemma 2(i) to write

h(s)F ′
3(s) =

∫ b

a

gα(|s− t|)[α(a+ b− s− t) + (t− s)]h(t)f3(t) dt

+
∫ b

a

gα(|s− t|)(s− t)(a+ b− s− t)

· [α(a+ b− s− t) + (t− s)]f3(t) dt

+ δ1,αh(s)
∫ b

a

(a+ b− s− t)f3(t) dt.

A similar reasoning to the above now yields hF ′
3 ∈ C(1,α)[a, b]. There-

fore, (2.10) shows that h(s) d
ds (h(s)f4(s)) ∈ C1[a, b]. Note that

d2

ds2
[h2(s)f4(s)] = h′′(s)h(s)f4(s) + 2h′(s)

d

ds
[h(s)f4(s)]

+ h(s)
d2

ds2
[h(s)f4(s)]

= h′′(s)h(s)f4(s) + h′(s)
d

ds
[h(s)f4(s)]

+
d

ds

[
h(s)

d

ds
(h(s)f4(s))

]
,

which is in C[a, b], proving (i) for i = 4.

Next, we show (i) for i = 5, i.e., h2f5 ∈ C(2,α)[a, b]. Similar to (2.9)
and (2.10), we have, respectively,

d

ds
[h(s)f5(s)] =

∫ b

a

gα(|s− t|) d
dt

[h(t)f4(t)] dt+ F ′
4(s) ∈ C(0,α)[a, b],

and

(2.11)

h(s)
d

ds
[h(s)f5(s)] =

∫ b

a

gα(|s− t|)h(t)
d

dt
[h(t)f4(t)] dt

+
∫ b

a

gα(|s−t|)(s−t)(a+ b− s− t)

· d
dt

[h(t)f4(t)] dt+h(s)F ′
4(s).
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Since h(s) d
ds(h(s)f4(s)) ∈ C1[a, b], Lemma 3(ii) implies that

Kα[h(hf4)′] (which is the first term in (2.11)) is in C(1,α)[a, b]. By
Lemma 3(iii), the second term on the right of (2.11) is in C(1,α)[a, b].
Also, hF ′

4 ∈ C(1,α)[a, b]. Hence, h(s) d
ds (h(s)f5(s)) ∈ C(1,α)[a, b].

Therefore, the identity

d2

ds2
[h2(s)f5(s)] = h′′(s)h(s)f5(s) + h′(s)

d

ds
[h(s)f5(s)]

+
d

ds

[
h(s)

d

ds
(h(s)f5(s))

]

implies that h2f5 ∈ C(2,α)[a, b], proving (i) for i = 5. This procedure
can be repeated for i = 6, 7, . . . ,m, by showing the continuity of terms
similar to the last term of the above expression, finishing the proof of
(i).

(ii). For m = 1, f1 ∈ C(0,α)[a, b], by Lemma 1(i). For m = 2, we have
f2 ∈ C(0,α)[a, b], by Lemma 1(i). It remains to show that hf ′2 ∈ C[a, b].
This follows from the facts that hf ′2 = (hf2)′ − h′f2 and hf2 ∈ C1[a, b]
(proved in (i)), proving the case m = 2.

For m = 3, we show that hf ′3 ∈ C(0,α)[a, b]. Since hf ′3 = (hf3)′−h′f3,
and since hf3 ∈ C(1,α)[a, b], we see that hf ′3 ∈ C(0,α)[a, b]. For m = 4,
d
ds [h(s)f4(s)] ∈ C(0,α)[a, b] by (2.9), thus

h(s)f ′4(s) = [h(s)f4(s)]′ − h′(s)f4(s) ∈ C(0,α)[a, b].

Note that

(2.12) h2f ′′4 = [h(hf4)′]′ − h′(hf4)′ − hh′′f4 − 2h′hf ′4 ∈ C[a, b],

proving (ii) for m = 4.

For m = 5, it is easy to verify that f5, hf ′5 ∈ C(0,α)[a, b]. We now
show that h2f ′′5 ∈ C(0,α)[a, b]. It is easy to see that

(2.13) h2f ′′5 = [h(hf5)′]′ − h′(hf5)′ − hh′′f5 − 2h′hf ′5.

Because h(hf5)′ ∈ C(1,α)[a, b], (hf5)′ ∈ C(0,α)[a, b] and hf ′5 ∈
C(0,α)[a, b], we deduce from (2.13) that h2f ′′5 ∈ C(0,α)[a, b], proving
(ii) for m = 5. This procedure can be repeated for m ≥ 6, proving (ii).
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PROOF OF THEOREM 1. Now we can easily establish Theorem 1. Let
φ = f + u1. Then, substitution into (1.1) yields

u1(s) −
∫ b

a

gα(|s− t|)k(s, t)u1(t) dt = f1(s).

Let u1 = f1 + u2. Substitution into the above equation yields

u2(s) −
∫ b

a

gα(|s− t|)k(s, t)u2(t) dt = f2(s).

By repeating this substitution procedure, we obtain

φ = f +
m−1∑
i=1

fi + u

and

u(s) −
∫ b

a

gα(|s− t|)k(s, t)u(t) dt = fm(s).

By Lemma 4 and the theorem in [6], u satisfies the required properties.
Theorem 1 is proved.

3. Decomposition of the solution, 0 < α ≤ 1/2. Now we consider
the case 0 < α ≤ 1/2.

LEMMA 5. Let f ∈ L∞[a, b], and assume that 0 < α ≤ 1/2. Let N be
the smallest integer such that 0 ≤ 1 − α < Nα ≤ 1. Then

(i) for k = 1, 2, . . . , n,

hkf(k−1)N+j ∈ C(k−1,(j−k+1)α)[a, b], j = k + 1, . . . , N + k − 1,

hkf(N+1)k ∈ Ck[a, b], hkf(N+1)k+1 ∈ C(k,α)[a, b];

(ii) if m = (N + 1)n+ 1, then

hkf (k)
m ∈ C(0,α)[a, b], k = 0, 1, . . . , n.
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PROOF. (i). For k = 1, we show that hfj ∈ C(0,jα)[a, b], j =
2, 3, . . . , N, hfN+1 ∈ C1[a, b], and hfN+2 ∈ C(1,α)[a, b]. We observe
that

(2.14) hfj = Kα(hfj−1) + Fj−1, 2 ≤ j ≤ N + 2,

where each Fj−1 is defined by (2.8) and Fj−1 ∈ C(1,α)[a, b]. If j = 2,
using Lemma 2(iii), we have hf1 d

dsmα ∈ C[a, b], and then Lemma 1(ii)
implies that Kα(hf1) ∈ C(0,2α)[a, b]. Hence, hf2 ∈ C(0,2α)[a, b]. By
repeatedly using (2.14), it can be shown that hfj ∈ C(0,jα)[a, b], for
j = 2, 3, . . . , N . Moreover, since hfN ∈ C(0,Nα)[a, b] and hfN

d
dsmα ∈

C[a, b], it follows by Lemma 1(iii) that Kα(hfN ) ∈ C1[a, b]. Thus,
(2.14) shows that hfN+1 ∈ C1[a, b]. By Lemma 3(ii), Kα(hfN+1) ∈
C(1,α)[a, b]. Consequently, (2.14) implies hfN+2 ∈ C(1,α)[a, b].

For k = 2, we show that h2fN+j ∈ C(1,(j−1)α)[a, b], for j =
3, 4, . . . , N + 1, h2f2(N+1) ∈ C2[a, b], and h2f2(N+1)+1 ∈ C(2,α)[a, b].
For j = 3, we have

h2(s)fN+3(s) =
∫ b

a

gα(|s− t|)h2(t)fN+2(t) dt

+ 2
∫ b

a

gα(|s− t|)(s− t)(a+ b− s− t)h(t)fN+2(t) dt

+
∫ b

a

gα(|s− t|)(s− t)2(a+ b− s− t)2fN+2(t) dt.

Then, by (ii) of Lemma 3,

(2.15)

d

ds
[h2(s)fN+3(s)]

=
∫ b

a

gα(|s− t|) d
dt

[h2(t)fN+2(t)] dt

+ 2
d

ds

∫ b

a

gα(|s− t|)(s− t)(a+ b− s− t)h(t)fN+2(t) dt

+
d

ds

∫ b

a

gα(|s− t|)(s− t)2(a+ b− s− t)2fN+2(t) dt.
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Since d
dt [h

2(t)fN+2(t)] ∈ C(0,α)[a, b] and d
dt [h

2(t)fN+2(t)] d
dtmα(t) ∈

C[a, b], we have
∫ b

a
gα(|s − t|) d

dt [h
2(t)fN+2(t)] dt ∈ C(0,2α)[a, b]. The

second and third terms on the right of (2.15) are in C(1,α)[a, b], therefore
h2fN+3 ∈ C(1,2α)[a, b]. These steps can be repeated to show that
h2fN+j ∈ C(1,(j−1)α)[a, b], for j = 3, 4, . . . , N + 1. Similarly, it can
be shown that h2f2(N+1) ∈ C2[a, b] and h2f2(N+1)+1 ∈ C(2,α)[a, b].
This procedure can be repeated for k ≥ 3 to finish the proof of (i).

(ii). Let m = (N + 1)n+ 1. Obviously, fm ∈ C(0,α)[a, b]. For k = 1,
we show that hf ′m ∈ C(0,α)[a, b]. Note that hfm ∈ C(1,α)[a, b] and
hf ′m = (hfm)′ − hfm. Then, hf ′m ∈ C(0,α)[a, b]. If k = 2, since

h2f ′′m = (h2fm)′′ − 2h′hf ′m − (h2)′′fm,

and since h2fm ∈ C(2,α)[a, b] (by (i)), it follows that h2f ′′m ∈ C(0,α)[a, b].
Assume, for l < n, that hkf

(k)
m ∈ C(0,α)[a, b], k = 0, 1, . . . , l. Consider

the case when k = l + 1. Since

(hl+1fm)(l+1) = hl+1f (l+1)
m + (l + 1)(hl+1)′f (l)

m

+ (l(l + 1)/2)(hl+1)′′f (l−1)
m + · · · + (hl+1)(l+1)fm,

we have
hl+1f (l+1)

m = (hl+1fm)(l+1) − p(x),

where p(x) is a function in C(0,α)[a, b], by the induction hypothesis.
By (i) of this lemma, (hl+1fm)(l+1) ∈ C(0,α)[a, b]. Hence, hl+1f

(l+1)
m ∈

C(0,α)[a, b]. The induction principle implies that hkf
(k)
m ∈ C(0,α)[a, b]

for all k = 0, 1, . . . , n.

This lemma enables us to establish the following theorem.

THEOREM 2. Assume that f ∈ L∞[a, b], and let n ≥ 1 be an integer.
Assume that k ∈ Cn+1([a, b] × [a, b]), 0 < α ≤ 1/2, and assume that
1 is not an eigenvalue of Kα. Let N be the smallest positive integer
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such that 0 ≤ 1 − α < Nα ≤ 1. Then the solution φ of (1.1) can be
decomposed as

φ = f +
(N+1)n∑

i=1

fi + u,

where u is the solution of the equation

u(s) −
∫ b

a

gα(|s− t|)k(s, t)u(t) dt = f(N+1)n+1(s)

and satisfies the regularity properties

(i) u ∈ C(0,α)[a, b] ∩ Cn(a, b),

(ii) hku(k) ∈ C(0,α)[a, b], for k = 0, 1, . . . , n.

The proof is done like that of Theorem 1, using Lemma 5 and the
theorem in [6], so we omit the details.
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