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VISCOELASTIC AND BOUNDARY FEEDBACK
DAMPING: PRECISE ENERGY DECAY RATES

WHEN CREEP MODES ARE DOMINANT
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ABSTRACT. For a linear Volterra equation of scalar type
in a Banach space, sufficient conditions are given for the
operator norms of three associated resolvent kernels to be
integrable with respect to a weight on the positive half-line.
The results and methods extend those introduced by Prüss
for integrability with respect to ordinary Lebesgue measure.
The estimates are applied to the estimation of precise decay
rates for energy in a viscoelastic solid when the memory kernel
decays algebraically and creep modes dominate the oscillating
modes. It is shown that boundary feedback is ineffective in
promoting decay in such cases.

1. Introduction. We give sufficient conditions for three resolvent
kernels associated with the problem

(1.1)
ü(t) = ELu(t) +

d

dt

∫ t

0

a(t − τ )Lu(τ ) dτ

(
· =

d

dt

)
,

u(0) = u0, u̇(0) = u1

to be integrable with respect to certain weight functions on R
+ ≡

[0,∞). Here E > 0, L is the generator of a strongly continuous cosine
family in a Banach Space X, and a satisfies

(1.2)
a ∈ C(0,∞) ∩ L1(0, 1) is positive, nonincreasing and
log-convex on (0,∞) with 0 = a(∞) < a(0+) ≤ ∞.

The resolvents in question are defined formally by

(1.3) u(t) = U(t)u0 + W(t)u1, V = U̇.
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(In fact, Ẇ = U as well.) We shall assume

(1.4)
∫ ∞

1

|ȧ(t)|ρ(t) dt < ∞

for some subexponential weight function ρ(t) (such as ρ(t) = (1 + t)r,
0 ≤ r < ∞) as well as a stability condition (e.g., L < 0 in the Hilbert
space case) and show, for example, that

(1.5)
∫ ∞

0

‖U(t)‖(1 + t)ρ(t) dt < ∞

(‖ · ‖ = the operator norm in X). Using resolvent formulas we will be
able to deduce corresponding integrability results for solutions of (1.1).

Our results extend those for the special case ρ(t) ≡ 1 given by Prüss
[18, 19]. Indeed, our proofs are based on the methods developed in
[18, 19], together with local analyticity (a method for establishing
integrability in a weighted space for scalar functions [13]) and the
Paley-Wiener Lemma in Banach space [9].

Our results have natural applications to problems in linear viscoelas-
ticity. For example, the viscoelastic wave equation (in a solid)

(1.6) utt(x, t) = Euxx +
d

dt

∫ t

0

a(t − τ )uxx(x, τ) dτ

fits our framework, and we get results on rates of energy decay. We
develop this connection and compare the decay rates obtainable for
(1.6) with homogeneous boundary conditions to those for the same
equations with stabilizing boundary feedback (as examined, e.g., in
[15], [14, Chapter 6]). We show, in particular, that such feedback
is nearly irrelevant to the decay rate unless the kernel a(t) decays
exponentially; in the latter case, feedback can even slow the rate of
decay.

As the analysis of [11] shows, decay rates correspond essentially to
the largest real part of the singularities of the Laplace transform of
the solution. When the dominant singularity has a nonzero imaginary
part, we get oscillations that can be damped via boundary feedback.
Viscoelastic materials exhibit “creep modes” that appear as real singu-
larities that are insensitive to such feedback; the phenomena studied in
this paper relate mainly to cases where these singularities are dominant.
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Our main results on resolvents are stated in Section 2 and proved
in Section 3. Section 4 concerns integrability and energy decay of
solutions of (1.1), while Section 5 is devoted to the example (1.6) with
and without boundary feedback.

2. Statement of main result on integrability of resolvents.
In this section we state our main result, Theorem 2.1, on integrability
properties of the operator resolvent U, its derivative V, and its definite
integral W. This result extends to weighted L1 spaces recent results
of Prüss [18, 19] on the integrability of resolvents. Theorem 2.1 is
actually a corollary of the more technical results stated and proved in
Section 3.

Throughout Sections 2 and 3, X denotes a Banach space, and L is a
closed linear operator in X with dense domain D(L) which generates
a strongly continuous cosine family C(t). We consider the first order
X-valued integrodifferential equation

(2.1) u̇(t) =
∫ t

0

A(t − τ )Lu(τ ) dτ + f(t), t ≥ 0, u(0) = u0,

where f ∈ C(R+,X), and the scalar kernel A has the form A(t) =
E +a(t) with E > 0 and a satisfying (1.2). Under these conditions [18,
Theorem 6], problem (2.1) admits a resolvent U(t), that is, a strongly
continuous family {U(t)}t≥0 in L(X), the bounded linear operators in
X, such that U(0) = I (the identity operator), U(t) commutes with L,
and the resolvent equation

(2.2) U̇(t)x =
∫ t

0

A(t − τ )LU(τ )x dτ, t ≥ 0, x ∈ D(L),

is satisfied. In addition, Prüss [18, 19] showed that, under these
conditions, U(t) and its derivative V(t) = U̇(t) (strong derivative)
are integrable (in a sense to be made precise below) on R

+. U and
V are important in the study of the abstract equation (2.1) since the
solutions are given by various “variation of constants formulae.” For
example, all solutions of (2.1) are given by

u(t) = U(t)u0 +
∫ t

0

U(t − τ )f(τ ) dτ,
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while V(t) occurs in a similar formula for solutions of the integrated
version of (2.1) [2]. (See also [20] where similar formulae arise in the
study of bounded solutions to infinite delay equations on the whole line
R.)

As stated in the Introduction, we are interested in precise decay
rates when a(t) decays subexponentially. For this purpose we consider
weights on R

+ of the following type (see [9]):

(W)

The function ρ(t) is a (regular) weight on R
+ if ρ is

positive, continuous and nondecreasing on R
+, ρ(0) = 1,

ρ(t + s) ≤ ρ(t)ρ(s) and ρ∗ := − lim
t→∞ t−1 log ρ(t) = 0.

Interesting examples of weights satisfying (W) are provided by

(2.3)
ρ1(t) = (1 + t)r, r ≥ 0,

ρ2(t) = (1 + log(1 + t))γρ1(t), γ ≥ 0,

ρ3(t) = exp(tα)ρ2(t), 0 ≤ α < 1.

We let L1(R+; ρ) denote the space of complex measurable functions ϕ
that are integrable with respect to ρ, that is, for which∫ ∞

0

|ϕ(t)|ρ(t) dt < ∞.

When ρ(t) ≡ 1 we denote L1(R+; ρ) by L1(R+). Laplace transforms of
functions in L1(R+; ρ) are denoted by L1(R+; ρ)∧.

Since X is infinite dimensional, there are several different notions of
integrability for resolvents (cf. [19] when ρ(t) ≡ 1):

Definition 2.1. Let X and Y be Banach spaces, let {S(t)}t≥0 ⊆
L(X,Y) be a strongly measurable family of bounded linear operators,
and let ρ(t) satisfy (W). Then S(t) is

(i) ρ-strongly integrable if∫ ∞

0

‖S(t)x‖ρ(t) dt < ∞, for each x ∈ X.
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(ii) ρ-integrable if there is a ϕ ∈ L1(R+; ρ) such that ‖S(t)‖L(X,Y) ≤
ϕ(t) a.e. on R

+.

(iii) ρ-uniformly integrable if S ∈ L1(R+,L(X,Y); ρ).

The integrability results for V(t) = U̇(t), as well as the integral W(t)
defined (strongly) by

W(t) =
∫ t

0

U(τ ) dτ,

are stated in terms of the space (see [19])

X1 = {x ∈ X : C(t)x ∈ C1(R+,X)}
with norm

(2.4) ‖x‖1 = ‖x‖ + sup
0≤t≤1

‖Ċ(t)x‖.

It is well known that X1 is a Banach space. Moreover, for any
ω1 > ω0(L), where ω0(L) ≥ 0 is the growth type of C(t) defined by

ω0(L) =

inf{ω ≥0 | there exists M ∈ R
+ such that ‖C(t)‖ ≤Meω|t| for t∈R},

the estimate

(2.5) ‖Ċ(t)x‖ ≤ Keω1t‖x‖1, t ≥ 0, x ∈ X1,

holds for some K = K(ω1) ≥ 1. (These facts concerning cosine families
may be found in [21] and [8, Chapters 2 and 3].) In the following,
Â(s) = E/s + â(s) denotes the Laplace transform of A(t).

With these preliminaries we have

THEOREM 2.1. Let A(t) = E + a(t) where E > 0 and (1.2) holds.
Set μ =

√
A(0+), and κ = −Ȧ(0+)/2μ when μ < ∞. Assume

that L is invertible and that s/Â(s) ∈ R := resolvent set of L for
s ∈ Π := {s : 
s ≥ 0}, s �= 0, in case ω0(L) > 0. Let ρ(t) be a weight
satisfying (W), and assume that a ∈ AC2

loc (0,∞) satisfies

(2.6)
∫ ∞

1

(|ȧ(t)| + tä(t) + |t2...a (t)|)ρ(t) dt < ∞.
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(i) If μ + κ = ∞, then (1 + t)U(t) ∈ L1(R+,L(X); ρ) and both
LW(t) and (1 + t)2V(t) belong to L1(R+,L(X1,X); ρ).

(ii) If μ+κ < ∞ and ω0(L) < κ/μ2, then (1+ t)U(t) is ρ-integrable
in L(X) and both LW(t) and (1+t)2V(t) are ρ-integrable in L(X1,X).

We remark that s/Â(s) ∈ R, s ∈ Π, s �= 0, automatically holds
when ω0(L) = 0 since (see [21, Proposition 2.6]), z2 ∈ R whenever
a complex number z satisfies 
z > ω0(L), and β(s) = (s/Â(s))1/2

satisfies 
β(s) > 0, s ∈ Π, s �= 0; this can be deduced from 
Â(s) > 0,
(�s)(�Â(s)) < 0, 
s ≥ 0, �s �= 0 [10].

We finish this section with a discussion of Theorem 2.1 and, especially,
hypothesis (2.6).

First note that if ρ(t) is a differentiable weight satisfying (W) and

(2.7) tρ̇(t) ≤ Mρ(t), t ≥ 1,

for some M < ∞, then

(2.8)
∫ ∞

1

|ȧ(t)|ρ(t) dt < ∞,

together with monotonicity conditions on a(t), can be used to show
that the other integrals in (2.6) are also finite. For example, since a is
nonincreasing and convex, an integration by parts yields∫ ∞

1

tρ(t)ä(t) dt ≤ −ρ(1)ȧ(1) +
∫ ∞

1

|ȧ(t)|(tρ̇(t) + ρ(t)) dt < ∞

when (2.7) and (2.8) hold. If, in addition, −ȧ(t) is convex, then
t2

...
a (t) ∈ L1(R+; ρ) also follows from (2.7) and (2.8). (Use the fact

that (1+ t)ρ(t) satisfies an inequality of the form (2.7) when ρ(t) does.)
Note that the weights ρ1 and ρ2 in (2.3) satisfy (2.7).

On the other hand, for general weights satisfying (W), (2.6) does
not follow from (2.8) and monotonicity conditions on a. An example
of this is provided by taking ρ(t) = exp(tα), 0 < α < 1, and
a(t) =

∫∞
t

(1 + τ )−p/ρ(τ ) dτ with 1 < p ≤ 1 + α, for which it is easily
checked that ȧ(t) ∈ L1(R+; ρ) but tä(t) /∈ L1(R+; ρ).
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Finally, we note that in the case where ρ(t) ≡ 1, Theorem 2.1
sharpens the results of Prüss in [18] and [19] since there the conclusion
is that U and V are integrable, whereas Theorem 2.1 deals with the
integrability of (1 + t)U(t) and (1 + t)2V(t). One power of (1 + t)
in our results depends crucially on the fact that E > 0, and, in fact,
the conclusions of Theorem 2.1 do not in general hold when E = 0.
The reason for this will become clear in the proofs that appear in the
next section. However, analogues of Theorem 2.1 for U(t) and V(t)
in the case when E = 0 can also be derived. The basic change in the
conclusion is that (1+t)U(t) must be replaced by U(t) and (1+t)2V(t)
by (1 + t)V(t). We leave it to the interested reader to state precisely
and prove these results.

3. Proof of Theorem 2.1 and some extensions. This section
is organized as follows. First, in Section 3.1 we prove Theorem 2.1(ii),
that is, the regular case where μ + κ < ∞. In Section 3.2 we turn to
the singular case, i.e., μ + κ = ∞. Here we prove the more general
Theorem 3.2 and show that Theorem 2.1(i) follows from Theorem 3.2
and the decomposition Proposition 3.1.

3.1 Proof of Theorem 2.1 in the regular case. In this section we assume
that μ + κ < ∞ and prove Theorem 2.1(ii).

(a) Proof that (1+t)U(t) is ρ-integrable in L(X). Following the proof
of the regular case of Theorem 11 in [18], write U(t) = U0(t) + U1(t),
where

U1(t) = C(μt) exp(−κt/μ).

(We remark that, due to the weight ρ(t), we cannot in general assume
w.l.o.g. that μ = 1 as is done in [18].) By definition of ω0(L),
if ε ∈ (0, κμ−2 − ω0(L)), there exists M > 0 so that ‖C(t)‖ ≤
M exp{(κμ−2 − ε)t}, t ≥ 0. Hence,

(3.1) ‖U1(t)‖ ≤ Me−εμt, t ≥ 0,

and it suffices to prove that

(3.2) (1 + t)U0(t) ∈ L1(R+,L(X); ρ).
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To do this, use the fact that Ĉ(s) = s(s2 −L)−1 and the operational
calculus to get

(3.3) Û1(s) =
1
μ
{ĝ−1(s) − ĝ(s)L}−1, s ∈ Π,

where ĝ(s) = μ2(μs + κ)−1 is the transform of g(t) = μ exp(−κt/μ).
We now obtain a convolution equation for U0(t), and use the Paley-
Wiener Lemma for abstract equations with weights due to Gripenberg
[9, Theorem 2] to deduce (3.2). Following the argument in [18], note
that

(3.4)
Û0 = Û− Û1 = (Û−1

1 − Û−1)Û1Û

≡ R̂(s)Û(s).

Now, we can divide both sides of (3.4) by (1+κÂ(s)) and rearrange as in
[18] to see that U0 satisfies the convolution equation whose transform
is

(3.5) Û0(s) = R̂1(s) + R̂2(s)Û0(s),

where
R̂1(s) = (1 + κÂ(s))−1R̂(s)Û1(s),

R̂2(s) = (1 + κÂ(s))−1(R̂(s) + κÂ(s)).

Notice also that

Û−1
1 (s) − Û−1(s) =

κ

μ
+ {(ĝ−1(s)Â(s) − μ)ĝ(s)L}.

Making the substitutions

(3.6) sÂ(s) = μ2 + ˆ̇a(s), ˆ̈a(s) = sˆ̇a(s) + 2κμ,

we can now rearrange terms as in [18] to verify that

R̂(s) = [μ−4{μ2ˆ̈a(s) + 2κμˆ̇a(s) + κ2Â(s)}
− μ3{μˆ̇a(s) + κÂ(s)}Û−1

1 (s)]Û1(s)

= μ−4{μ2ˆ̈a(s) + 2κμˆ̇a(s) + κ2Â(s)}Û1(s)

− μ−3{μˆ̇a(s) + κÂ(s)}.
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Next, we use Theorem 6.1 of [13] to deduce the following lemma for
the scalar functions appearing in the expression (3.5). V (R+; ρ) denotes
the Banach algebra formed by adjoining the unit δ (point mass at 0) to
L1(R+; ρ), and V (R+; ρ)∧ denotes the algebra of Laplace transforms of
these measures.

LEMMA 3.1. Under the assumptions of Theorem (2.1), Â(s)(1 +
κÂ(s))−1, ˆ̇a(s)(1 + κÂ(s))−1 and ˆ̈a(s)(1 + κÂ(s))−1 all belong to
L1(R+; (1 + t)ρ(t))∧.

PROOF. First, note that κÂ(s)(1+κÂ(s))−1 is the Laplace transform
of the integral resolvent

r1(t) = κA(t) − r1 ∗ κA(t) = κA(t) − κA ∗ r1(t).

As an application of Theorem 6.1 of [13], it is shown on p. 770 of that
paper that our hypotheses imply that r1 ∈ L1(R+; (1+ t)ρ(t)), and the
proof for Â(s)(1 + κÂ(s))−1 is complete.

A closely analogous argument to that on p. 770 of [13] yields the
claim for ϕ2(s) = ˆ̇a(s)(1 + κÂ(s))−1. Namely, near s0 = 0, write

ϕ2(s) = sˆ̇a(s)(s + κμ2 + κˆ̇a(s))−1,

and note that ϕ2(s) is locally analytic w.r.t. V (R+; ρ) at s0 = 0, and
that the order of dependence of ϕ2 on s with respect to ˆ̇a(s) at (0, ˆ̇a(0))
is at least m = 1 [13, Definition 4.1]. Near nonzero points of Π as well
as near ∞, write

ϕ2(s) = ˆ̇a(s)(1 + κμ2s−1 + κs−1ˆ̇a(s))−1;

thus, ϕ2(s) is locally analytic w.r.t. V (R+; ρ) on Π̄ = Π ∪ {∞}
and ϕ2(0) = 0. Finally, note that, by (2.6) and μ + κ < ∞,
|ȧ(t)| + tä(t) ∈ L1(R+; ρ), so ȧ satisfies condition (6.8) of [13] with
m = 1 and z0 = s0 = 0. Thus, using [13, Theorem 6.1] with m = 1
and z0 = s0 = 0, we conclude that ϕ2 ∈ L1(R+; (1 + t)ρ(t))∧.

The same reasoning can be used to show that ϕ3(s) = ˆ̈a(s)(1 +
κÂ(s))−1 ∈ L1(R+; (1 + t)ρ(t))∧. Alternatively, we can write ϕ3(s) =
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ˆ̈a(s)(1 − r̂1(s)) and use the fact that ˆ̈a(s) and r̂1(s) both belong to
L1(R1; (1 + t)ρ(t))∧ to conclude that ϕ3 does too.

Returning to the proof of (3.2), use (3.1) and Lemma 3.1 to conclude
that R̂1(s) and R̂2(s) both belong to L1(R+,L(X); (1+t)ρ(t))∧. (Here
and below we use the fact that the convolution of a locally integrable
function with a strongly continuous operator (U1 here) is measurable.)

As in [18] we see that

I− Ṙ2(s) = (1 + κÂ(s))−1(s − Â(s)L)Û1(s), s ∈ Π,

so I− R̂2(s) is invertible for each s ∈ Π. Now, by [9, Theorem 2], there
exists Q1 ∈ L1(R+,L(X); (1 + t)ρ(t)) such that

Q1(t) = R2(t) + Q1 ∗ R2(t) = R2(t) + R2 ∗ Q1(t), t ≥ 0.

Thus, solving (3.6) for Û0, we see that Û0(s) = R̂1(s) + Q̂1(s)R̂1(s)
and (3.2) is proved.

(b) Proof that (1 + t)2V(t) and LW(t) are ρ-integrable in L(X1,X).
First consider V(t). Pick ω1 ∈ (ω0(L), κμ−2) and note that, by (2.5),
‖Ċ(t)‖L(X1,X) ≤ Meω1t. Define

V1(t) = μĊ(μt) exp(−κt/μ)

and write V(t) = V0(t) + V1(t). Since

‖V1(t)‖L(X1,X) ≤ μM exp(μ[ω1 − κμ−2]t)

is exponentially decaying, it suffices to show that

(3.7) (1 + t)2V0(t) ∈ L1(R+,L(X1,X); ρ).

To prove (3.7), note that ˆ̇C(s) = L(s2 − L)−1, so

(3.8) V̂1(s) = ˆ̇C(ĝ−1(s)) = L(ĝ−2(s) − L)−1,
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where, as before, ĝ(s) = μ2(μs+κ)−1. Combining (3.3) and (3.8) yields

(3.9) L−1V̂1(s) = μĝ(s)Û1(s).

Since V̂(s) = Â(s)L(s − Â(s)L)−1,

V̂0(s) = (V̂−1
1 (s) − V̂−1(s))V̂1(s)V̂(s)

= {ĝ−2(s) − s/Â(s)}L−1V̂1(s)V̂(s),

and after some manipulation we see that

(3.10) V̂0(s) = R̂4(s) + R̂3(s)V̂0(s),

where
R̂3(s) = κ2μ−3ĝ(s)Û1(s) + μr̂0(s)Û1(s),

R̂4(s) = R̂3(s)V̂1(s),

and r0(t) is the scalar function whose transform is

r̂0(s) = ϕ0(s) = ĝ(s){ĝ−2(s) − s/Â(s) − κ2/μ4}.

Theorem 6.1 of [13] can be used to show

(3.11) r0(t) ∈ L1(R+; (1 + t)2ρ(t)).

Assuming (3.11) for the moment, we now use Gripenberg’s version
of the Paley-Wiener Lemma to obtain (3.7). To do this, first observe
that, by (3.1), (3.11), and the definition of g, R3 ∈ L1(R+,L(X); (1 +
t)2ρ(t)). To see that I − R̂3(s) is invertible for s ∈ Π, note that
V̂(s) − V̂1(s) = V̂0(s) = R̂3(s)V̂(s); so I − R̂3(s) = V̂1(s)V̂−1(s)
and clearly this is invertible for s ∈ Π. By [9, Theorem 2], there exists
Q2 ∈ L1(R+,L(X); (1 + t)2ρ(t)) such that Q2 = R3 + Q2 ∗ R3. Since
‖R3(t)‖L(X1,X) ≤ ‖R3(t)‖L(X), R4 = R3∗V1 ∈ L1(R+,L(X1,X); (1+
t)2ρ(t)); hence, solving (3.10) for V0 gives V0 = R4 + Q2 ∗ R4, and
(3.7) is proved once we verify (3.11).

Turning to LW(t), note that from (2.2) and the definitions of V and
W, LŴ(s) = V̂(s)/(sÂ(s)). We claim that

(3.12)
1

sÂ(s)
=

1
μ2

+ k̂(s) where k ∈ L1(R+; ρ).
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To verify (3.12), simply note that 1/(sÂ(s)) − 1/μ2 = 1/(μ2 + ˆ̇a(s)) −
1/μ2 is locally analytic w.r.t. V (R+; ρ) on all of Π̄ and equal to zero
at ∞, so (3.12) is a consequence of Proposition 2.3 in [13]. Thus,
LW(t) = μ−2V(t) + k ∗ V(t) is ρ-integrable in L(X1,X).

It remains to give the

PROOF OF (3.11). By the first part of (3.6) and the definition of r0(t),
it is easy to verify that

ϕ0(s) =
s

μ(μs + κ)
(μs + 2κ) − μ2s2

(μs + κ)(μ2 + ˆ̇a(s))

is locally analytic w.r.t. V (R+; ρ) on Π, and that the order of depen-
dence on the transforms used in this expression at s0 = 0 is at least 2.
At ∞ use the second part of (3.6) to write

ϕ0(s) =
1

μ(μ + κ/s)

{
(μs + 2κ)(μ2 + ˆ̇a(s)) − μ3s

μ2 + ˆ̇a(s)

}

=
1

μ(μ + κ/s)

{
μˆ̈a(s) + 2κˆ̇a(s)

μ2 + ˆ̇a(s)

}
.

Write a(t) = a1(t) + a2(t) where a1 has compact support and a2(t)
vanishes on some interval (0, T ). Then, using (2.6), it is easy to check
that all the functions whose transforms appear in the representation
for ϕ0(s) satisfy (6.8) of [13] with m = 2, z0 = s0 = 0, and (3.11)
follows from Theorem 6.1 of [13].

REMARKS. An examination of the proof of Lemma 3.1 shows that
the assumption that t2

...
a (t) ∈ L1((1,∞); ρ) was never used. Hence,

the conclusion that (1 + t)U(t) is ρ- integrable remains true with (2.6)
replaced by the weaker assumption that ȧ(t) and tä(t) ∈ L1((1,∞); ρ).

It is also interesting to note that the assumption that a(t) be log-
convex may be dropped in Theorem 2.1(ii) if we are willing to relax
the requirement of strong continuity and settle for resolvents that
are only ρ-integrable and that are defined by their respective Laplace
transforms. An examination of the proof above shows that we have
proved
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THEOREM 2.1 (ii)′. Let the hypotheses and notation of Theorem
2.1(ii) hold except that (1.2) is replaced by

a ∈ AC1[0,∞) with a(0) > 0, ȧ(0) < 0 and a(t) → 0 as t → ∞,

(2.6) is replaced by∫ ∞

0

(|ȧ(t)| + |tä(t)|)ρ(t) dt < ∞,

and
1 + κÂ(s) �= 0, s ∈ Π, s �= 0,

is assumed to hold. We must now assume that s/Â(s) ∈ R for s ∈ Π,
s �= 0, even when ω0(L) = 0. Then there is a strongly measurable
family U(t) in L(X) defined by Û = (s− Â(s)L)−1, s ∈ Π, s �= 0, such
that (1 + t)U(t) is ρ-integrable in L(X).

If, in addition, a ∈ AC2
loc (0,∞) and∫ ∞

0

(|ȧ(t)| + |tä(t)| + |t2...a (t)|)ρ(t) dt < ∞,

then there are strongly measurable families V(t) and LW(t) in L(X1,X)
defined by V̂(s) = Â(s)L(s− Â(s)L)−1, LŴ(s) = s−1L(s− Â(s)L)−1,
s ∈ Π, s �= 0, respectively, such that (1 + t)2V(t) and LW(t) are ρ-
integrable in L(X1,X).

We note that if −L is a positive definite self-adjoint operator in a
Hilbert space X, and if a satisfies the conditions of Theorem 2.1(ii)′ and
is positive, nonincreasing and convex, then U(t) and V(t)(−L)−1/2 are
bounded and strongly continuous in X by [1, 2].

3.2 The singular case. We now consider the singular case where
μ + κ = ∞. In Theorem 3.1 we show that if A1(t) = E + a1(t) is as in
Theorem 2.1(i), but with a1 decaying exponentially fast as t → ∞, then
the conclusion of Theorem 2.1(i) holds for any weight ρ1(t) satisfying
(W). Theorem 3.2 shows that the conclusion of Theorem 2.1(i) holds
for “perturbed” kernels of the form A(t) = A1(t) + a2(t), when A1

is as in Theorem 3.1, and a2(t) satisfies no monotonicity conditions,
but vanishes near t = 0 and has derivatives belonging to appropriate
weighted L1-spaces. Theorem 2.1(i) follows from the decomposition
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Proposition 3.1 which shows that if A is as in Theorem 2.1(i), then it
may be decomposed in the form A(t) = A1(t) + a2(t) so that Theorem
3.2 applies.

(a) Exponentially decaying kernels. We prove

THEOREM 3.1. Let A1(t) = E + a1(t) where E > 0 and a1 satisfies
(1.2) with ȧ1(0+) = −∞, and a1 ∈ AC1

loc (0,∞) if μ1 =
√

A1(0+) <
∞. Assume that

(3.13) eεtȧ1(t) ∈ L1(R+) for some ε > 0.

Assume that L generates a C0 cosine family, L is invertible, and

(3.14) s/Â1(s) ∈ R for s ∈ Π, s �= 0, in case ω0(L) > 0.

Let U1,V1,W1 be the analogues of U,V,W, respectively, with the
kernel A(t) replaced by A1(t). Then, for any weight ρ1(t) satisfying
(W), U1(t) ∈ L1(R+,L(X); ρ1) and both LW1(t) and V1(t) belong to
L1(R+,L(X1,X); ρ1).

PROOF. The proof of Theorem 3.1 combines the technique used by
Prüss to prove the singular kernel case of Theorem 11 of [18] with the
methods used in Section 3.1. We begin by recalling some notation from
and consequences of results in Section 2 of [18].

As an easy consequence of [18, Proposition 2] we get

LEMMA 3.2. Let A1 be as in Theorem 3.1 (without the requirement
that ȧ1(0+) = −∞), and set

α1(s) = (sÂ1(s))−1/2 (principal branch).

Then we can write

(3.15)
1

α1(s)
=

1
μ1

+ ˆ̇
k1(s)

where k̇1 is nonnegative. Moreover,

(3.16)
∫ ∞

0

ertk̇1(t) dt =
1

α1(r)
− 1

μ1
< ∞
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for −∞ < r ≤ η, where η is any number such that 0 < η ≤ ε and
E − ηâ1(−η) > 0.

PROOF. The representation (3.15) for 
s > 0 is simply Proposition
2(iv) of [18] applied to the kernel A1(t). Since k̇1 ≥ 0, the real point

of the axis of convergence of ˆ̇k1(s) is a singularity of ˆ̇k1(s) by [22; p.
58, Theorem 5b], so (3.16) holds.

Next set
β1(s) = s/α1(s),

and define h0(s, x) and h(s, x) for the kernel A1(t) as on p. 327 of [18]
by

(3.17) h0(s, x) = exp(−xβ1(s)), h(s, x) =
1

α1(s)
h0(x, s).

By Theorems 3 and 4 of [18], we can write

(3.18) ŵ0t(s, x) = h0(s, x), ŵt(s, x) = h(s, x),

where w0(t, x) and w(t, x) are the functions in Theorem 3 of [18]
corresponding to A1(t). Notice, in particular, that, for each x > 0,
w0(t, x) and w(t, x) are nondecreasing and continuous functions of t ≥ 0
that are absolutely continuous for t �= x/μ1.

Now let ω1 be a positive number satisfying ω1 > ω0(L) (the growth
type of C(t)), and fix a positive number ω > ω1 − β1(−η) where η > 0
is chosen as in Lemma 3.2. Define U1,ω(t) and R1,ω(t) as in (7.7), (7.9)
of [18], respectively, by

U1,ω(t) =
∫ ∞

0

e−ωτC(τ )wt(t, τ ) dτ,

R1,ω(t) =
∫ ∞

0

e−ωτC(τ )w0t(t, τ ) dτ.

Similarly, define V1,ω(t) by

V1,ω(t) =
∫ ∞

0

e−ωτ Ċ(τ )w0t(t, τ ) dτ.
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Note that, by the definition of ω0(L) and (2.5), there is a K > 1 such
that

‖C(t)‖ ≤ Keω1t, ‖Ċ(t)‖L(X1,X) ≤ Keω1t, t ≥ 0.

(Here ‖C(t)‖ is the norm in L(X).) Combining this with the fact that
wt and w0t are nonnegative, we can deduce that

U1,ω(t) and R1,ω(t) belong to L1(R+,L(X); eηt),(3.19)
V1,ω(t) ∈ L1(R+,L(X1,X); eηt).(3.20)

To verify the first claim in (3.19), simply note that∫ ∞

0

eηt‖U1,ω(t)‖ dt ≤ K

∫ ∞

0

∫ ∞

0

e(ω1−ω)τeηtwt(t, τ ) dτ dt

= Kα−1
1 (−η)

∫ ∞

0

e[ω1−β1(−η)−ω]τ dτ < ∞,

where we have used (3.17) and (3.18). The other claims in (3.19) and
(3.20) are proved in an analogous fashion.

Since Ĉ(s) = s(s2 − L)−1, s > ω0(L), some calculation, as in [18],
using (3.17) and (3.18) (see [18, formula (8.3)]), yields

(3.21) U1(t) = S1(t) + S2 ∗ U1(t),

where
Ŝ1(s) = h(s)Û1,ω(s),

Ŝ2(s) = ω(1 + h(s))R̂1,ω(s).

Here, as on p. 341 of [18], h(s) denotes

h(s) = β1(s)[ω + β1(s)]−1.

Similarly, as in the derivation of (3.10), we can write V̂1 − V̂1,ω =

(V̂−1
1,ω − V̂−1

1 )V̂1,ωV̂1. Using (3.17), (3.18) and ˆ̇C(s) = L(s2−L)−1 for

s > ω0(L), we get that V̂1 − V̂1,ω = (ω2 + 2ωβ1)L−1V̂1,ωV̂1. Since
L−1V̂1,ω = (ω + β1)−1R̂1,ω, it is easy to verify that

(3.22) V1(t) = V1,ω(t) + S2 ∗ V1(t).
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Next note that, with η > 0 as above,∫ ∞

0

eηt

∣∣∣∣ ∫ ∞

0

e−ωxw0t(t, x) dx

∣∣∣∣dt

=
∫ ∞

0

∫ ∞

0

eηtw0t(t, x) dt e−ωx dx

=
∫ ∞

0

e−x(ω+β1(−η)) dx < ∞,

where we have used w0t ≥ 0, (3.17), (3.18) and ω + β1(−η) > ω1 > 0.
But using (3.17), (3.18) again, we see that

[ω + β1(s)]−1 =
∫ ∞

0

e−(ω+β1(s))x dx

=
∫ ∞

0

e−st

∫ ∞

0

e−ωxw0t(t, x) dx dt, s > 0.

Thus, the scalar function h(s) = 1 − ω(ω + β1(s))−1 belongs to
V (R+; eηt)∧, so, by (3.19),

(3.23) S1(t) and S2(t) belong to L1(R+,L(X); eηt).

Now, as shown on p. 341 of [18],

I− Ŝ2(s) =
h(s)
β1(s)

(
s

Â1(s)
− L

)
R̂1,ω(s), s ∈ Π,

so, by hypothesis (3.14), I − Ŝ2(s) is invertible for s ∈ Π. Since
L1(R+,L(X); eηt) ⊆ L1(R+,L(X); ρ1(t)) whenever ρ1 is a weight sat-
isfying (W), [9, Theorem 2] gives a P1 ∈ L1(R+,L(X); ρ1(t)) such that
P1 = S2 + P1 ∗ S2 = S2 + S2 ∗ P1. Thus, solving (3.21) and (3.22)
for U1 and V1, respectively, and using (3.23) and (3.20), we obtain
U1 = S1 +P1 ∗S1 ∈ L1(R+,L(X); ρ1(t)) and V1 = V1,ω +P1 ∗V1,ω ∈
L1(R+,L(X1,X); ρ1(t)).

Finally, LŴ1 = V̂1(s)/α2
1(s) = (1/μ1 + ˆ̇

k1(s))2V̂1(s) by (3.15), and,
using (3.16), we also get

LW1 ∈ L1(R+,L(X1,X); ρ1(t)).
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(b) Perturbed kernels. The conclusion of Theorem 3.1, together with
local analyticity and Gripenberg’s Paley-Wiener Lemma, can be used
to obtain

THEOREM 3.2. Let A1(t) = E +a1(t) and L satisfy all the hypotheses
of Theorem 3.1. Assume that ρ(t) is a weight satisfying (W), and let
A(t) = A1(t) + a2(t) where a2 ∈ AC2

loc (0,∞) is such that a2(t) = 0 on
some interval (0, T ), a2(t) → 0, t → ∞, and

(3.24)
∫ ∞

T

(|ȧ2(t)| + t|ä2(t)| + t2|...a 2(t)|)ρ(t) dt < ∞.

In addition, assume that s/Â(s) ∈ R for s ∈ Π, s �= 0. Then U,V and
W satisfy the conclusion of Theorem 2.1(i).

PROOF. We first remark that the existence of the strongly continuous
resolvent U(t) corresponding to A(t) is guaranteed by Corollary 4 of
[18].

Since Û − Û1 = (Û−1
1 − Û−1)Û1Û = â2LÛ1Û, an easy calculation

shows that

(3.25) Û(s) = Ŝ4(s) + Ŝ3(s)Û(s),

where

Ŝ3(s) =
s2â2(s)
Â(s)

Ŵ1(s),

Ŝ4(s) = Û1(s) − sâ2(s)
Â(s)

Ŵ1(s).

(Of course, throughout this proof U1, V1 and W1 correspond to the
kernel A1.) Also, using V̂(s) = Â(s)LÛ(s) = Â(s)L(s− Â(s)L)−1 and
the corresponding expression for V̂1(s), we easily see that

(3.26) V̂(s) = V̂1(s) + Ŝ3(s)V̂(s).
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Theorem 6.1 of [13] can be used to show that the scalar functions
occurring in the expressions for Ŝ3 and Ŝ4 satisfy

sâ2(s)
Â(s)

∈ L1(R+; (1 + t)ρ(t))∧,(3.27)

s2â2(s)
Â(s)

∈ L1(R+; (1 + t)2ρ(t))∧.(3.28)

To verify (3.28), set ϕ(s) = s2â2(s)Â−1(s), and note that, since
a2(t) = 0 on (0, T ), ϕ can be rewritten as

ϕ(s) = s2ˆ̇a2(s)[E + sâ1(s) + ˆ̇a2(s)]−1.

Clearly, this expression is locally analytic w.r.t. V (R+; ρ) on Π, and the
order of dependence on the transforms used in the expression at s0 = 0
is at least 2. Near ∞, recall that α2

1 = sÂ1, and use the operational
calculus and Lemma 3.2 to write

ϕ(s) = s3â2(s)[E + sâ1(s) + sâ2(s)]−1

=
.̂..
a 2(s)[α2

1(s) + ˆ̇a2(s)]−1

=
.̂..
a 2(s)

(
1
μ1

+ ˆ̇k1(s)
)2
{

1 + ˆ̇a2(s)
(

1
μ1

+ ˆ̇k1(s)
)2
}−1

.

By (3.13) and (3.16), a1(t) and k̇1(t) belong to L1(R+; (1 + t)lρ(t)) for
any l ≥ 0. Since (3.24) also holds, all the functions whose transforms
appear in the representations for ϕ(s) satisfy condition (6.8) of [13]
with m = 2, z0 = s0 = 0, and (3.28) follows from [13, Theorem 6.1].
The proof of (3.27) is similar (here the order of dependence at s0 = 0
is 1) and details are left to the reader.

For each l ≥ 0, (1+ t)lρ(t) is a weight satisfying (W) so, by Theorem
3.1,

U1 ∈ L1(R+,L(X); (1 + t)lρ(t)), l ≥ 0.

Since

W1(t) =
∫ t

0

U1(τ ) dτ = −
∫ ∞

t

U1(τ ) dτ,

it is easy to check that W1(t) also belongs to L1(R+,L(X); (1+t)lρ(t)),
l ≥ 0, and then, using (3.27) and (3.28), we see that S4(t) belongs
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to L1(R+,L(X); (1 + t)ρ(t)), and S3(t) belongs to L1(R+,L(X); (1 +
t)2ρ(t)).

Since

I − Ŝ3(t) =

[
(s − Â1(s)L) − sâ2(s)

Â(s)

]
(s − Â1(s)L)−1,

we can use the fact that

s(1 − â2(s)/Â(s))
Â1(s)

=
s

Â(s)

belongs to the resolvent set R for s ∈ Π, s �= 0, and the invertibility of
L to see that I− Ŝ3(s) is invertible for s ∈ Π. By [9, Theorem 2], there
exists P2 ∈ L1(R+,L(X); (1+t)2ρ(t)) such that P2 = S3+P2∗S3, and
it follows that U = S4 + P2 ∗ S4 belongs to L1(R+,L(X); (1 + t)ρ(t)),
and V = V1 + P2 ∗ V1 belongs to L1(R+,L(X1,X); (1 + t)2ρ(t)).

Finally, since LŴ(s) = V̂(s)/(sÂ(s)), we get LW(t) ∈ L1(R+,L(X1,
X); ρ(t)) provided that

(3.29)
1

sÂ(s)
∈ V (R+; ρ)∧.

To verify (3.29), note that

1
sÂ(s)

= [E + sâ1(s) + ˆ̇a2(s)]−1

is locally analytic w.r.t. V (R+; ρ) on Π. At ∞ use Lemma 3.2 to write

1
sÂ(s)

= [α2
1(s) + ˆ̇a2(s)]−1

=
(

1
μ1

+ ˆ̇
k1(s)

)2
{

1 + ˆ̇a2(s)
(

1
μ1

+ ˆ̇
k1(s)

)2
}−1

,

and note that this expression is locally analytic w.r.t. V (R+; ρ) at
∞. (3.29) now follows from Proposition 2.3 of [13], and the proof
of Theorem 3.2 is complete.
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(c) Proof of Theorem 2.1(i). We conclude this section by stating
and proving the following decomposition proposition which shows that
Theorem 2.1(i) is a special case of Theorem 3.2.

PROPOSITION 3.1. Let A(t) = E + a(t) where E > 0, and a satisfies
(1.2) with ȧ(0+) = −∞ and a ∈ ACJ

loc (0,∞), where J = 0, 1 or 2.
Let L generate a C0 cosine family, let L be invertible, and assume that
s/Â(s) ∈ R for s ∈ Π, s �= 0, in case ω0(L) > 0. In addition, assume
that

(3.30)
(i) ω0(L) = 0 or (ii) J = 1 or 2 and ä is (or extends to) a
function of bounded variation on [c,∞), c > 0.

(We normalize ä to be left continuous in (3.30(ii)), J = 1.) Then A
can be decomposed as

A(t) = E + a1(t) + a2(t) = A1(t) + a2(t),

where

(3.31) a1(t) ∈ ACJ
loc (0,∞) satisfies (1.2),

(3.32)
there is a T > 0 such that a2(t) ≡ 0 on [0, T ], a1 ∈ C∞[T,∞)
with

...
a 1 ≤ 0 on [T,∞), and there is an ε > 0 such that

a1(t) = o(e−εt), t → ∞, j = 0, 1, . . . , and

(3.14) holds.

PROOF. If (3.30(ii)) holds, to see that (3.14) can be satisfied, assume
(3.31), (3.32) for the moment and recall that, by (3.17) and (3.18)
with x = 1 (for the kernel A(t) in place of A1(t)), e−β(s) = ŵ0t(s, 1),
where w0t(t, 1) belongs to L1(R+) by [18, Theorem 3(v)]. Thus,
by the Riemann-Lebesgue Lemma and Lindelöf’s Principle [3, p. 2],
exp(−β(s)) → 0, i.e., 
β(s) → ∞ as s → ∞, uniformly in Π. Since
β2(s) ∈ R when 
β(s) > ω0(L), this fact and a compactness argument
using the assumption that β2(s) ∈ R, s ∈ Π, s �= 0, show that

D ≡ dist (β2(Π), σ(L)) > 0.
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Since 
â(s) ≥ 0 and (�s)(�â(s)) ≤ 0, with the same inequalities
holding for a1, (3.32) yields

(3.33)

|β2(s) − β2
1(s)| =

∣∣∣∣∣ sâ2(s)
Â(s)Â1(s)

∣∣∣∣∣
≤
∣∣∣∣s3â2(s)

E2

∣∣∣∣ =

∣∣∣∣∣ d̂ä2(s)
E2

∣∣∣∣∣
≤ E−2

∫ ∞

T

|dä2(t)|.

(Again, the convention is ä2(T ) = ä2(T−).) Thus, in addition to (3.31)
and (3.32), we will get (3.14) if

(3.34)
∫ ∞

T

|dä2(t)| < E2D/2.

To obtain (3.31) and (3.32) write

(3.35) a1(t) =
{

a(t), 0 < t ≤ T

a(T ) exp(
∫ t

T
q(x) dx), T < t < ∞,

where T and q are to be chosen. We have

(3.36) ȧ1 = qa1, ä1 = (q̇ + q2)a1,
...
a 1 = (q̈ + 3qq̇ + q3)a1, etc.

If (3.30(i)) holds, T is an arbitrary positive number. If (3.30(ii))
holds, choose T so large that

(3.37)
∫ ∞

T

|dä(t)| < E2D/4.

Now pick q ∈ C∞[T,∞) with bounded derivatives of all orders, with
(−1)jq(j−1)(t) > 0, j = 1, 2, 3, t > T , subject to the identities obtained
by equating a(j)(T+) to a

(j)
1 (T+) in (3.36), 1 ≤ j ≤ max{J, 1}, and

ä(T+) = ä1(T+) under hypothesis (3.30(ii)) with J = 1. We require
as well that

(3.38)
ȧ(T+)
a(T )

= q(T ) < q(∞) < −ε < 0.
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Note that q(T ) = ȧ(T+)/a(T ) < 0, and that

q̇(T ) =
ä(T+)a(T ) − ȧ2(T )

a2(T )
≥ 0

when J = 2 or (3.30(ii)) holds, by log-convexity, so our sign conditions
on q(j−1) are consistent with the matching conditions at T .

With these choices, the sign and matching conditions on q, together
with (3.38), yield (3.31) and (3.32), so the proof is complete under
(3.30(i)). When (3.30(ii)) holds, the matching conditions and (3.32),
(3.37) imply ∫ ∞

T

|dä2(t)| =
∫ ∞

T+

|dä2(t)|

=
∫ ∞

T+

|dä(t) − ...
a 1(t) dt|

≤
∫ ∞

T+

|dä(t)| −
∫ ∞

T

...
a 1(t) dt

=
∫ ∞

T+

|dä(t)| + ä(T+)

≤ 2
∫ ∞

T

|dä(t)| < E2D/2

so (3.34) holds and we are done.

4. Asymptotic behavior in viscoelastic materials. In this
section and the next we regard (1.1) as a model for vibrations in a
viscoelastic solid. Here X is a Hilbert space and L a negative definite
self-adjoint linear operator with spectrum in (−∞,−λ0], where λ0 > 0.
When ä is bounded, this is a special case of the model developed
and studied by Dafermos [4]. More recently, J.E. Lagnese [14] and
G. Leugering [15] have used energy methods to study decay rates
for models similar to those of Dafermos but with boundary feedback
conditions that improve the decay rates of oscillations. Our purpose
is to show that, when a(t) does not decay exponentially, the results of
Sections 2 and 3 above yield decay rates without boundary feedback
that are essentially as rapid as those obtained with feedback. We also
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show that there are cases (with exponentially decaying a(t)) where
such “stabilizing” feedbacks lead to slower decay. These phenomena
reflect the fact that energy in a viscoelastic medium dissipates in part
through a “creep” mechanism that interacts with boundary forces in
a way that is entirely different from that exhibited in purely elastic
materials. Attempts to separate the creep behavior from oscillatory
motion analytically (with applications to controllability, for example)
are underway [6, 16, 17].

We assume throughout this section that A(t) and ρ satisfy the
conditions of Theorem 2.1. The cosine family C(t) = cosMt, with
M = (−L)1/2, can be defined via the spectral theorem, and one sees
that ω0 = 0 and X1 is the domain, D(M), of M with norm equivalent to
‖Mx‖. We take u0 ∈ X1, u1 ∈ X. (Alternatively, in the regular case,
one can use Theorem 2.1(ii)′ and the remarks following that theorem
to deduce the estimates needed below and weaken the log-convexity
requirement on a(t) to ordinary convexity.)

The results of Section 2 lead to the following representation theorem
and estimate.

THEOREM 4.1. Under the above assumptions, the function

(4.1) u(t) ≡ U(t)u0 + W(t)u1 ∈ H1
loc (R+,X) ∩ L1

loc (R+,X1)

is the unique mild solution of the integrated form

(4.2) u(t) = u0 + u1t +
∫ t

0

∫ τ

0

A(τ − r)Lu(r) dr dτ

of (1.1) in X, and

(4.3)
u̇(t) = V(t)u0 + U(t)u1

= V(t)M−1(Mu0) + U(t)u1, t > 0.

Moreover, we have the estimate

(4.4)
∫ ∞

0

(‖u(t)‖1 + ‖u̇(t)‖)ρ(t) dt ≤ C(‖u0‖1 + ‖u1‖),

for some constant C.
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PROOF. The assertions involved in (4.1), (4.2) and (4.3) follow di-
rectly from the properties of U and V developed, e.g., in [1] and [2].
For (4.4) the estimate is

(4.5)

∫ ∞

0

(‖u(t)‖1 + ‖u̇(t)‖)ρ(t) dt

≤
∫ ∞

0

(‖U(t)Mu0‖ + ‖MW(t)u1‖

+ ‖V(t)M−1Mu0‖ + ‖U(t)u1‖)ρ(t) dt

≤ (‖u0‖1 + ‖u1‖)
∫ ∞

0

(‖U(t)‖ + ‖MW(t)‖

+ ‖V(t)M−1‖)ρ(t) dt

≡ C(‖u0‖1 + ‖u1‖),

where the operator norms are in L(X) and Theorem 2.1 has been
used in the last step. (In Case (ii) of Theorem 2.1, we modify the
estimate to reflect that the operators are ρ-integrable. Actually, the
operator norms of U(t),MW(t) and V(t)M−1 are measurable here, as
may be seen from a spectral representation of these resolvents.)

Now define

(4.6)

E(t) =
1
2
A(t)‖Mu(t)‖2 +

1
2
‖u̇(t)‖2

− 1
2

∫ t

0

ȧ(t − τ )‖M(u(t) − u(τ ))‖2 dτ.

Leugering [15] studied a case of (1.1) but with stabilizing bound-
ary feedback (in a history space setting, with corresponding modifi-
cation of (4.6)) with a ∈ C2[0,∞), but not necessarily log-convex.
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He showed that ∫ ∞

0

E(t)(1 + t)j dt < ∞

(j = positive integer) provided∫ ∞

0

a(t)(1 + t)j−1 dt < ∞.

We shall derive a comparable estimate for the homogeneous problem
(1.1), where there is no initial history.

LEMMA 4.2. Under the hypothesis of Theorem 4.1, if a(0+) < ∞,
then E(t) ≤ E(0), t ≥ 0.

PROOF. If Lu0 and u1 belong to D(M), then u(t) ∈ C1(R+,D(M))
by [5]. Then ‖M(u(t) − u(τ ))‖ = O(t − τ ), τ → t, and the standard
energy computation [4] yields

Ė(t) =
1
2
ȧ(t)‖Mu(t)‖2 − 1

2

∫ t

0

ä(t − τ )‖M(u(t) − u(τ ))‖2 dτ

for t > 0, so our result follows. An approximation argument, using
the continuity of Mu(t) and u̇(t) in X as functions of Mu0 and u1,
together with Fatou’s lemma, completes the proof in the general case.

THEOREM 4.3. Under the assumptions of Theorem 4.1, if a(0+) < ∞,
then we have ∫ ∞

0

E(t)ρ(t) dt < ∞.

PROOF. By Theorem 4.1 and Lemma 4.2,

1
2

∫ ∞

0

{A(t)‖Mu(t)‖2 + ‖u̇(t)‖2}ρ(t) dt < ∞.
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For the integral (viscoelastic stored energy) term, the estimate is∫ ∞

0

ρ(t)
∫ t

0

|ȧ(τ )| ‖M(u(t) − u(t − τ ))‖2
dτ dt

≤ 2
∫ ∞

0

|ȧ(τ )|
∫ ∞

τ

ρ(t)(‖Mu(t)‖2 + ‖Mu(t − τ )‖2) dt dτ

≤ 2
∫ ∞

0

|ȧ(τ )| dτ

∫ ∞

0

‖M(u(t))‖2ρ(t) dt

+ 2
∫ ∞

0

|ȧ(τ )|
∫ ∞

0

ρ(t + τ )‖Mu(t)‖2 dt dτ

≤ 2a(0)
∫ ∞

0

‖Mu(t)‖2ρ(t) dt

+ 2
∫ ∞

0

|ȧ(τ )|ρ(τ ) dτ

∫ ∞

0

‖Mu(t)‖2ρ(t) dt < ∞.

5. An example with boundary feedback. To see the limitation
of boundary feedback in the stabilization of creep deformations, we
consider a special problem consisting of the viscoelastic wave equation

(5.1)
utt(x, t) = Euxx(x, t) +

d

dt

∫ t

0

a(t − τ )uxx(x, τ) dτ,

0 ≤ t < ∞, 0 ≤ x ≤ 1,

with boundary and initial conditions

(5.2) u(0, t) = 0, t > 0; u(x, 0) = u0(x), ut(x, 0) = 0, 0 ≤ x ≤ 1,

and the feedback condition

(5.3) Eux(1, t) +
d

dt

∫ t

0

a(t − τ )ux(1, τ ) dτ = −kut(1, t),

where a satisfies (1.2) and (to permit comparison to [11, 12] and for
simplicity) is completely monotone on (0,∞). We assume that E > 0,
k ≥ 0 and, to make existence equations easy,

(5.4) u0 ∈ C∞
c (0, 1).
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Let

E1(t) =
∫ 1

0

[u2
x(x, t) + u2

t (x, t)] dt.

When k = 0, (5.1) (5.3) is an example of (1.1) with X = L2(0, 1),
L = d2/dx2 on

D(L) ≡ {u ∈ H2(0, 1) : u(0) = u′(1) = 0}.
From Section 4 we get u(t) = U(t)u0, u̇(t) = V(t)u0, so the estimate
of Theorem 2.1 yields (as in (4.5))

(5.5)
∫ ∞

0

E1/2
1 (t)(1 + t)ρ(t) dt ≤ CE1/2

1 (0),

provided (2.6) holds.

We shall take ρ(t) = (1 + t)j+η, where j is a nonnegative integer and
0 ≤ η < 1, so that (2.6) reduces to

(5.6)
∫ ∞

1

|ȧ(t)|(1 + t)j+η dt < ∞

(see (2.8)).

When k > 0, we can proceed as in [12] (i.e., directly via the complex
inversion formula) to define u(x, t) in terms of its Laplace transform
û(x, s), to establish existence. In particular, one gets the explicit
formula

(5.7) û(1, s) =

∫ 1

0
u0(y) sinh βy dy

α cosh β + k sinh β
, 
 ≥ 0,

with α = α(s) = (sÂ(s))1/2, α(0) > 0, and β = s/α. Using (5.4) we
find that u(1, ·) ∈ L2 ∩ C∞[0,∞) and u(1, t) =

∫ 1

0
ux(x, t) dx, so that

(5.8) E1/2
1 (t) ≥ |u(1, t)|,

by the Schwarz inequality.

Now suppose the feedback condition (5.3) enables us to improve (5.5)
to

(5.5+ε)
∫ ∞

0

E1/2
1 (t)(1 + t)j+η+1+ε dt < ∞
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with η < η + ε < 1. Then, by (5.8), we have

(5.9)

lim
s→0+

s−η−ε[ûj+1(1, s) − ûj+1(1, 0)]

= lim
s→0+

∫ ∞

0

u(1, t)t(j+1+η+ε) e
−st − 1
(st)η+ε

dt = 0

by dominated convergence. For expressions like (5.9) we use right-hand
derivatives at 0 and we say u ∈ Cj+1+η+ε. By decomposing û(1, s), we
shall show that if j ≥ 0 (see note below), then

(5.6+ε′)
∫ ∞

1

|ȧ(t)|tj+η+ε′ dt < ∞

for every positive ε′ < ε, so that (5.5+ε′) holds for all such ε′, even
when k = 0.

Write a(t) = b1(t) + b2(t), where both b1 and b2 are positive,
decreasing and convex, but b1(t) = 0 for t > 1 and b2(0+) < ∞ (for
example, b2 can be linear on (0, 1)). Then, with A0 = E + b2(0+), we
have

1
Â(s)

=
s

A0 + sb̂1(s) + ˆ̇
b2(s)

.

Since b̂1 is analytic at 0 and b2 = a for t > 1, so that

(5.10) b̂2(s) ∈ Cj+η

(as in (5.9)), it follows that

(5.11) w(s) ≡ Â(s)−1 ∈ Cj+1+η.

(Here and below we use the formula

(sg(s))(j+1)|s=0 = (j + 1)g(j)(0) when g ∈ C j [0, s1) ∩ Cj+1(0, s1).)

In the present case,

g(s) = (A0 + sb̂1(s) + ˆ̇
b2(s))−1.
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The hard terms in the proof of (5.11) are

E−2s−η

[
(j + 1)

(
ˆ̇b
(j)

2 (s) − ˆ̇b
(j)

2 (0)
)

+ sˆ̇b
(j+1)

2 (s)
]

.

The first of these tends to 0 by (5.10), while∣∣∣∣s1−ηˆ̇b
(j+1)

2 (s)
∣∣∣∣ ≤ ∫ ∞

0

(st)1−ηe−sttj+η|ḃ2(t)| dt → 0, s → 0+,

again by dominated convergence.

Now write

(5.12)

û(1, s) =
1

Â(s)

∫ 1

0
u0(y)β−1 sinh βy dy

cosh β + k
Â(s)

β−1 sinh β

≡ w(s)
h(sw(s))

C(sw(s)) + kw(s)S(sw(s))

≡ Φ(s, w(s)) ≡ h(0)w(s) + Ψ(s, w(s)).

Then Φ(s, w) is analytic at (0, 0) with Φ(0, 0) = 0, Φw(0, 0) = h(0) =∫ 1

0
yu0(y) dy, so Ψ has the form Ψ(s, w) = wΨ̃(s, w) with Ψ̃ analytic at

(0, 0) and Ψ̃(0, 0) = 0. Using (5.11) we get Ψ(s, w(s)) ∈ Cj+1+λ for all
λ < 1, so (5.9) and (5.12) yield

(5.13) w(s) ∈ Cj+1+η+ε.

Now decompose w(s) as

(5.14) w(s) = w1(s) − b̂1(s)w1(s)w(s),

where w1(s) = s(A0 + ˆ̇b2(s))−1. As above, w1(s) ∈ Cj+1+η, and
w1(s) = O(s) (s → 0+), so it is clear that

b̂1(s)w1(s)w(s) ∈ Cj+1+λ, λ < 1,

and, in particular, for λ = η + ε. Thus, (5.13) and (5.14) lead to

(5.15) w1(s) ∈ Cj+1+η+ε.
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But

(5.16) w1(s) = −sˆ̇b2(s)
E2

+
A0s

E2
+

w1(s)
E2

(ˆ̇b2(s) − ˆ̇
b2(0))2.

When j ≥ 1 or ε < η, the last term here is in Cj+1+η+ε, so (5.15) gives
us

0 = lim
s→0+

s−η−ε
[
(sˆ̇b2(s))(j+1) − (sˆ̇b2(s))(j+1)|s=0

]
= lim

s→0+

[
j + 1
sη+ε

∫ ∞

0

(e−st − 1)(−t)j ḃ2(t) dt

+ s1−η−ε

∫ ∞

0

e−st(−t)j+1ḃ2(t) dt

]
.

Since both terms inside the bracket have the same sign, both tend to
zero. In particular,

l(s) ≡ 1 − e−1/2

sη+ε

∫ 1/s

1/2s

tj |ḃ2(t)| dt

is bounded for s ∈ (0, 1). But

l(2−n) ≥ (1 − e−1/2)(2ε−ε′)n

∫ 2n

2n−1
tj+η+ε′ |ḃ2(t)| dt,

when ε < ε′, since

s−η−ε ≥ sε′−εtη+ε′ = (2n)(ε−ε′)tη+ε′

in this situation. Finally, then,∫ ∞

1

tj+η+ε′ |ȧ(t)| dt =
∫ ∞

1

tj+η+ε′ |ḃ2(t)| dt ≤ M
∞∑

n=1

2−n(ε−ε′) < ∞,

as claimed.

NOTE 1. If j = 0, then
(ˆ̇
b2(s) − ˆ̇

b2(0)
)2

adds only 2η degrees of
smoothness to the last term in (5.16). If η > 0, this is enough, since
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we can assume that η is maximal in (5.6) and get a contradiction to
(5.5+ε). The case j = η = 0 is not covered.

NOTE 2. When A(t) = E+γ(1+t)−r, j < r < j+1, j = nonnegative
integer, we can derive an asymptotic expansion for u(1, t) valid for t
near ∞ which gives the precise dependence on k ≥ 0 for fixed initial
data u0(y). Namely, use (5.7) to develop û(1, s) in an asymptotic series
valid near s = 0, and then use the theory relating the behavior of û(1, s)
near s = 0 to that of u(1, t) near t = ∞ (e.g., [7, Theorem 37.1]) to
deduce an asymptotic expansion for u(1, t) valid for t near ∞. An easy
calculation shows that the dominant term in this expansion for u(1, t)
is actually independent of k ≥ 0.

NOTE 3. For the case where∫ ∞

0

eδta(t) dt < ∞

for some positive δ, we can even arrange matters so that the exponential
decay rate when k > 0 is slower than that for k = 0. For example,
with A(t) = E + γe−δt and an appropriate choice of the parameters
E, γ, δ, one sees from the numerical estimates of [11, Section 4] that
the singularity for û(1, s) with the largest real part is the “Class 4”
eigenvalue on the negative real axis that moves to the right from
σ∗ = −Eδ/(E + γ) as k increases from zero.
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