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1. Introduction. In motions of nonlinear viscoelastic materials the
dissipative effects due to memory restrain disturbances of small ampli-
tude, but the destabilizing effects of nonlinearity in the instantaneous
response are dominant for disturbances of large amplitude. The dif-
ficulties inherent in the study of general materials with memory have
led to an interest in models that capture the interaction between dissi-
pation and nonlinearity, but are sufficiently simple to allow analysis of
corresponding history-value problems. In one space dimension a class
of mechanical models with this property is based on single-integral laws,

(1.1) σ(t) = σ̂(ε(t)) +
∫ ∞

0

σ̃(ε(t), ε(t− s), s) ds,

giving the stress σ(t) when the strain ε(τ ) is known at all past times
τ ≤ t.

There is a large literature (cf., e.g., [13] and the references cited
therein) concerning history-value problems associated with (1.1); in
particular, under physically natural assumptions on σ̂ and σ̃, a globally
defined smooth solution exists provided the data are smooth and
sufficiently close to equilibrium. Similar results have been obtained
for rigid heat conductors of single-integral type (cf., e.g., [1]) and for
thermoelastic heat conductors (cf., e.g., [8, 14, 16]). However, to
our knowledge there are no general results applicable to nonlinear
materials of single-integral type for deforming bodies under varying
temperature. Our objective here is to study such problems using, as
a basis, a thermodynamic theory of viscoelastic materials of single-
integral type developed in [6]. (A general theory of thermodynamics
of materials with memory was developed earlier by Coleman [2]. Much
of Coleman’s theory applies to single-integral laws; however, because
single-integral laws have such restricted form, the corresponding set of
thermodynamical restrictions is richer than the set originally derived by
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Coleman). In particular, we consider materials with stress and energy
related to strain and temperature through constitutive equations of
the form (1.1), and with heat flux given by a nonlinear Fourier law.
We prove global existence of a classical solution for the history-value
problem corresponding to the following conditions: the body for t ≤ 0
and the boundary for t > 0 are displacement free and at constant
temperature θ0; the body force and heat supply are smooth and small
for t > 0.

The underlying thermodynamic structure is the basic ingredient of
our theory: compatibility of the constitutive equations with the second
law provides basic inequalities and a symmetry of cross derivatives that
are essential to our argument.

2. Formulation of the history-value problem.

2.1. Notation. We will consistently use the following notation: 〈·, ·〉
and | · | are the standard inner product and norm on R2; for functions
f(a1, a2, a3, . . . ) of several variables, f,i = ∂f/∂ai; for functions f(x, t)
of position x and time t, fx = ∂f/∂x, f · = ∂f/∂t,Dnf is a formal
list of the nth order partial derivatives of f , and |Dnf | designates the
pointwise Euclidean norm ofDnf . A dot will also denote differentiation
with respect to a single time-like variable.

The symbol “∗” denotes convolution:

(a ∗ f)(t) =
∫ t

0

a(t− τ )f(τ ) dτ.

(For functions of position and time “∗” will be with respect to time.)

Let T ∈ R and f : (−∞, T ] → R be given. Then the history
f t : [0,∞) → R of f up to time t ∈ (−∞, T ] is defined by

f t(s) = f(t− s), s ≥ 0.

2.2. The formal history-value problem. Consider under an appro-
priate scaling a one-dimensional homogeneous body B identified with
the interval [0, 1] it occupies in a homogeneous reference configuration
of unit density. The thermomechanics of B is described by seven func-
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tions of position x ∈ [0, 1] and time t,

u(x, t) displacement,
σ(x, t) stress,
f(x, t) body force,
e(x, t) internal energy,
θ(x, t) absolute temperature,
q(x, t) heat flux,
r(x, t) heat supply,

related through balance laws for momentum and energy:

(2.1)
u·· = σx + f,

e· = − qx + σu·x + r.

We consider constitutive equations in the form of single-integral laws
for stress and internal energy in conjunction with a Fourier law for heat
conduction. Precisely, writing

(2.2) ε = ux, γ = θx

for the strain and temperature gradient, we suppose that

(2.3)

σ(t) = σ̂(ε(t), θ(t)) +
∫ ∞

0

σ̃(ε(t), θ(t), ε(t− s), θ(t− s), s) ds,

e(t) = ê(ε(t), θ(t)) +
∫ ∞

0

ẽ(ε(t), θ(t), ε(t− s), θ(t− s), s) ds,

q(t) = −κ(ε(t), θ(t))γ(t),

with response functions σ̂, σ̃, ê, ẽ, and κ independent of x.

We assume that initially and for all past times the body is displace-
ment free and at constant temperature θ0, and that the same conditions
hold on the boundary for all positive time. The history-value problem
under consideration then consists in solving (2.1) (2.3) subject to the
boundary conditions

(2.4) u(0, t) = u(1, t) = 0, θ(0, t) = θ(1, t) = θ0, t ≥ 0,
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and the initial conditions

(2.5)
u(x, t) = 0, θ(x, t) = θ0, x ∈ [0, 1], t < 0,
u(x, 0) = u·(x, 0) = 0, θ(x, 0) = θ0, x ∈ [0, 1],

with θ0 > 0 a prescribed constant.

2.3. Assumptions concerning the constitutive equations and data. We
normalize the integrands in (2.3) so that

(2.6) σ̃(α, β, α, β, s) = ẽ(α, β, α, β, s) = 0;

the functions σ̂ and ê then define the equilibrium response of the
material. By (2.6), for f̃ equal to σ̃ or ẽ,

(2.7)
f̃,1(α, β, α, β, s) = −f̃,3(α, β, α, β, s),

f̃,2(α, β, α, β, s) = −f̃,4(α, β, α, β, s).

Some notation is useful. We write

(2.8) U = (−1,∞) × (0,∞)

for the set of strain-temperature pairs, and we refer to a function
μ : U × U × [0,∞) → R as locally dominated if, for every compact
set Z ⊂ U × U , there is a function k ∈ L1[0,∞) such that

(2.9) |μ(ε, θ, α, β, s)| ≤ k(s) ∀ (ε, θ, α, β) ∈ Z, s ∈ [0,∞).

In addition, we refer to the pair (0, θ0) as the equilibrium state and
write

(2.10) Δμ(ε, θ, α, β, s) = μ(ε, θ, α, β, s) − μ(0, θ0, 0, θ0, s)

for the departure of μ from equilibrium.

We assume that the response functions are consistent with the fol-
lowing smoothness hypotheses:

(A1)
σ̂, ε̂, κ ∈ C3(U);
σ̃, ε̃ ∈ C3(U × U × [0,∞)); σ̃, ε̃ and their partial
derivatives through order 3 are locally dominated.
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This assumption can be relaxed, but general assumptions under which
our existence proof applies are complicated to state; we believe that
(A1) is reasonable from the viewpoint of mechanics. (It would be of
interest to develop an existence theory for kernels σ̃(ε, θ, α, β, s) and
ẽ(ε, θ, α, β, s) that are singular at s = 0; to treat such kernels within
our framework would require major modifications.)

The moduli

(2.11)
Aeq (ε, θ) = σ̂,1(ε, θ), Beq (ε, θ) = σ̂,2(ε, θ),
Meq (ε, θ) = ê,1(ε, θ), Ceq (ε, θ) = ê,2(ε, θ),

characterize the equilibrium response of the material at a strain-
temperature pair (ε, θ) ∈ U , while the functionals

Ainst (εt, θt) = Aeq (ε(t), θ(t)) +
∫ ∞

0

σ̃,1(ε(t), θ(t), ε(t−s), θ(t−s), s) ds,

Binst (εt, θt) = Beq (ε(t), θ(t)) +
∫ ∞

0

σ̃,2(ε(t), θ(t), ε(t−s), θ(t−s), s) ds,

Minst (εt, θt) = Meq (ε(t), θ(t)) +
∫ ∞

0

ẽ,1(ε(t), θ(t), ε(t−s), θ(t−s), s) ds,

Cinst (εt, θt) = Ceq (ε(t), θ(t)) +
∫ ∞

0

ẽ,2(ε(t), θ(t), ε(t−s), θ(t− s), s) ds.

characterize the instantaneous response at the history-pair (εt, θt). We
will refer to these functionals as instantaneous derivatives; Ainst (εt, θt)
represents the derivative of the stress at time t with respect to the
present strain ε(t) holding the past strain values ε(τ ), τ < t and the
entire history θt fixed, and so forth.

To write the functional differential equations that define our the-
ory we need expressions for the functional derivatives of the constitu-
tive relations for the stress and energy. These derivatives are linear
functions of the strain and temperature “perturbations” f and g ; for
f , g : (−∞, T ] → R continuous functions with

(2.12) f = g = 0 on (−∞, 0],

the functional derivative of the stress is given by
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(2.13)

Ainst (εt, θt) f (t) +Binst (εt, θt) g (t)

+
∫ t

0

σ̃,3(ε(t), θ(t), ε(t− s), θ(t− s), s) f (t− s) ds

+
∫ t

0

σ̃,4(ε(t), θ(t), ε(t− s), θ(t− s), s) g (t− s) ds,

t > 0,

and a similar expression holds for the energy.

The functions a, b,m, c : [0,∞) → R defined by

a′(s) = σ̃,3(0, θ0, 0, θ0, s), a(∞) = 0,
b′(s) = σ̃,4(0, θ0, 0, θ0, s), b(∞) = 0,
m′(s) = ẽ,3(0, θ0, 0, θ0, s), m(∞) = 0,(2.14)
c′(s) = ẽ,4(0, θ0, 0, θ0, s), c(∞) = 0

characterize the hereditary behavior of the material near the equilib-
rium state (0, θ0). (It is more customary to use the stress-strain re-
laxation function G(s), 0 ≤ s < ∞, defined by G ′(s) = a′(s), G(∞) =
Aeq (0, θ0); in fact, the results of [6] are phrased in terms of the re-
laxation (matrix-) function G (s) with G ′(s) = A ′(s) (cf. (2.23)) and
G (∞) defined in terms of the equilibrium moduli (2.11) at (0, θ0).) By
(2.7),

(2.15) p(0) = Pinst (0, θ0) − Peq (0, θ0),

where here and in what follows,

P stands for any one of the letters A,B,M,C and
p for the corresponsing lower case letter a, b,m, or c,

and where Pinst (0, θ0) means Pinst evaluated at the constant history-
pair with value (0, θ0).

We assume that

(A2) a, b,m, c ∈ L1[0,∞).
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The assumptions (A1) and (A2) imply that

(2.16) Peq ∈ C2(U), p ∈ C3[0,∞) ∩W 3,1[0,∞).

We assume, in addition, that at the equilibrium state (0, θ0) the
equilibrium elasticity, the instantaneous specific heat, and the conduc-
tivity are strictly positive:

(A3) Aeq (0, θ0) > 0, Cinst (0, θ0) > 0, κ(0, θ0) > 0.

In analyzing the behavior of the material near the equilibrium
state (0, θ0), it is convenient to write the functional derivatives for
stress and energy using in place of the instantaneous derivatives the
functionals

(2.17)
P (εt, θt) = Pinst (εt, θt) − p(0)

= Peq (0, θ0) + Pinst (εt, θt) − Pinst (0, θ0).

Using these definitions, we can express the functional derivative (2.13)
in the form

(2.18)
A(εt, θt) f (t) +B(εt, θt) g (t)

+ (a ∗ f )·(t) + (b ∗ g )·(t) + Jσ̃(εt, θt; f t, g t),

where

(2.19)

Jσ̃(εt, θt; f t, g t)

=
∫ t

0

Δ(σ̃,3)(ε(t), θ(t), ε(t− s), θ(t− s), s) f (t− s) ds

+
∫ t

0

Δ(σ̃,4)(ε(t), θ(t), ε(t− s), θ(t− s), s) g (t− s) ds.

Similarly, the functional derivative of the energy is given by

(2.20)
M(εt, θt) f (t) + C(εt, θt) g (t)

+ (m ∗ f )·(t) + (c ∗ g )·(t) + Jẽ(εt, θt; f t, g t),

with Jẽ(εt, θt; f t, g t) defined by a relation strictly analogous to (2.19).
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Thermodynamics places restrictions on the constitutive equations,
and these will be important in our analysis. In particular, we have
shown [6] that derivatives with respect to temperature of the stress
response functions and derivatives with respect to strain of the energy
response functions satisfy

(A4)
ê,1(ε, θ) = σ̂(ε, θ) − θσ̂,2(ε, θ),

ẽ,1(ε, θ, α, β, s) = σ̃(ε, θ, α, β, s)− θσ̃,2(ε, θ, α, β, s),

which we here take as hypotheses. By (2.3), (2.7), (2.11), and (2.14),
(A4) yields

Meq (ε, θ) = σ̂(ε, θ) − θBeq (ε, θ), m = −θ0b,

Minst (εt, θt) = σ(t) − θ(t)Binst (εt, θt).
(2.21)

In addition, letting

(2.22) g(s) = −θ−1
0 c(s),

we have shown that the matrix function

(2.23) A (s) =
[
a(s) b(s)
b(s) g(s)

]
, s ≥ 0,

has first derivative negative semi-definite and second derivative positive
semi-definite for all s ≥ 0. Here, we assume that

(A5)
A ′(0) is negative definite,
A ′′(s) is positive semi-definite for all s ≥ 0.

The hereditary nature of the constitutive equations for stress and
energy gives rise to dissipation. A measure of this dissipation
appropriate to small departures from the equilibrium state (0, θ0) is
given by the quadratic form

(2.24) Q (Φ)(t) =
∫ t

0

〈Φ(s), (A ∗ Φ)(s)〉 ds,



GLOBAL EXISTENCE 439

defined for all t ≥ 0 and all locally square-integrable function Φ :
[0,∞) → R2, where

(2.25) (A ∗ Φ)(s) =
∫ s

0

A (s− τ )Φ(τ ) dτ.

Here Φ should be interpreted as a perturbation Φ = ( f ·, g ·) in strain-
rate and temperature-rate. As is known, (A5) yields the condition
Q (Φ)(t) ≥ 0 (cf., e.g., [4, 5]).

Finally, the data f and r are assumed to satisfy the following com-
patibility and smoothness conditions:

(A6)
f,D1f, f ·x, f

··, r,D1r, r·x, r
·· ∈ L2([0,∞);L2(0, 1)),

r(·, 0) ∈ H2(0, 1),
f(0, 0) = f(1, 0) = 0, r(0, 0) = r(1, 0) = 0.

In (A6) and in the theorem stated below, derivatives should be inter-
preted in the sense of distributions.

2.4. The existence theorem and the main ingredients of its proof. Our
main result is the following theorem, in which we measure the size of
the data using the function
(2.26)

J (f, r) =
∫ ∞

0

∫ 1

0

{
f2+ |D1f |2+ f ·2x + f ··2 + r2+ |D1r|2 + r·2x + r··2

}
(x, t) dx dt

+
∫ 1

0

rxx(x, 0)2 dx.

Existence Theorem. Consider the history-value problem defined by
(2.1) (2.5) with constitutive functions subject to assumptions (A1)
(A5). There is a constant μ > 0 such that, for all f, r consistent with
(A6) and

(2.27) J (f, r) ≤ μ,

this problem has a unique solution (u, θ) with the following properties:
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(i) (ux(x, t), θ(x, t)) ∈ U for all x ∈ [0, 1], t ≥ 0;

(ii) u,D1u,D2u,D3u, θ − θ0, D
1θ,D2θ, θxxx and θ·xx belong to

C([0,∞);L2(0, 1)), to L∞([0,∞);L2(0, 1)), and to L2([0,∞);L2(0, 1));

θ··x belongs to L2([0,∞);L2(0, 1)).

Moreover, as t→ ∞,

(2.28) u,D1u,D2u, θ − θ0, D
1θ, θxx, θ

·
x → 0 uniformly on [0, 1].

REMARK. Our proof of the theorem is valid under slightly weaker
assumptions on f and r (e.g., nothing need be assumed concerning
f ·x and r·x provided we impose stronger restrictions on fx and rx).
Moreover, solutions with higher regularity can be obtained by assuming
greater regularity for the constitutive functions and the data and
more stringent compatibility for the data at the boundary. Such
modifications are similar to the isothermal case (cf., e.g., [3]).

REMARK. The arguments we use to prove the existence theorem can
also be used to treat the following: the boundary conditions u = 0, q =
0; the boundary conditions σ = 0, θ = θ0; initial data of the form

(2.29)

u(x, t) = U(x, t), θ(x, t) = Θ(x, t), x ∈ [0, 1], t < 0,

u(x, 0) = U0(x), u·(x, 0) = U1(x), θ(x, 0) = Θ0(x), x ∈ [0, 1],

under suitable assumptions of smoothness, smallness, and compatibility
with the boundary conditions.

Our proof involves the functional-differential equation that results
when the constitutive relations (2.3) are combined with the balance
laws (2.1). The term σx in (2.1)1 is given by (2.18) with f = uxx, g =
θx, while e· in (2.1)2 is given by (2.20) with f = u·x, g = θ·; thus, in
view of (2.21) and (2.22), (2.1) and (2.3) combine to give the following
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equations, in which the argument (x, t) has, for convenience, been
omitted:

(2.30)

u·· = A(ut
x, θ

t)uxx +B(ut
x, θ

t)θx + (a ∗ uxx)· + (b ∗ θx)·

+ f + Jσ̃(ut
x, θ

t;ut
xx, θ

t
x),

G(ut
x, θ

t)θ· =(K(ux, θ)θx)x +B(ut
x, θ

t)u·x + (b ∗ u·x)· + (g ∗ θ·)·
+ S(ut

x, θ
t)u·x + θ−1

0 [r − Jẽ(ut
x, θ

t; (u·x)t, (θ·)t)],

where

(2.31)
K = θ−1

0 κ, G = θ−1
0 C,

S(ut
x, θ

t) = θ−1
0 (θ − θ0)Binst (ut

x, θ
t).

To prove the existence theorem we derive a priori estimates that can
be used to continue a local solution globally in time. For this purpose
it is convenient to consider the system
(2.32)

w·· = A(ut
x, θ

t)wxx +B(ut
x, θ

t)ϕx + (a ∗ wxx)· + (b ∗ ϕx)· + F,

G(ut
x, θ

t)ϕ· = [K(ux, θ)ϕx]x +B(ut
x, θ

t)w·
x + (b ∗ w·

x)· + (g ∗ ϕ·)·

+ S(ut
x, θ

t)w·
x +R,

with

(2.33)
F = f + Jσ̃(ut

x, θ
t;ut

xx, θ
t
x),

R = θ−1
0 [r − Jẽ(ut

x, θ
t; (u·x)t, (θ·)t)],

together with homogeneous Dirichlet boundary conditions and zero
initial data for w and ϕ. Note that (2.32) is linear in w and ϕ. We
shall obtain estimates for w and ϕ in terms of u, θ, f , and r, and then
put w = u and ϕ = θ − θ0. Here is it important to note that, by
(2.19) and its counterpart for energy, F and R depend linearly on
ut

xx(s), θt
x(s), (u·x)t(s), and (θ·)t(s) through integrals with respect to s

against kernels that are smooth functions of ux(t), θ(t), ux(t−s), θ(t−s),
and s. Thus F and R will have higher temporal regularity than
uxx, θx, u

·
x, and θ·. When we derive a priori estimates, this fact allows

us to treat the terms associated with F and R in a very simple manner.
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Note that, by (2.17), (2.22), and (2.31)1,2, the conditions (A3) have
the form

(2.34) A(0, θ0) > 0, G(0, θ0) > g(0), κ(0, θ0) > 0.

There are three main ingredients in the proof of the existence the-
orem. The first a consequence of the equations (2.32) and the ini-
tial/boundary conditions for w and ϕ is the energy identity

(2.35) U (w,ϕ) + V (w,ϕ) = F (F,R,w, ϕ) + N0(w,ϕ),

with
(2.36)

U (w,ϕ)(t) =
1
2

∫ 1

0

(w·2 +Aw2
x)(x, t) dx+

∫ t

0

∫ 1

0

(Kϕ2
x)(x, s) dx ds,

V (w,ϕ)(t) =
∫ 1

0

{1
2
Gϕ2 +Q (w·

x, ϕ
·) − ϕ[b ∗ w·

x + g ∗ ϕ·]
}
(x, t) dx,

F (F,R,w, ϕ)(t) =
∫ t

0

∫ 1

0

(Fw· +Rϕ)(x, s) dx ds,

N0(w,ϕ)(t) =
∫ t

0

∫ 1

0

{1
2
A·w2

x−Axwxw
·−Bxϕw

·−Sxϕw
·−Sϕxw

·

+
1
2
G ·ϕ2

}
(x, s) dx ds.

This identity and analogous identities obtained by time-differentiating
(2.32) form our basis for obtaining a priori estimates.

The second ingredient is the inequality

(2.37)
1
2
Gϕ2 +Q (w·

x, ϕ
·) − ϕ[b ∗ w·

x + g ∗ ϕ·] ≥ Λ[ϕ2 +Q (w·
x, ϕ

·)]

(Λ a strictly positive constant). This inequality, which is based on ideas
of Staffans [15], provides a positive-definite lower bound for V (w,ϕ)(t).
The third ingredient is a related inequality

(2.38)
∫ t

0

|Φ(s)|2 dx ≤ Γ[|Φ(0)|2 +Q (Φ)(t) +Q (Φ·)(t)]
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based on ideas of Dafermos and Nohel [3] and Staffans [15], which
yields bounds for integrals over space and time of squares of various
derivatives of w and ϕ.

The remainder of the paper is devoted to a proof of the existence the-
orem. In the next section we give precise statements of the inequalities
(2.37) and (2.38). In Section 4 we derive the energy identities discussed
above and use them to derive a basic a priori estimate for solutions of
the linearized problem. This estimate forms the crux of the proof; to
focus on the main ideas behind its derivation, we first restrict attention
to the special case in which the coefficients A,B,G and K are constant
and S = 0. In Section 5 we give necessary modifications for noncon-
stant coefficients. Finally, in Section 6, we complete the proof of the
theorem by using the a priori estimates to continue a local solution
globally in time. Some of the steps of the proof, particularly those
in Sections 5 and 6, are virtually identical to those for the isothermal
problem; for such steps the details will generally be omitted (cf., e.g.,
[3, 13]).

3. Coercivity of the hereditary dissipation-function Q (Φ).
Let a, b, g : [0,∞) → R be given. We assume throughout this section
that

a, b, g ∈ C3[0,∞) ∩W 3,1[0,∞),

and that the matrix function A defined by (2.23) is consistent with
(A5). It then follows from Proposition 16.4.3 of [4] that the matrix-
valued kernel A and the scalar-valued kernels a and g are strongly
positive in the sense of Chapter 16 of [4].

For every T > 0 and every Φ ∈ L2([0, T ];R2), we define Q (Φ)(t), 0 ≤
t ≤ T , through (2.24), (2.25). The fact that A is strongly positive
implies estimates of coercive type for Q (Φ). Since our energy estimates
involve spatial integrals, it is convenient to define the related quadratic
form

Q (W )(t) =
∫ t

0

∫ 1

0

〈W (x, s), (A ∗W )(x, s)〉 dx ds =
∫ 1

0

Q (W )(x, t) dx,

for W ∈ L2([0, T ];L2((0, 1);R2)). (The order of integration may be
changed by virtue of Fubini’s Theorem.)
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The following result is based on ideas of Dafermos and Nohel [3] and
Staffans [15]; the basic idea is that a time-independent bound for

∫ t

0

∫ 1

0

|W (x, s)|2 dx

follows from time-independent bounds for Q (W ) and Q (W ·). For
technical reasons we use difference quotients

(δhW )(x, t) = h−1[W (x, t+ h) −W (x, t)]

in place of derivatives.

LEMMA 3A. There is a constant Γ > 0 such that, for every T > 0
and every W ∈ C([0, T ];L2((0, 1);R2)),

(3.1)
∫ t

0

∫ 1

0

|W (x, s)|2 dx ds

≤ Γ
[ ∫ 1

0

|W (x, 0)|2 dx+ Q (W )(t) + lim inf
h↓0

Q (δhW )(t)
]

∀ t ∈ [0, T ].

An analog of Lemma 3A for scalar-valued kernels is proved in [7].
Lemma 3A follows from Lemma 2.5 of [7] and the following facts: e−t is
strongly positive; A (t)−ηIe−t is a kernel of positive type for sufficiently
small η > 0. (In [7] the spatial interval is R; the same proof applies
when the spatial interval is (0, 1).)

Our next lemma follows upon taking y = Ψ(t) in the proof of
Corollary 16.6.6 of [4].

LEMMA 3B. Choose T > 0 and Φ,Ψ ∈ L2([0, T ];R2). Then

(3.2) (〈Ψ, (A ∗ Φ)〉)2 ≤ 2〈Ψ,A (0)Ψ〉Q (Φ) a.e. on [0, T ].

Taking Ψ = (0, z) and Φ = (v, w) in Lemma 3B yields
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LEMMA 3C. Choose T > 0 and v, w, z ∈ L2[0, T ]. Then

(3.3) {z[b ∗ v + g ∗ w]}2 ≤ 2g(0)z2Q (v, w) a.e. on [0, T ].

The next result follows from Lemma 3C.

LEMMA 3D. Choose ν ∈ R with

ν > g(0).

Then there is a constant Λ > 0 such that, for every T > 0 and all
v, w, z ∈ L2[0, T ],

(3.4)
1
2
νz2 +Q (v, w) − z[b ∗ v + g ∗ w]

≥ Λ[z2 +Q (v, w)] a.e. on [0, T ].

Lemmas 3A and 3D will be used to obtain a priori bounds from
energy integrals. In our analysis energy integrals of higher order will
be obtained by differentiating the equations of motion with respect to
time, and an additional argument will be needed to obtain bounds for
spatial derivatives in terms of quantities previously estimated. Here we
will make use of the following lemma (cf. Lemma 3.2 of Dafermos and
Nohel] [3] for (i)).

LEMMA 3E. Let ρ be given with

(3.5) ρ > a(0).

Let r : [0,∞) → R denote the unique solution of

(3.6) ρr + a′ ∗ r = −a′.
Then

(i) r ∈ L1[0,∞);

(ii) for each z ∈ L1
loc [0,∞) the function

(3.7) w = ρ−1(z + r ∗ z)
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is the unique solution in L1
loc [0,∞) of the equation

(3.8) ρw + a′ ∗ w = z;

(iii) if z ∈ Lp[0,∞) for some p ∈ [1,∞], then w ∈ Lp[0,∞) and

(3.9) ||w||p ≤ |ρ|−1(1 + ||r||1)||z||p.

4. The linear system with constant coefficients. The basic
energy equations and estimates.

4.1. The linear system. The crucial ideas and estimates behind
our proof of existence are more easily discussed in terms of the linear
equations (2.32) with S = 0 and coefficients A,B,G, and K constant:

(4.1)
w·· = Awxx +Bϕx + (a ∗ wxx)· + (b ∗ ϕx)· + F,

Gϕ· = Kϕxx +Bw·
x + (b ∗ w·

x)· + (g ∗ ϕ·)· +R.

Here we restrict attention to a fixed time interval [0, T ], consider F and
R as functions

F (x, t), R(x, t)

of (x, t) ∈ [0, 1] × [0, T ] subject to the smoothness and compatibility
requirements

(4.2)

F, D1F, R, D1R ∈ C([0, T ];L2(0, 1)),
R(·, 0) ∈ H2(0, 1),
F ··, R ·· ∈ L2([0, T ];L2(0, 1)),
F (0, 0) = F (1, 0) = R(0, 0) = R(1, 0) = 0,

consider ϕ as the difference

(4.3) ϕ = θ − θ0

and consider boundary and initial conditions of the form

(4.4)
w(0, t) = w(1, t) = ϕ(0, t) = ϕ(1, t) = 0, t ∈ [0, T ],
w(x, 0) = w·(x, 0) = ϕ(x, 0) = 0, x ∈ [0, 1].
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We assume that

A > 0, G > g(0), K > 0,
a, b, g ∈ C3[0,∞) ∩W 3,1[0,∞), A satisfies (A5),

which are all consequences of previous hypotheses (cf. (2.16)2, (A4),
(2.23), (2.34)). Under these assumptions the problem (4.1), (4.4) has
a unique solution w,ϕ satisfying
(4.5)
w, D1w, D2w, D3w, ϕ, D1ϕ, D2ϕ, ϕxxx, ϕ

·
xx ∈ C([0, T ];L2(0, 1)),

ϕ··
x ∈ L2([0, T ];L2(0, 1)).

(See Navarro [11, 12] for a complete discussion of existence and asymp-
totic stability for linear thermoviscoelasticity in three dimensions. We
need not address the issue of existence for the linear problem: the lo-
cal existence theorem for the nonlinear problem will ensure that the
appropriate linear problem has a solution with the desired regularity.)

4.2. Energy equations. We now derive the energy equations that
underlie our analysis. The derivations use the identities

(k ∗ f )·(t) = (k ∗ f ·)(t) + k(t) f (0),(4.6)∫ t

0

(k ∗ f )·(s) g (s) ds = (k ∗ f )(t) g (t) −
∫ t

0

(k ∗ f )(s) g ·(s) ds.

We multiply (4.1)1 by w·, (4.1)2 by ϕ, add the resulting equations, and
integrate with respect to space and time. After a number of integrations
by parts using the initial and boundary conditions (4.4), in conjunction
with the following intermediate steps based on (4.6),

∫ t

0

∫ 1

0

{(a ∗ wxx)·w· + (b ∗ ϕx)·w· + (b ∗ w·
x)·ϕ+ (g ∗ ϕ·)·ϕ}(x, s) dx ds

(4.7)

=
∫ t

0

∫ 1

0

{−(a ∗ w·
x)w·

x− (b ∗ ϕ·)w·
x−(b ∗ w·

x)ϕ·−(g ∗ ϕ·)ϕ·}(x, s) dx ds

+
∫ 1

0

{(b ∗ w·
x)ϕ+ (g ∗ ϕ·)ϕ}(x, t) dx

=
∫ 1

0

{−Q (w·
x, ϕ

·) + (b ∗ w·
x)ϕ+ (g ∗ ϕ·)ϕ}(x, t) dx,
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we arrive at the desired result: the basic energy equation,

(4.8) U (w,ϕ) + V (w,ϕ) = F (F,R,w, ϕ),

where U ,V , and F are as defined in (2.36).

Energy equations involving higher-order derivatives are obtained sim-
ilarly. We differentiate (4.1) with respect to time, i.e.,

(4.9)
w··· = Aw·

xx +Bϕ·
x + (a ∗ wxx)·· + (b ∗ ϕx)·· + F ·,

Gϕ·· = Kϕ·
xx +Bw··

x + (b ∗ w·
x)·· + (g ∗ ϕ·)·· +R ·,

multiply (4.9)1 by w··, (4.9)2 by ϕ·, add the resulting equations, and
integrate with respect to space and time. Since

∫ t

0

∫ 1

0

{(a ∗ wxx)··w·· + (b ∗ ϕx)··w·· + (b ∗ w·
x)··ϕ· + (g ∗ ϕ·)··ϕ·}

(4.10)

(x, s) dx ds

=
∫ 1

0

{−Q (w··
x , ϕ

··) + (b ∗ w··
x)ϕ· + (g ∗ ϕ··)ϕ·}(x, t) dx

−
∫ 1

0

b(t)w·
x(x, t)ϕ·(x, 0) dx

+
∫ t

0

∫ 1

0

{b′(s)w·
x(x, s)ϕ·(x, 0) + g′(s)ϕ·(x, s)ϕ·(x, 0)} dx ds,

the final result is the energy equation of first order:

(4.11) U (w·, ϕ·) + V (w·, ϕ·) = F (F ·, R ·,W ·, ϕ·) + C (w,ϕ),

where

C (w,ϕ) =
1
2

∫ 1

0

(w··2+Gϕ·2)(x, 0) dx−
∫ 1

0

b(t)w·
x(x, t)ϕ·(x, 0) dx

(4.12)

+
∫ t

0

∫ 1

0

{b′(s)w·
x(x, s)ϕ·(x, 0)+g′(s)ϕ·(x, s)ϕ·(x, 0)} dx ds.
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To obtain our final energy equation we apply δh to (4.9), multiply the
resulting equations by δhw

·· and δhϕ
·, proceed as in the derivation

of (4.11), and then let h ↓ 0. The outcome of this tedious but
straightforward computation is the energy equation of second order,

(4.13)
U (w··, ϕ··) + lim

h↓0
V (δhw·, δhϕ·)

= F (F ··, R··, w··, ϕ··) + C (w·, ϕ·) + D (w,ϕ),

where

D (w,ϕ)(t) =
∫ 1

0

{(1
2
A+ a

)
w··2

x + bw··
xϕ

··
}

(x, 0) dx

(4.14)

−
∫ 1

0

a(t)w··
x(x, t)w··

x(x, 0) dx

+
∫ t

0

∫ 1

0

{a′(s)w··
x(x, s)w··

x(x, 0) + b′(s)w···(x, s)ϕ·
x(x, 0)

+ b′(s)w··
x(x, 0)ϕ··(x, s)+g′′(s)ϕ··(x, s)ϕ·(x, 0)} dx ds.

(V (δhw·, δhϕ·) has a limit as h ↓ 0 because all of the other limits
in the derivation of (4.13) exist; it then follows from (2.36) that
Q (δhw··

x , δhϕ
··) has a limit as h ↓ 0.)

REMARK 4A. The first- and second-order energy equations involve
derivatives of ϕ and w at t = 0; by (4.1), (4.4)2, (4.6)1, and (4.9):

ϕ·(x, 0) depends linearly on R(x, 0),
w··(x, 0) depends linearly on F (x, 0),
ϕ··(x, 0) depends linearly on R(x, 0), R·(x, 0), Rxx(x, 0), Fx(x, 0),
w···(x, 0) depends linearly on Rx(x, 0), F ·(x, 0).

4.3. The initial estimate. The three energy equations derived above
yield a useful estimate. To derive this and remaining results we will
frequently use the inequalities

(4.15)
|XY | ≤ 1

2
(X2 + Y 2),

( N∑
i=1

Xi

)2

≤ N
N∑

i=1

X2
i ,

|XY | ≤ η X2 + (4η)−1Y 2

in conjunction with the following notation:
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(4.16)

E (w,ϕ)(T ) = max
t∈[0,T ]

∫ 1

0

{w2 + |D1w|2 + |D2w|2 + |D3w|2

+ ϕ2 + |D1ϕ|2 + |D2ϕ|2 + ϕ2
xxx + ϕ·2

xx}(x, t) dx

+
∫ T

0

∫ 1

0

{w2 + |D1w|2 + |D2w|2 + |D3w|2 + ϕ2

+ |D1ϕ|2 + |D2ϕ|2 + ϕ2
xxx + ϕ·2

xx + ϕ··2
x }(x, t) dx dt,

(4.17)

R (F,R)(T ) = max
t∈[0,T ]

∫ 1

0

{F 2 + |D1F |2 +R2 + |D1R|2}(x, t) dx

+
∫ 1

0

R2
xx(x, 0) dx

+
∫ T

0

∫ 1

0

{F 2+|D1F |2+R2+|D1R|2+F ··2+R··2}
(x, t) dx dt.

Let Γ denote a generic strictly positive constant which depends at most
on the coefficients and kernels of (4.1) (and not on the time interval
[0, T ] under consideration). We then have the following estimates for
the terms in (4.8) (where the estimate for V (w,ϕ)(t) follows from
Lemma 3D):

(4.18)

U (w,ϕ)(t) ≥ Γ−1

{∫ 1

0

(w·2 + w2
x)(x, t) dx+

∫ t

0

∫ 1

0

ϕ2
x(x, s) dx ds

}
,

(4.19) V (w,ϕ)(t) ≥ Γ−1

∫ 1

0

[ϕ2 +Q (w·
x, ϕ

·)](x, t) dx,

(4.20)
F (F,R,w, ϕ)(t) ≤ [R (F,R)(t)E (w,ϕ)(t)]

1
2

≤ [R (F,R)(T )E (w,ϕ)(T )]
1
2 ∀ t ∈ [0, T ].
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We therefore conclude from (4.8) that

(4.21)
∫ 1

0

{w·2 + w2
x + ϕ2 +Q (w·

x, ϕ
·)}(x, t) dx

+
∫ t

0

∫ 1

0

ϕ2
x(x, s) dx ds ≤ ΓB (T ) ∀ t ∈ [0, T ],

where

(4.22) B (T ) = R (F,R)(T ) + [R (F,R)(T )E (w,ϕ)(T )]
1
2 .

In what follows we will generally omit the quantification “∀ t ∈ [0, T ]”
in assertions concerning t and T . Consider next the first-order energy
equation (4.11). Estimates of the form (4.18) (4.20) hold for the first
three terms, which leaves only C (w,ϕ)(t) to estimate. This term is
estimated using Remark 4A to express the terms involving w and ϕ
and their derivatives at t = 0 in terms of F and R and their derivatives
at t = 0. A typical term of C (w,ϕ)(t) is estimated as follows:

∣∣∣∣
∫ t

0

∫ 1

0

b′(s)w·
x(x, s)ϕ·(x, 0) dx ds

∣∣∣∣
≤

{∫ t

0

∫ 1

0

w·2
x (x, s) dx ds

} 1
2

{∫ t

0

∫ 1

0

b′(s)2R2(x, 0) dx ds
} 1

2

≤ [R (F,R)(T )E (w,ϕ)(T )]
1
2 .

(Note that b, b′, b′′ ∈ Lp[0,∞) for all p ∈ [1,∞], since b ∈ W 3,1[0,∞).)
The final result is

∫ 1

0

{w··2 + w·2
x + ϕ·2 +Q (w··

x , ϕ
··)}(x, t) dx+

∫ t

0

∫ 1

0

ϕ·2
x (x, s) dx ds

(4.23)

≤ ΓB (T ).

Similarly, the second-order energy equation (4.13) yields the estimate

(4.24)

∫ 1

0

(w···2 + w··2
x + ϕ··2)(x, t) dx+

∫ t

0

∫ 1

0

ϕ··2
x (x, s) dx ds

+ lim
h↓0

Q (δhw··
x , δhϕ

··) ≤ ΓB (T ).
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Combining the estimates (4.21) (4.24), we find, with the aid of
Lemma 3A and the initial conditions (4.4), that
(4.25)∫ 1

0

{|D1w|2 + w·2
x + w··2 + w··2

x + w···2 + ϕ2 + ϕ·2 + ϕ··2}(x, t) dx

+
∫ t

0

∫ 1

0

{w·2
x +w··2

x +|D1ϕ|2+ϕ·2
x +ϕ··2+ϕ··2

x }(x, s) dx ds ≤ ΓB (T ),

and we may use Poincare’s inequality and the inequality

(4.26)
∫ 1

0

ψ2(x, t) dx ≤
∫ 1

0

ψ2(x, 0) dx+
∫ t

0

∫ 1

0

(ψ2 + ψ·2)(x, s) dx ds

to conclude that
(4.27)∫ 1

0

{
w2+ |D1w|2+w·2

x +w··2 + w··2
x + w···2+ϕ2+|D1ϕ|2+ ϕ·2

x + ϕ··2}
(x, t) dx

+
∫ t

0

∫ 1

0

{
w·2 + w·2

x + w··2 + w··2
x + ϕ2 + |D1ϕ|2 + ϕ·2

x + ϕ··2 + ϕ··2
x

}
(x, s) dx ds

≤ ΓB (T ).

Our final step will be to obtain estimates for the remaining terms in
E (w,ϕ).

4.4 The final estimate. In this section we derive the estimate

(4.28) E (w,ϕ)(T ) ≤ ΓR (F,R)(T ).

We estimate those derivatives in E (w,ϕ) that are not present in (4.27)
using the equations (4.1) in conjunction with Lemma 3E. Here it is
convenient to use the notation

(4.29) M ( f )(t) =
∫ 1

0

f 2(x, t) dx+
∫ t

0

∫ 1

0

f 2(x, s) dx ds.

By (4.1)2,

(4.30) ϕxx = K−1{(G−g(0))ϕ·− (B+b(0))w·
x−b′ ∗w·

x−g′ ∗ϕ·−R},
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and, since b′, g′ ∈ L1(0,∞), we may use (4.27) to conclude that

(4.31) M (ϕxx)(t) ≤ ΓB (T ).

Similarly, by solving (4.9)2 for ϕ·
xx, we find that

(4.32) M (ϕ·
xx)(t) ≤ ΓB (T ).

Next, by (4.1)1,

(4.33) (A+ a(0))wxx + a′ ∗ wxx = w·· − (B + b(0))ϕx − b′ ∗ ϕx − F,

and we may use Lemma 3E and (4.27) to show that

(4.34) M (wxx)(t) ≤ ΓB (T ).

Similarly, differentiating (4.1)1 with respect to x, we conclude, with the
aid of Lemma 3E, (4.27), and (4.31), that

(4.35) M (wxxx)(t) ≤ ΓB (T ),

and using Lemma 3E to solve (4.9)1 for w·
xx, we find, using (4.27), that

(4.36)
∫ 1

0

w·2
xx(x, t) dx ≤ ΓB (T ).

Next, we record the interpolation inequality

(4.37)
∫ t

0

∫ 1

0

w·2
xx(x, s) dx ds

≤ Γ
{∫ t

0

∫ 1

0

{w2
xxx + w··2

x + w2
xx}(x, s) dx ds

+
∫ 1

0

{w·2
x + w2

xx + w2
xxx}(x, t) dx

}
.

(To establish (4.7): extend w to all of space by H3-reflection (cf.,
e.g., [9, §1.2.2]) and multiplication by a smooth spatial cutoff function,
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integrate by parts, restrict the result to [0, 1], and use Poincare’s
inequality.) By virtue of (4.27), (4.34), and (4.35), (4.37) yields

(4.38)
∫ t

0

∫ 1

0

w·2
xx(x, s) dx ds ≤ ΓB (T ).

Finally, we use (4.9)1, (4.27), and (4.38) to conclude that

(4.39)
∫ t

0

∫ 1

0

w···2(x, s) dx ds ≤ ΓB (T ),

and we differentiate (4.1)2 with respect to x, solve the resulting equa-
tion for ϕxxx, and use (4.27), (4.36), and (4.38) to obtain

(4.40) M (ϕxxx)(t) ≤ ΓB (T ).

Adding (4.27), (4.31), (4.32), (4.34) (4.36), and (4.38) (4.40), and
using Poincare’s inequality, we arrive at the inequality

(4.41) E (w,ϕ)(T ) ≤ ΓB (T ).

The desired estimate (4.28) follows from (4.22), (4.41), and

[R (F,R)(T )E (w,ϕ)(T )]
1
2 ≤ η E (w,ϕ)(T ) + (4η)−1R (F,R)(T ),

with η sufficiently small.

5. The linear system with nonconstant coefficients. In this
section we will establish a priori estimates for the linear equations (2.32)
(on a fixed time interval [0, T ]) with coefficients

A(x, t), B(x, t), G(x, t), K(x, t), S(x, t)

and supply terms
F (x, t), R(x, t)

allowed to be functions of (x, t) ∈ [0, 1] × [0, T ]:

(5.1)
w·· = Awxx +Bϕx + (a ∗ wxx)· + (b ∗ ϕx)· + F,

Gϕ· = (Kϕx)x +Bw·
x + (b ∗ w·

x)· + (g ∗ ϕ·)· + Sw·
x +R.
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We assume that F and R satisfy (4.2). In addition, we require that the
coefficients satisfy the boundedness conditions

(5.2)
0 < α ≤ A(x, t), G(x, t)−g(0), K(x, t)≤ β, |B(x, t)|≤ β,

∀ (x, t) ∈ [0, 1] × [0, T ],

as well as the smoothness requirements

(5.3)
A, D1A, D2A, B, D1B, D2B, G, D1G, D2G,

K, D1K, D2K, S, D1S, D2S ∈ C([0, T ];L2(0, 1)),

and we measure the influence of the coefficients using the norm

(5.4)

δ(T ) = max
[0,1]×[0,T ]

{|A−A0| + |D1A| + |D1B| + |D1G|

+ |D1K| + |S| + |D1S|}

+
∫ T

0

∫ 1

0

{A··2+B··2+G ··2+K ··2+K ·2
x +S··2} 1

2 (x, t) dx dt

with

A0 =
∫ 1

0

A(x, 0) dx.

Note that if A,B,G, and K are constant and S = 0, then δ(T ) = 0.

LEMMA 5A. Let constants α, β > 0 and kernels a, b, g ∈ C3[0,∞) ∩
W 3,1[0,∞) consistent with (A5) be given. Then there is a constant Γ
that is independent of T , the coefficients, and the supply terms, such
that if A,B,G,K and S obey (5.2) and (5.3), if F and R obey (4.2),
and if (w,ϕ) satisfies (4.4), (4.5), and (5.1), then the estimate

(5.5) E (w,ϕ)(T ) ≤ ΓR (F,R)(T ) + Γ[δ(T ) + δ(T )2] E (w,ϕ)(T )

holds with E ,R , and δ given by (4.16), (4.17), and (5.4).

The proof of this lemma is not much different from that of (4.28).
Since the coefficients are not constant, the relations (4.8), (4.11), and
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(4.13) will contain additional terms. Defining N0(w,ϕ) through (2.36)4
and writing

N1(w,ϕ)(t) =
∫ t

0

∫ 1

0

{A·wxxw
·· +B·(ϕxw

·· + w·
xϕ

·) +K ·ϕxxϕ
·

+K ·
xϕxϕ

· −G ·ϕ·2 + S·w·
xϕ

·}(x, s) dx ds

N2(w,ϕ)(t) =
∫ t

0

∫ 1

0

{A··wxxw
··· +B··(ϕxw

··· + w·
xϕ

··)

−K ··ϕxϕ
··
x −G ··ϕ·ϕ·· + S··w·

xϕ
··}(x, s) dx ds

(4.8), (4.11), and (4.13) should have

(5.6)
N0(w,ϕ), N0(w·, ϕ·) + N1(w,ϕ),

N0(w··, ϕ··) + 2N1(w·, ϕ·) + N2(w,ϕ),

respectively, added to their right sides. Each of these is bounded by

(5.7) Γδ(T ) E (w,ϕ)(T ),

and thus (4.27) should have (5.7) added to its right side. Continuing
to follow the analysis of Section 4, we see that (4.31) also should have
(5.7) on its right side, while (4.32) should have

(5.8) Γ[δ(T ) + δ(T )2] E (w,ϕ)(T )

on the right. Further, writing the first term in (4.33) in the form

(A0 + a(0))wxx + (A−A0)wxx,

leads to (4.34) supplemented by (5.8), and (5.8) should also be added
to the right sides of (4.35), (4.36), (4.38), (4.39), and (4.40), and finally
to the right side of (4.28), so that (5.5) is satisfied.

To give an indication of the additional steps involved in the derivation
of (5.5), we now give detailed estimates for two of the terms in (5.6);
the remaining terms are treated analogously. In these calculations the
symbol “max” designates “maximum over [0, 1]× [0, T ]” and t ∈ [0, T ].
The first term we consider is handled in a simple fashion∣∣∣∣

∫ t

0

∫ 1

0

(A·w·
xxw

···)(x, s) dx ds
∣∣∣∣ ≤ (max |A·|)

∫ t

0

∫ 1

0

|w·
xxw

···|(x, s) dx ds

≤ 1
2
δ(T )

∫ t

0

∫ 1

0

(w·2
xx + w···2)(x, s) dx ds

≤ 1
2
δ(T ) E (w,ϕ)(T ).



GLOBAL EXISTENCE 457

Terms involving a twice-differentiated coefficient are treated in a
slightly different manner; e.g.,
(5.9)∣∣∣∣

∫ t

0

∫ 1

0

(A··wxxw
···)(x, s) dx ds

∣∣∣∣≤ (max |wxx|)
∫ t

0

∫ 1

0

|A··w···|(x, s) dx ds

≤ (max |wxx|)
(∫ t

0

∫ 1

0

A··2(x, s) dx ds
) 1

2
(∫ t

0

∫ 1

0

w···2(x, s) dx ds
) 1

2

.

The Sobolev embedding theorem implies that, for ξ ∈ [0, 1],

w2
xx(ξ, t) ≤ 2

∫ 1

0

(w2
xx + w2

xxx)(x, s) dx ds ≤ 2 E (w,ϕ)(T ),

so that (5.9) yields
∣∣∣∣∣
∫ t

0

∫ 1

0

(A··wxxw
···)(x, s) dx ds

∣∣∣∣∣ ≤
√

2 δ(T ) E (w,ϕ)(T ).

6. Global existence for the nonlinear problem. Consider
the history-value problem defined by (2.1) (2.5) and assume that
(A1) (A5) hold. The existence of a local solution can be established
by a standard contraction-mapping argument and we omit the details;
the relevant result is recorded in the proposition below. Since we have
made assumptions concerning the signs of the coefficients only at the
equilibrium state (0, θ0), we must ensure that (ux, θ) remains in a suit-
able neighborhood of (0, θ0). We choose d > 0 and α > 0 such that
d < 1, d < θ0, and

A(εt, θt), G(εt, θt) − g(0),K(ε(t), θ(t)) ≥ α,

∀ (ε, θ) ∈ C(R;Ud), t ∈ R,

where
Ud = (−d, d) × (θ0 − d, θ0 + d).

We seek a solution to (2.30) subject to the conditions:

(6.1)
u(0, t) = u(1, t) = 0, θ(0, t) = θ(1, t) = θ0, t ≥ 0,
u(x, 0) = u·(x, 0) = 0, θ(x, 0) = θ0, x ∈ [0, 1].
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PROPOSITION. For every f, r consistent with (A6), the problem (2.30),
(6.1) has a unique solution (u, θ) on a maximal time interval [0, T0), 0 <
T0 <∞, with

u,D1u,D2u, θ − θ0, D
1θ,D2θ, θxxx, θ

·
xx ∈ C([0, T0);L2(0, 1)),

θ··x ∈ L2
loc ([0, T0);L2(0, 1)),

(ux(x, t), θ(x, t)) ∈ Ud, ∀ (x, t) ∈ [0, 1] × [0, T0).

Moreover (for E as defined in (4.16)), if

sup
t∈[0,T0)

E (u, θ− θ0)(t) <∞, sup
[0,1]×[0,T0)

|ux| < δ, sup
[0,1]×[0,T0)

|θ− θ0| < δ,

then T0 = ∞.

The proof of this proposition is very similar to the isothermal case
(cf., e.g., [3, 13]). Local existence in three-dimensional nonlinear
viscoelasticity will be discussed in a forthcoming paper of Messaoudi
[10].

Let f and r satisfying (A6) be given, and consider the local solution
(u, θ) of (2.30), (6.1). Our objective is to show that if (2.27) holds with
μ sufficiently small, then

(6.2) sup
t∈[0,T0)

E (u, θ − θ0)(t) < d2.

Since, by the Sobolev embedding theorem,

{u2 + (θ − θ0)2}(x, t) ≤ E (u, θ − θ0)(t), ∀ (x, t) ∈ [0, 1] × [0, T0),

the inequality (6.2) implies T0 = ∞.

We define F and R through (2.33) and identify A(x, t) in (5.1) with
A(ut

x, θ
t), etc. Then, for every T ∈ (0, T0), we may apply Lemma 5A

with w = u and ϕ = θ − θ0.

Let us agree to write E (T ) in place of E (u, θ−θ0)(T ). It follows from
the Sobolev embedding theorem that
(6.3)

{u2+ |D1u|2+ |D2u|2+ (θ− θ0)2+ |D1θ|2+ θ2
xx+ θ·2x }(x, t) ≤ ΓE (t),

∀ (x, t) ∈ [0, 1] × [0, T0).
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Since the closure of Ud is a compact subset of U , we may use (A1),
(6.3), and Lemma 5A to arrive at an inequality of the form

(6.4) E (T ) ≤ Γ1J (f, r) +H(E (T ))E (T ), ∀ T ∈ [0, T0),

where J is defined by (2.26), H : [0,∞) → [0,∞) is a continuous
function with H(0) = 0, and Γ1 is a positive constant that is inde-
pendent of T0 and the data. (Note that, by the Sobolev embedding
theorem, R (f, r)(T ) ≤ ΓJ (f, r) for all T ≥ 0.) The derivation of
(6.4) is straightforward, but tedious because of the number of terms
involved; we refer to [3] and [13] for the details of similar calculations.

We choose E 0, μ > 0 such that

(6.5) H(z) ≤ 1
2
, ∀ z ∈ [0, E 0], E 0 ≤ 1

2
d2, Γμ ≤ 1

4
E 0,

and such that

(6.6) J (f, r) ≤ μ⇒ E (0) ≤ 1
2
E 0.

Suppose that (2.27) holds with μ as above. It follows from (6.4) and
(6.5) that, for each T ∈ [0, T0) with E (T ) ≤ E 0, we actually have
E (T ) ≤ E 0/2. Consequently, by (6.6) and the continuity of E we have
E (T ) ≤ E 0/2 for all T ∈ [0, T0). Since E 0 ≤ d2/2, it follows that (6.11)
holds and hence that T0 = ∞. The boundedness of E on [0,∞) yields
the additional bounds and the decay of the solution as asserted in the
theorem.
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