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ABSTRACT. It is shown that, except for the obvious case
of a Lipschitz continuous nonlinearity and a kernel identically
zero close to the origin, the uniqueness of the trivial solution

x(t) ≡ 0 of the equation x(t) =
∫ t

0
k(t − s)g(x(s)) ds depends

on both a and g.

1. Introduction and statement of results. Consider the
equation

(1) x(t) =
∫ t

0

k(t − s)g(x(s)) ds, t ≥ 0,

where k is locally integrable and g is continuous with g(0) = 0. It is
clear that x(t) ≡ 0 is a solution of (1), so the question to be answered
is whether there are any other, nontrivial, solutions.

This problem is a special case of the problem of uniqueness of the
trivial solution of the equation

x(t) =
∫ t

0

k(t, s, x(s)) ds, t ≥ 0.

If the trivial solution is unique one says that k is a Kamke function,
and this question is relevant in many problems not directly connected
with the uniqueness of solutions of Volterra equations. Although there
are definite advantages in treating the more general equation, we will
here consider onlyconvolution equations of the form (1).

One of the main tools of the analysis is a comparison principle.
Although this result can be found in almost every book on Volterra
equations, we state it here in the form that we will need.
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LEMMA 1. Assume that

(i) k and K belong to L1
loc (R+;R) and satisfy 0 ≤ k(t) ≤ K(t) for

almost every t ≥ 0;

(ii) g and G belong to C(R;R), satisfy 0 ≤ g(s) ≤ G(s) for s ≥ 0,
and g or G is nondecreasing on R+;

(iii) there exists a function x ∈ C(R+;R+) and a number τ > 0 such
that

0 ≤ x(t) ≤
∫ t

0

k(t − s)g(x(s)) ds, t ∈ [0, τ ].

Then there exists a number T ∈ (0, τ ] and a function X ∈ C(R+;R+)
such that

x(t) ≤ X(t) =
∫ t

0

K(t − s)G(X(s)) ds, t ∈ [0, T ].

Moreover, if G is nondecreasing, then X is nondecreasing as well.

A similar result can, of course, be stated for a more general noncon-
volution equation; see, for example, [4, Chapters 12 and 13].

Note that this result can be used in two different ways: if one knows
that the trivial solution of (1) is unique, then it will be unique also
if k and g are replaced by some smaller functions, and, conversely, if
there is a nontrivial solution, then there will also be one if k and g are
replaced by some larger functions.

Let us first state a well-known result:

PROPOSITION 2. Assume that

(i) k ∈ L1
loc (R+;R);

(ii) g ∈ C(R;R) is nondecreasing and satisfies g(s) = 0 for s ≤ 0.
Then the trivial solution x(t) ≡ 0 of (1) is unique, provided at least one
of the following conditions holds:

(a)
∫ T

0
|k(s)| ds = 0 for some T > 0.

(b) lim infs↓0 g(s)/s < ∞.
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The main result of this paper is that, if k is in addition nonnegative,
then this result cannot be improved in the sense that (a) or (b) cannot
be replaced by any weaker conditions. In fact, if k is such that (a)
does not hold, then the trivial solution can be unique or nonunique,
depending on g. A similar result is true if g does not satisfy (b).

We need the following notation.

K def=
{

k ∈ L1(R+;R)
∣∣∣k(t) ≥ 0,

∫ t

0

k(s) ds > 0, t ≥ 0
}

,

G def=
{

g ∈ C(R;R)
∣∣∣g(s) = 0, s ≤ 0,

g is nondecreasing, lim
s↓0

g(s)
s

= ∞
}

.

THEOREM 3. For every k ∈ K , there exists a g ∈ G and, for every
g ∈ G , there exists a k ∈ K such that the trivial solution on (1) is
unique. Conversely, for every k ∈ K , there exists a g ∈ G , and,
for every g ∈ G , there exists a k ∈ K such that equation (1) has a
continuous solution x on some interval [0, T ], T > 0, such that x(t) > 0
when t ∈ (0, T ].

This result shows that the conjecture made in [2] concerning the
existence of nontrivial solutions of (1) with g(s) = sp, 0 < p < 1, is not
true.

Thus one sees that, in general, there is a close interplay between the
properties of the nonlinearity g and the kernel k. Here we give only one
result in this direction. Observe also that the question of uniqueness
or nonuniqueness of the trivial solution depends only on the values of
k and g in a neighborhood of zero. The following result (as well as the
theorems above) could therefore be generalized to take this fact into
account.

THEOREM 4. Assume that α > 0 and that

(i) g ∈ C(R;R) is nondecreasing, g(s) = 0 for s ≤ 0;
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(ii) the function s �→ h(s)def= g(s)/s is nonincreasing on (0,∞).

Then the trivial solution x(t) ≡ 0 of the equation

(2) x(t) =
∫ t

0

(t − s)α−1g(x(s)) ds, t > 0,

is unique if and only if

(3)
∫ 1

0

1
sh(s)1/α

ds = ∞.

Under the additional assumption that h(s)ps is nonincreasing on some
interval (0, δp), this result has been established in [3]. When proving
that there exists a nontrivial solution of (2) if (3) does not hold, this
extra assumption can be removed with the aid of Lemma 1 since one
can replace g by a smaller function satisfying the extra assumption such
that (3) still does not hold. Another proof is given in [5], where the
sufficiency for the case α ≥ 1 is established as well. In this case one
can, in fact, drop the assumption (ii), see [2].

2. Proof of Theorem 3. Assume that g belongs to G . We shall
construct a kernel k such that there exists a nontrivial solution x of
(1) on some interval [0, T ], where T > 0. We may, without loss of
generality, assume that the function h(s) = g(s)/s is nonincreasing
since we can, by Lemma 1, replace g by a smaller function with this
property.

Define the sequence un by un = 2−n, n ≥ 0, and let

an =
un

g(un+1)
=

2
h(2−(n+1))

.

It follows from our assumptions that {an} is a sequence of positive,
nonincreasing numbers tending to 0. Therefore, we get a function
k ∈ K if we let

k(t) =
{

2n+2(an − an+1), t ∈ (2−(n+2), 2−(n+1)], n ≥ 0,
0, otherwise.
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The motivation for this construction is that we have

un =
∫ 2−(n+1)

0

k(s) ds g(un+1), n ≥ 0.

Hence, if we let V be the set

V =
{
u ∈ C([0, 1];R) |u(2−n) ≥ un, u is nondecreasing

}
,

then we see that the operator taking the function u to the function

∫ t

0

k(t − s)g(u(s)) ds, t ∈ [0, 1],

maps V into itself. But then it follows that there exists a solution x of
equation (1) that belongs to V , see [4, Theorem 12.2.5]. This completes
the proof in this case.

Next let us consider the case where k ∈ K is given. We define the
sequence {un} by

un = 2−n

∫ 2−(n+1)

0

k(s) ds, n ≥ 0,

and we can then construct a function g ∈ G such that g(un+1) = 2−n.
Thus, we again have

Un =
∫ 2−(n+1)

0

k(s) ds g(un+1), n ≥ 0,

and we can complete the proof in exactly the same way as above.

We proceed to consider the cases where we must show that the trivial
solution is unique. Assume that x is a nontrivial continuous solution
of equation (1). We may, without loss of generality, assume that x is
nondecreasing and that x(t) > 0 for t > 0. This implies that

x(t) ≤
∫ t

0

k(s) ds g(x(t)), t > 0.
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If we assume that g is such that the function s �→ s/g(s) is strictly
increasing on R and has an inverse q, then we get

x(t) ≤ q

(∫ t

0

k(s) ds

)
, t ≥ 0.

Let us choose a sequence {an}, for example, as follows:

an+1 =
2an

2 + an
, a0 = 1,

and then inductively prove that

(4) x(t) ≤ q

(∫ ajt

0

k(s) ds

)
, 0 ≤ t ≤ 1, j ≥ 0.

If we can do this, then it follows that x(t) ≡ 0.

Since x is assumed to be nondecreasing, it follows from (1) that

x(t) ≤
∫ t

an+1t

k(s) ds g(x(t−an+1t))+
∫ an+1t

0

k(s) ds g(x(t)), 0 ≤ t ≤ 1.

If we use the induction hypotheses (4) with j = n− 1 in the first term
on the right-hand side, then we get
(5)

x(t) −
∫ ant

0

k(s) ds g(x(t)) ≤
∫ t

an+1t

k(s) ds g

(
q

( ∫ an+1t

0

k(s) ds

))

−
∫ ant

an+1t

k(s) ds g(x(t)), 0 ≤ t ≤ 1,

where we used the fact that (1 − an+1)an−1 = an+1. Suppose for the
moment that

(6)

g

(
q

( ∫ an+1t

0

k(s) ds

))

≤
∫ ant

an+1t
k(s) ds∫ t

an+1t
k(s) ds

g

(
q

( ∫ ant

0

k(s) ds

))
, 0 ≤ t ≤ 1, n ≥ 1.
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Then it follows from (5) that either x(t) ≤ ∫ ant

0
k(s) ds g(x(t)), in which

case the induction claim is immediate, or

∫ t

an+1t

k(s) ds g

(
q

(∫ an+1t

0

k(s) ds

))
≥

∫ ant

an+1t

k(s) ds g(x(t)),

in which case the claim follows from (6) provided we assume that g
is strictly increasing and k is strictly positive. Thus we see that the
critical point is that (6) holds.

Suppose that g is given. We may, without loss of generality, assume
that g and the function s �→ s/g(s) are strictly increasing, continuously
differentiable functions on (0,∞). Denote the function g ◦ q by p. It
follows that there exists a strictly positive, continuously differentiable
function B on the set {(v, w) | 0 < v < w ≤ 1} such that

p(u) ≤ v − u

w − u
p(v) if and only if u ≤ B(v, w).

Let K(t) =
∫ t

0
k(s) ds. We see that we can rewrite (6) as

(7) p(K(an+1t)) ≤ K(ant) − K(an+1t)
K(t) − K(an+1t)

p(K(ant)),

for 0 ≤ t ≤ 1 and n ≥ 1.

Let K(t) = t for a1 ≤ t ≤ 1. Suppose that we have already
constructed K on the interval [am, 1] so that K is strictly increasing,
positive, and absolutely continuous, and such that the inequality (7)
holds for am/an+1 ≤ t ≤ 1 and 1 ≤ n ≤ m − 1. For m = 1, we have
constructed K with the desired properties.

Let

b(t) =
K(am)(t − am+1) + B(K(am), 1)(am − t)

am − am+1
.

Now we can extend the function K to the interval [am+1, am) such that
it remains positive, strictly increasing, and absolutely continuous, and
such that

K(t) ≤ min
1≤n≤m−1

{
b(t), B

(
K

(
ant

an+1

)
, K

(
t

an+1

))}
, am+1≤ t≤ am.
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It is easy to check that this construction can always be performed by an
iterative procedure. Thus we see that we can construct an increasing
function K such that K(0) = 0 and (7) holds for all 0 ≤ t ≤ 1 and
n ≥ 1. This completes the proof.

Next let us assume that k is given. We may, without loss of generality,
assume that k(t) ≥ 1, 0 ≤ t ≤ 1. Again we see that it suffices to
construct g such that the inequalities (7) hold for all 0 ≤ t ≤ 1 and
n ≥ 1. But then it suffices to construct the function p such that it is
nonnegative and strictly increasing on [0, 1] and such that

p(u) ≤
K

(
an

an+1
u
)
− K(u)

K
(

u
an+1

)
− K(u)

p

(
K

(
an

an+1
u

))
,

am+1 ≤ u ≤ am, 1 ≤ n ≤ m − 1,

for each m ≥ 2. But it is clear that this can be done inductively, and, by
letting 1/h be the inverse of the function s �→ sp(s), we find a function
g with the desired properties. This completes the proof.

3. Proof of Theorem 4. As we already noted above, the only part
of the theorem that we have to prove is that if 0 < α < 1 and (3) holds,
then the trivial solution of equation (2) is unique. We need the fact
that not only is this result true if α ≥ 1, but in this case it suffices to
assume that g is nondecreasing. This follows from [2] combined with
Proposition 2.

If there exists a nontrivial solution of (2), then we may, without
loss of generality, assume that x is nondecreasing and x(t) > 0 for
t > 0. Thus the function g(x(t)) is nondecreasing as well and we have
g(x(t)) = μ([0, t]), t > 0, where μ is some continuous, nonnegative Borel
measure. It follows that if we perform an integration by parts on the
right-hand side in (2), then we get

x(t) =
∫

[0,t]

1
α

(t − s)αμ(ds), t > 0.

We apply Hölder’s inequality to the right-hand side and obtain

x(t) ≤ 1
α

( ∫
[0,t]

(t − s)α+1μ(ds)
) α

α+1
( ∫

[0,t]

μ(ds)
) 1

α+1

, t > 0.
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If we invoke the definition of μ and perform an additional integration
by parts, then

(8)
x(t)

h(x(t))
1
α

≤ c

∫ t

0

(t − s)αg(x(s)) ds, t ≥ 0,

where c = (α + 1)α−(α+1)/α. Since h is nonincreasing, it follows that
the function s �→ s/h(s)1/α is strictly increasing, and, therefore, this
function has an increasing and continuous inverse function v. If we let
g∗ = g ◦ v and define y by y(t) = x(t)/h(x(t))1/α, then inequality (8)
becomes

y(t) ≤ c

∫ t

0

(t − s)(α+1)−1g∗(y(s)) ds, t ≥ 0.

Now α + 1 > 1 and g∗ is nondecreasing, and, therefore, it suffices to
check that ∫ t

0

1

s(g∗(s)/s)
1

α+1
ds = ∞.

But this result follows after a change of integration variable from (3)
since the function h is nondecreasing. Thus we know from Lemma 1
that y(t) ≡ 0 and, hence, we have x(t) ≡ 0 as well. This completes the
proof.

Note added in proof : Assumption (ii) of Theorem 4 can be removed,
see [W. Mydlarczyk, “The existence of nontrivial solutions of Volterra
equations,” Math. Scand., to appear]. See also [W. Okrasiński, “Non-
trivial solutions to nonlinear Volterra integral equations,” SIAM J.
Math. Anal., to appear].
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