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1. Introduction. Let H be a Hilbert space with norm | · | and
inner product 〈·, ·〉. Let A be a possibly unbounded linear operator
in H, and let a : [0,∞) → R be a given locally integrable kernel
function. In this note we study properties of solutions of the abstract
linear integrodifferential equation

(1) u′(t) + a ∗ Au(t) = 0, 0 < t < T,

in H. Here the usual convolution notation is employed: f ∗ g(t) =∫ t

0
f(t − s)g(s) ds, if one of the two functions is scalar-valued and the

other one is vector-valued.

We want to consider mild solutions of (1), i.e., continuous functions
u(·) for which 1 ∗ a ∗ u(t) ∈ D(A) for all 0 ≤ t ≤ T and for which the
integrated version

(2) u(t) + A(1 ∗ a ∗ u(t)) = u(0)

of (1) holds for all t ∈ [0, T ]. The goal of this note is to give conditions
on the kernel function a under which such mild solutions satisfy an
estimate of the form

|Au(t)| ≤ C

tM
|u(0)|

for a suitable power M . It will be proved that such an estimate is
always true if the derivative a′ is integrable and behaves like −t−2α

near zero, and that in this case M = 1/α is a suitable exponent.

The following assumptions will be used. The assumptions for the
kernel function a(·) are to hold on any finite interval [0, T ]. A subscript
T denotes that the corresponding quantity depends on T .
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(A) The operator A is densely defined, self adjoint, and there exists
Λ > 0 such that 〈Ax, x〉 ≥ Λ|x|2 for all x ∈ D(A).

(a1) The kernel a(·) satisfies

a(0) = 1

a′ ∈ L1(0, T ;R),
∫ T

0

t|a′′(t)| dt < ∞

a′′(·) ≥ −cT (·) with cT ∈ L1(0, T ;R).

(a2) There exist δ > 0 and α ∈ (0, 1/2) such that

a′′(t) ≥ δt−1−2α − cT (t) with cT ∈ L1(0, T ;R)(3) ∫ T

0

t3|a(4)(t)| dt < ∞.(4)

It is known that operators satisfying (A) have a spectral decomposi-
tion

Ax =
∫ ∞

Λ

λ dEλx

for all x ∈ D(A) [8]. Then fractional powers of A can be defined in the
usual way,

Aβx =
∫ ∞

Λ

λβ dEλx,

for −∞ < β < ∞ and for x from a suitable maximal domain of
definition. Also, property (3) forces a′ to have an integrable singularity
at the origin that is at least algebraic: a′(t) ≤ −δ1t

−2α + CT for some
δ1 > 0.

The two main results of this paper are the following:

THEOREM 1. Let assumptions (A) and (a1) hold. Then, for any
u0 ∈ H, there exists a unique mild solution of (2) with u(0) = u0.
It can be obtained as u(t) = R(t)u0, where (R(t))0≤t≤T is a strongly
continuous operator family in L(H,H). Moreover, the operator families
A−1R′′(·), A− 1

2 R′(·), A
1
2 (1 ∗R)(·) and A(1 ∗ 1 ∗R)(·) are also strongly

continuous on [0, T ].
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THEOREM 2. Let assumptions (A), (a1) and (a2) hold, and let
0 ≤ β ≤ 1, 0 ≤ γ ≤ 1/2. Then AβR(·) and Aγ+1/2(1 ∗ R)(·) are
strongly continuous families of bounded operators on (0, T ], and the
estimates

‖AβR(t)‖ ≤ CT t−
β
α ,(5)

‖A 1
2+γ(1 ∗ R)(t)‖ ≤ CT t−

γ
α(6)

hold.

Theorem 1 has a natural and well-known consequence for the inho-
mogeneous equation

(7) u′(t) + a ∗ Au(t) = f(t).

In analogy to the definition above, we call a continuous function
u : [0, T ] → H a mild solution of (7) if 1 ∗ a ∗ u(t) ∈ D(A) for all
t ∈ [0, T ] and if the integrated equation

(8) u(t) + A(1 ∗ a ∗ u(t)) = u(0) +
∫ t

0

f(s) ds

holds for all t.

COROLLARY 1. For any f ∈ L1(0, T ;H), u0 ∈ H there exists a
unique solution of (8) with u(0) = u0. It is given by

u(t) = R(t)u0 =
∫ t

0

R(t − s)f(s) ds, 0 ≤ t ≤ T.

Theorem 2 implies estimates in various intermediate regularity classes
which we give next.

COROLLARY 2. Under the assumptions of Theorem 2, let 0 < β < 1,
1 < p < ∞, r = β/α. Then

(9)
∫ T

0

trp‖AβR(t)‖p dt

t
≤ C(T, p, r),
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and, if 0 ≤ β < 1/2, then

(10)
∫ T

0

trp‖Aβ+ 1
2 (1 ∗ R)(t)‖p dt

t
≤ C(T, p, r).

There exist several results like Theorem 1 in the literature, see, e.g.,
[2, 3, 4, 12]. The new features in the result given here are the
weakened assumptions on the kernel function. The main reason for
stating Theorem 1 is to give a framework for Theorem 2, which seems
to be new in this form. Other results concerning regularizing effects
of the resolvent family R(·) have been given for classes of kernels with
either stronger or weaker singularities. In [5] and [9], the kernel a
itself is assumed to have a singularity at the origin, and the resolvent
family is shown to possess an analytic extension into some sector in the
complex plane that contains the positive real axis. These arguments
use the Laplace transform and a suitable deformation of the integration
path in the inversion formula, much as in the classical argument for the
construction of analytic semigroups [11]. In [6, 7, 10, 13] kernels are
considered for which (3) holds with α = 0, i.e., a′(·) has a logarithmic
singularity at the origin. In this case, AβR(t) becomes a bounded
operator for t > βt0, where t0 > 0. These results can be proved
with a variety of techniques, e.g., again by deforming an integration
path in the complex inversion formula [13], by casting the problem
in an abstract semigroup framework and appealing to a general result
on differentiability of semigroups [6], or by explicitly computing the
resolvent in a model problem [7, 10]. Some explicit examples in [10]
show that this “delayed” regularization property in the case α = 0 is
sharp.

We shall construct the solution of Theorem 1 as

u(t) =
∫ ∞

Λ

uλ(t) dEλu0,

where the scalar functions uλ are solutions of the equations

(11) u′
λ(t) + λa ∗ uλ(t) = 0, uλ(0) = 1.

To do this, suitable a priori estimates have to be derived, which are
listed in Lemma 1 in the next section. The remainder of the next section
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is concerned with deriving additional estimates from which Theorem 2
follows. The main tool then is simply the variation-of-constants formula
for solutions of inhomogeneous equations associated with (11) which is
employed in a “bootstrap” fashion. One advantage of this approach
is that the sign conditions and regularity assumptions for the kernel
can be kept to a minimum. The two main results together with the
Corollaries are then proved in Section 3.

We use the usual notation of Sobolev spaces and refer the reader to [1]
for the necessary background material. In particular, fractional order
Sobolev spaces W s,2(I) of scalar functions on intervals I will be used.
Their definition and properties are also listed in [1]. Constants that
may change from line to line are denoted by the same letter, C; they are
allowed to depend on T, a(·) and its properties, and other parameters,
but not on the parameter λ > Λ that is used in (11). We also write

dk
j (t) = tjd(k)(t)

whenever d(·) is a function for which the k-th derivative is defined.

2. A priori estimates for scalar equations. In this section we
study solutions of the scalar equations (11) in more detail. The goal
is to collect estimates that display the dependence on λ in detail. A
standard contraction argument shows that solutions uλ exist and are
unique on any time interval [0, T ] and that they will be in C2([0, T ]).
From now on, T will be arbitrary and fixed. We set vλ = 1 ∗ uλ.

LEMMA 1. Let a satisfy assumptions (a1). Then, for any solution uλ

of (11) and for all 0 ≤ t ≤ T < ∞,

(12) λ−1|u′′
λ(t)|+λ−1/2|u′

λ(t)|+|uλ(t)|+λ1/2|vλ(t)|+λ|1∗vλ(t)| ≤ CT .

If a also satisfies (a2), then, additionally,

(13)
∫ T

0

∫ T

0

( |uλ(t) − uλ(s)|2
|t − s|1+2α

+ λ
|vλ(t) − vλ(s)|2

|t − s|1+2α

)
ds dt ≤ CT .
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PROOF. Equation (11) can be written in the equivalent form

u′
λ(t) + λ

(∫ t

0

a′(t − s)(vλ(s) − vλ(t)) ds + a(t)vλ(t)
)

= 0.

Multiply with uλ(t) and integrate. After some manipulations, the result
is

(14)

|uλ(t)|2 − 1 + λ|vλ(t)|2

− λ

∫ t

0

a′(t − s)(|vλ(t − s)|2 + |vλ(s)|2 − 2vλ(t)vλ(s)) ds

+ λ

∫ t

0

∫ s

0

a′′(s − τ )|vλ(s) − vλ(τ )|2 dτ ds = 0.

Note that, due to the smoothness of vλ, the integral involving a′′ is
convergent. Since a′′ is bounded below by an integrable function, (14)
implies that for some m ∈ L1(0, T ;R)

(15) |uλ(t)|2 + λ|vλ(t)|2 ≤ C + λ

∫ t

0

(m(t − s) + m(s))|vλ(s)|2 ds.

Gronwall’s lemma now implies the bound for the third and fourth term
on the left-hand side of estimate (12). The last term on the left-hand
side of (12) can be estimated since, by (11), 1 ∗ vλ + a′ ∗ 1 ∗ vλ =
λ−1(1 − uλ). Similarly, using equation (11) and its derivative, the
other two terms can be estimated.

To prove (13), we use (14) again and note that, by the preceding
argument, all terms in (14) except the double integral involving a′′ are
now estimated independent of λ. Now use the assumption that, up to
an integrable function, a′′(t) ≥ δt−1−2α. This implies that the second
term on the left-hand side of (13) can be estimated as stated. To
estimate also the other term, we differentiate (11), multiply the result
with λ−1uλ(t) and integrate once. The result is the identity
(16)

1
λ
|u′

λ(t)|2 +
∫ t

0

∫ s

0

a′′(t−s)|uλ(s)−uλ(τ )|2 dτ ds

= 1+a(t)|uλ(t)|2+
∫ t

0

(a′(t−s)|uλ(t)−uλ(s)|2+ a′(s)|uλ(s)|2) ds.
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Since the right-hand side can be estimated uniformly in λ, the same
argument as before shows that also the first term in (13) can be
estimated as claimed.

LEMMA 2. If assumptions (a1) and (a2) hold, then, for any solution
of (11),

(17) λ2α

∫ T

0

|uλ(t)|2 dt ≤ CT .

PROOF. Estimate (13) implies that

‖vλ‖α ≤ CT λ−1/2

‖vλ‖1+α ≤ CT ,(18)

where ‖·‖s is a norm on the fractional order Sobolev space W s,2([0,T ],R)
[1]. Since these are complex interpolation spaces, a standard interpo-
lation inequality now implies that

‖uλ‖0 ≤ ‖vλ‖1 ≤ C‖vλ‖α
α‖vλ‖1−α

1+α ≤ Cλ−α.

This is the desired estimate.

Lemmata 1 and 2 provide all a priori estimates that will be needed
for the proofs. The rest of this section will be concerned with deriving
related estimates for functions of the form tluλ(t), using the variation-
of-constants formula. We therefore write

uλ,l(t) = tluλ(t), vλ,l(t) = tlvλ(t)

for 0 ≤ t ≤ T , λ ≥ Λ, l = 0, 1, 2, . . . . We also set

wλ,l(t) = tl(uλ ∗ uλ)(t)

and set wλ,−1(t) = 0 for all t by convention.
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LEMMA 3. Suppose a satisfies (a1) and (a2) and uλ solves (11). Then,
for all l = 0, 1, 2, . . . , and 0 ≤ t ≤ T ,

(19) wλ,l(t) =
l∑

i=0

(
l
i

)
uλ,i ∗ uλ,l−i(t)

∣∣∣∣
∫ t

0

(t − s)uλ,l(s) ds

∣∣∣∣ ≤ C(l, T )λ−1(20)

|(1 ∗ uλ,l)(t) − vλ,l(t)| ≤ C(l, T )λ−1.(21)

PROOF. Equation (19) (which reduces to the Leibniz rule for deriva-
tives of products after taking the Fourier transform) is proved by a
standard induction argument.

Estimate (20) also follows by induction: For l = 0, the estimate is
contained in Lemma 1. For the step from l to l + 1 we write

∫ t

0

(t − s)uλ,l+1(s) ds = − 2
∫ t

0

∫ s

0

(s − τ )uλ,l(τ ) dτ ds

+ t ·
∫ t

0

(t − s)uλ,l(s) ds,

and this term is bounded by Cλ−1 by the induction assumption.

The proof of (21) also uses induction. For l = 0, nothing has to be
shown. For the step from l to l + 1, we write

(1 ∗ uλ,l+1)(t) − vλ,l+1(t) = −
∫ t

0

(t − s)uλ,l(s) ds

+ t

(∫ t

0

uλ,l(s) ds − vλ,l(t)
)

,

and by (20) and the induction assumption, both terms on the right-
hand side are bounded by Cλ−1.

Next an auxiliary kernel is introduced which can be shown to have
the same regularity properties as a1

1. Let k : [0, T ] → R be the resolvent
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kernel associated with a′, i.e., the L1-function with the equivalent
properties

a′(t) + k ∗ a′(t) + k(t) = 0, for a.e. t ∈ [0, T ],(22)
a(t) + k ∗ a(t) = 1, for all t ∈ [0, T ].(23)

We set

(24) b(t) = 1 + a1
1(t) + k ∗ a1

1(t) = 1 + ta′(t) +
∫ t

0

k(t − s)sa′(s) ds.

LEMMA 4. The kernel b has the properties

t · a(t) = b ∗ a(t), for all t ∈ [0, T ],(25)
a1
2 ∈ W 2,1([0, T ],R) =⇒ b1 ∈ W 2,1([0, T ],R)(26)

a1
3 ∈ W 3,1([0, T ],R) =⇒ b2 ∈ W 3,1([0, T ],R).(27)

PROOF. We have

b = 1 + a1
1 + k ∗ a1

1 = a + a1
1 + k ∗ (a + a1

1)

=⇒ b + a′ ∗ b = a + a1
1

=⇒ d

dt
(b ∗ a) =

d

dt
a1
1.

This proves (25). To prove (26) and (27), we first compute k1(t) = tk(t)
and k2(t) = t2k(t). Multiplying (22) with t implies

a1
1 + k1 ∗ a′ + k ∗ a1

1 + k1 = 0,

and thus

k1 = − a1
1 − k ∗ a1

1 − k ∗ (a1
1 + k ∗ a1

1) = − (a1
1 + 2k ∗ a1

1 + k ∗ k ∗ a1
1).

Multiplying again with t one obtains, after some manipulations,

k2 = − a1
2−2k ∗a1

2−k ∗k ∗a1
2 +2(a1

1 +2k ∗a1
1 +k ∗k ∗a1

1)∗ (a1
1 +k ∗a1

1).
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Thus, ki is as regular as a1
i for i = 1, 2. Now

b1
1(t) = t + a1

2(t) + k1 ∗ a1
1(t) + k ∗ a1

2(t)(28)

and

b2(t) = t2 + a1
3(t) +

2∑
i=0

(
2
i

)
ki ∗ a1

i+1(t).(29)

From (28) we read off that b1 ∈ W 2,1([0, T ],R) if a1
2 is in this class,

which proves (26). To prove (27), we note that the convolution
products involving k1 and k2 will be in W 3,1([0, T ],R) as soon as
a1
2 ∈ W 2,1([0, T ],R) and that the other terms will be as regular as a1

3.
Since assumption (a2) implies in particular that a1

3 ∈ W 3,1([0, T ],R),
property (27) follows.

LEMMA 5. If assumptions (a1) and (a2) hold, then, for all t ∈ [0, T ],
λ > Λ, l = 1, 2, 3, . . . ,

(30) uλ,l(t) + b ∗ uλ,l−1(t)
= 2wλ,l−1(t) + b′ ∗ wλ,l−1(t) + (l − 1)b1

1 ∗ wλ,l−2(t) + fλ,l(t),

where |fλ,l(t)| ≤ C(l, T )λ−1.

PROOF. The proof uses induction. For l = 1, one computes

u′
λ,1(t) = uλ(t) + tu′

λ(t)
= uλ(t) − λa1 ∗ uλ(t) − λa ∗ uλ,1(t).

By Lemma 4,
λa1 ∗ uλ = λb ∗ a ∗ uλ

= − b ∗ u′
λ

= −uλ + b − b′ ∗ uλ.

Thus, uλ,1 solves the equation

u′
λ,1 + λa ∗ uλ,1 = 2uλ + b′ ∗ uλ − b.

Applying the variation-of-constants formula gives (30) for l = 1.
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The induction step from l to l + 1 is a straightforward calculation.
One only has to show that the remainder term fλ,l+1 can be estimated
as stated.

uλ,l+1(t) + b ∗ uλ,l(t)
= t(uλ,l(t) + b ∗ uλ,l−1(t)) − b1 ∗ uλ,l(t)
= t(2wλ,l−1(t) + b′ ∗ wλ,l−1(t) + (l − 1)b1

1 ∗ wλ,l−2(t)
+ fλ,l(t)) − b1 ∗ uλ,l(t)

= 2wλ,l(t) + b′ ∗ wλ,l(t) + lb1
1 ∗ wλ,l−1(t) + fλ,l+1(t)

with fλ,l+1(t) = (l− 1)b1
2 ∗wλ,l−1(t) + tfλ,l(t)− b1 ∗uλ,l(t). By Lemma

4, b1
2 and b1 are in W 2,1([0, T ],R) and vanish for t = 0. Therefore, by

Lemma 3, the two convolution integrals, and thus also fλ,l+1(t) can be
estimated by Cλ−1. The lemma follows.

LEMMA 6. If assumptions (a1) and (a2) hold, then for 0 < t ≤ T ,
0 ≤ r ≤ 1/α, λ ≥ Λ,

(31) |uλ(t)| ≤ Ct−rλ−rα

and for 0 ≤ r ≤ 1/(2α),

(32) |vλ(t)| ≤ Ct−rλ−rα− 1
2 .

Here C depends on r, a, T , but not on λ.

PROOF. We use induction on n to prove first (31) and then (32) for
all r ≤ n ≤ 1/α, respectively, for all r ≤ n ≤ 1/(2α), and then give a
concluding argument in the case where 1/α is not an integer. We start
with the estimate for uλ for r = n = 1. By Lemma 5,

tuλ(t) = − b ∗ uλ(t) + 2uλ ∗ uλ(t) + b′ ∗ uλ ∗ uλ(t).

The terms on the right-hand side can be estimated for each t as follows:

|b ∗ uλ(t)| = |vλ(t) + b′ ∗ vλ(t)| ≤ Cλ−1/2 ≤ Cλ−α

by Lemma 1;

(33) |uλ ∗ uλ(t)| ≤ ‖uλ‖2
L2 ≤ Cλ−α
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by Hölder’s inequality and Lemma 2; and

|b′ ∗ uλ ∗ uλ(t)| ≤ Cλ−α

by (33). These estimates prove (31) for r = 1. Since (31) is also true
for r = 0, we obtain (31) for all 0 ≤ r ≤ 1.

We next show (32), first for r = 1/2 and then for r = 1. One computes

tvλ(t) = 1 ∗ 1 ∗ uλ(t) + 1 ∗ b ∗ uλ(t) − 2vλ ∗ uλ(t) − 2b′ ∗ vλ ∗ uλ(t)

due to Lemma 5. The first two terms can be estimated by Cλ−1. The
other two terms can be estimated by

(34) |2vλ∗ uλ(t)+2b′∗ vλ∗ uλ(t)| ≤ 2 t
1
2 ‖vλ‖L∞‖uλ‖L2 ≤ Ct

1
2 λ−α+1

2 ,

by Lemma 3 and Hölder’s inequality. Thus |vλ(t)| ≤ Ct−1/2λ−(α+1)/2.
Repeating the estimate (34) and using (31) with r = 1/2 now also gives

|2vλ ∗ uλ(t) + 2b′ ∗ vλ ∗ uλ(t)| ≤ Cλ−α− 1
2 .

This proves (32) also for r = 1. As before, since the estimate is also
true for r = 0, we then obtain it for all r ∈ [0, 1].

For the induction step, suppose that (31) and (32) are true for
0 ≤ r ≤ n ≤ 1/(2α) − 1. By Lemma 5 and Lemma 3,

(35)
tn+1uλ(t) = − vλ,n(t) − b′ ∗ vλ,n(t) + 2wλ,n(t)

+ b′ ∗ wλ,n(t) + nb1
1 ∗ wλ,n−1(t) + gλ,n(t),

where |gλ,n(t)| ≤ Cλ−1. We first show (31) for r = n + 1/2 and then
for r = n+1. The terms on the left-hand side of (35) can be estimated
as follows:

|vλ,n(t) + b′ ∗ vλ,n(t)| ≤ Ct−nλ−nα− 1
2 ≤ Ct−nλ−(n+1)α

by induction assumption;

(36)
|wλ,n(t)| ≤

n∑
i=0

(
n
i

)
uλ,i ∗ uλ,n−i(t)|

≤ Ct
1
2 λ−(n+ 1

2 )α
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due to the estimates

(37) |uλ,j(t)| ≤ Ct−
1
2 λ−(j+ 1

2 )α,

for j = 0, . . . , n − 1, and

(38) |uλ,n(t)| ≤ Cλ−nα.

Thus, also

(39) |b′ ∗ wλ,n(t)| ≤ Ct
1
2 λ−(n+ 1

2 )α.

The terms involving wλ,n−1 can be written as

b1
1 ∗ wλ,n−1 = (b′ + b2

1) ∗
n−1∑
i=0

vλ,i ∗ uλ,n−1−i + gλ,n−1

by Lemma 3, where |gλ,n−1(t)| ≤ Cλ−1. Since b′, b2
1 ∈ L1(0, T ;R), we

only have to estimate each term in the sum pointwise:

|vλ,i ∗ uλ,n−1−i(t)| ≤ Cλ−nα− 1
2 ≤ Cλ−(n+1)α,

due to (37) and

(40) |vλ,j(t)| ≤ Ct−
1
2 λ−(j+ 1

2 )α− 1
2 ,

for j = 0, . . . , n − 1, by induction assumption. Put together, all these
estimates prove (31) for r = n + 1/2. This means that

(41) |uλ,n(t)| ≤ Ct−
1
2 λ−(n+ 1

2 )α.

Using (41) instead of (38) now implies that

|wλ,n(t)| ≤ Cλ−(n+1)α,

and this improved estimate implies (31) also for r = n + 1. As before,
estimate (31) then follows also for all r ∈ [n, n + 1].

We next show (32) for r = n + 1/2 and r = n + 1, still assuming
that n ≤ 1/(2α) − 1. The argument is essentially the same as in the
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case n = 1. First, according to Lemma 3, we can replace vλ,n+1(t) by
1 ∗ uλ,n+1 with an error that is bounded by Cλ−1. Next, by Lemma 5,

1 ∗ uλ,n+1 = − b ∗ vλ,n + 2 ∗ wλ,n

+ b′ ∗ 1 ∗ wλ,n + n · 1 ∗ b1
1 ∗ wλ,n−1 + 1 ∗ fλ,n+1.(42)

Lemmata 1 and 4 imply that the first and the last two terms can be
estimated by Cλ−1. The second term can be estimated by

(43)
|2 ∗ wλ,n(t)| ≤ C

n∑
j=0

|vλ,j ∗ uλ,n−j |(t) + Cλ−1

≤ Ct
1
2 λ− 1

2−(n+ 1
2 )α.

Here (37) and (40) have been used for j = 0, . . . , n, except for the
term involving vλ,n, where we use the induction assumption. The
same estimate holds for the third term in (42). This proves (32) for
r = n + 1/2 and implies in particular that

(44) |vλ,n(t)| ≤ Ct−
1
2 λ− 1

2−(n+ 1
2 )α.

Using (44) instead of the induction assumption allows us to improve
(43) to

|2 ∗ wλ,n(t)| ≤ Cλ− 1
2−(n+1)α

and to estimate the third term in (42) in the same way. Thus (32) is
proved for r = n + 1 and consequently for all r ∈ [n, n + 1].

There remain some additional cases, all of which can be handled by
the same arguments. Estimate (32) is shown for the case [1/(2α)] ≤ r ≤
1/(2α) by an argument that is similar to the one in the induction step.
If 1/(2α)− 1 < n < 1/α, then only (31) has to be shown by induction,
and the argument is identical to the one given above. Finally, (31)
follows for the remaining range [1/α] < r ≤ 1/α as in the induction
step. The Lemma is completely proved.

3. Proofs of the main results.

PROOF OF THEOREM 1 AND OF COROLLARY 1. Let u be a solution
of (1) with u(0) = 0. For N ≥ Λ, t ≥ 0, set uN (t) = ENu(t), where
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EN is the spectral measure of the set [Λ, N ]. Then uN solves the same
equation. Since the operator A is bounded on the space ENH in which
this equation holds, we obtain uN = 0, due to a standard uniqueness
argument for ordinary integral equations. Since N is arbitrary, u = 0
follows, which established uniqueness of mild solutions of (1) and (7).

To construct a solution of (1), suppose that u0 ∈ H is given. Set

(45) uN (t) =
∫ N

Λ

uλ(t) dEλu0

for N ≥ Λ, 0 ≤ t ≤ T . The uN are (classical) solutions of (1) with initial
data uN (0) = ENu0. Then the estimates in Lemma 1 show that the
functions A−1(uN )′′, A− 1

2 (uN )′, uN , A1/2(1∗uN ), and A(1∗1∗uN ) all
converge uniformly in C([0, T ],H) to continuous limit functions A−1u′′,
A− 1

2 u′, u, A1/2(1 ∗ u), and A(1 ∗ 1 ∗ u), and u is a mild solution of (1).
This proves Theorem 1. Corollary 1 and the variation-of-constants
formula follow by using the same construction.

PROOF OF THEOREM 2. The estimates of Theorem 2 follow by using
Lemma 6 in (45) and passing to the limit as N → ∞.

For the proof of Corollary 2, we need a standard MARCINKIEWICZ-
type interpolation argument.

LEMMA 7. Let f : [0, T ] → R be measurable such that ‖f‖L∞ ≤ C1

and |f(t)| ≤ C2t
−γ for almost all t, for some γ > 0. Then, for all p

with 1 ≤ p < ∞ and 1/γ < p,

∫ T

0

|f(t)|p dt ≤ C
p− 1

γ

1 C
1
γ

2

p − 1
γ

.
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PROOF. Let μ(s) = |{t | |f(t)| > s}| be the distribution function of
f . The assumptions imply

μ(s) = 0, for s ≥ C1,

and

s
1
γ · μ(s) ≤ C

1
γ

2 , for all s.

Then ∫ T

0

|f(t)|p dt =
∫ C1

0

sp−1μ(s) ds

≤
∫ C1

0

sp−1− 1
γ C

1
γ

2 ds

=
C

p− 1
γ

2 C
1
γ

2

p − 1
γ

.

PROOF OF COROLLARY 2. Let p, β, r be given as in the assumptions.
For given λ, we set f(t) = tr−1/puλ(t) and γ = 1/α + 1/p − r. By
Lemma 6,

|f(t)| ≤ Cλ−rα and |f(t)| ≤ Cλ−1t−γ .

Applying Lemma 7 then leads to the estimate

∫ T

0

|f(t)|p dt ≤ Cλ−β.

Using this estimate in (45) and passing to the limit as N → ∞ implies
the first half of the Corollary. The second half follows analogously.
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