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SOME RESULTS ON NONLINEAR HEAT EQUATIONS
FOR MATERIALS OF FADING MEMORY TYPE

PH. CLÉMENT AND G. DA PRATO

1. Introduction. In this paper we consider a model for the heat
conduction for a material covering an n-dimensional bounded set Ω
with boundary ∂Ω, n = 1, 2, 3.
(1.1){

d
dt

(
b0u(t, x) +

∫ t

0
β(t− s)u(s, x) ds

)
= c0Δu(t, x), t > 0, x ∈ Ω,

u(0, x) = x, x ∈ Ω,

where u(t, x) is the temperature of the point x at time t (we assume
that the temperature is 0 for x ∈ ∂Ω), b0 is the specific heat and
c0 the thermal conductivity. We assume that the specific heat has a
term of fading memory type

∫ t

0
β(t− s)u(s, x) ds, whereas the thermal

conductivity is constant. Concerning the kernel β we assume only that
it is locally integrable in [0,∞[; this will allow us to consider kernels as
β(t) = e−ωttα−1, ω ≥ 0, α ∈ ]0, 1[.

Model (1.1) (including also a memory term for the thermal conduc-
tivity) has been introduced in [7] and studied in [1] and [5].

We write problem (1.1) in abstract form in the Banach space X =
C(Ω),

(1.2)
{

d
dt (u(t) + (β ∗ u)(t)) = Au(t), t > 0,
u(0) = x,

where u(t) = u(t, ·) and A is the realization in C(Ω) of the Laplace
operator Δ with Dirichlet boundary conditions.

In order to study (1.2), we assume that A generates an analytic
semigroup and that β is Laplace transformable with Laplace transform
β̂(λ) analytic in a sector Sω,θ = {λ ∈ C \{0} : | arg(λ − ω)| < θ} with
ω ∈ R and θ ∈ ]π/2, π[. Then the Laplace transform û(λ) of u is given
formally by

(1.3) û(λ) := F (λ)x = R(λ+ λβ̂(λ), A)x.
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In Section 2, by proceeding as in [3] and [6], we solve problem (1.2)
by means of a resolvent operator R(t) obtained by inverting its formal
Laplace transform F (λ). We remark that if β ∈ W 1,1

loc (0,∞), then
problem (1.2) can be easily studied as a perturbation of heat equation.
The main difference of our results with respect to [3] and [6] is that
when β is not regular there is also a lack of regularity for R(t)x. Indeed
it can happen that, even if x �= 0 is very regular (say x ∈ D(A∞)),
R(·)x is not differentiable in 0. For this reason we introduce in Section
3 a new notion of strict solution in order to study the inhomogeneous
problem

(1.4)
{

d
dt (u(t) + (β ∗ u)(t)) = Au(t) + f(t), t > 0,
u(0) = x,

where f : [0, T ] → X is continuous.

In Section 4, assuming, in addition, that β is nonnegative and
nonincreasing and that ||etA|| ≤ eωt, for some ω ≤ 0, we prove the
estimate

(1.5) ||R(t)|| ≤ sω+β(t),

where sω+β is the solution of the integral equation

(1.6) sω+β(t) +
∫ t

0

(ω + β)(t− σ)sω+β(σ)dσ = 1.

This result enables us to solve (see Section 5) the semilinear problem,

(1.7)
{

d
dt (u(t) + (β ∗ u)(t)) = Au(t) + F (u(t)), t > 0,
u(0) = x,

where F : X → X is locally Lipschitz and such that

(1.8) ||x|| ≤ ||x− δF (x)||, ∀ δ > 0, ∀x ∈ X.

We recall that nonlinear integrodifferential equations of this type have
been discussed, when β is regular, by several authors (see [2, 1] and
the references quoted therein). But in the above papers it is assumed
that the nonlinear term is monotone; moreover, only the existence of
weak solutions is stated.
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We have also studied the positivity of the solutions. More precisely,
under the hypotheses of Section 4 we can show that, if Q is a closed
convex cone in X such that etA(Q) ⊂ Q and if x ∈ Q, then the solution
of (1.4) remains on Q. A similar result holds for problem (1.7).

Finally, in Section 6, we have discussed the physical example (1.1)
also when a nonlinear perturbation term occurs. In a subsequent paper
we shall consider the more general case in which also a memory term
related to conductivity appears.

2. Construction of the resolvent R(t). Let X be a complex
Banach space (norm || · ||), A : D(A) ⊂ X → X a closed linear operator
and β : [0,∞[→ R a Laplace transformable function. We shall denote
by ρ(A) the resolvent set of A, by σ(A) the spectrum of A, by R(λ,A)
the resolvent of A and by β̂(λ) the Laplace transform of β. For any
θ ∈ ]0, π[ we shall denote by Sω,θ the sector

Sω,θ = {λ ∈ C \{0} : | arg(λ− ω)| < θ}.

We are here concerned with the Volterra integrodifferential equation

(2.1)
{

d
dt (u(t) + (β ∗ u)(t)) = Au(t), t > 0,
u(0) = x,

where x ∈ X and (β ∗ u)(t) =
∫ t

0
β(t− s)u(s) ds. We assume

(2.2)
∃M > 0, ω ∈ R, θ ∈ ]π/2, π[ and α ∈ ]0, 1[ such that
(i) ρ(A) ⊃ Sω,θ and ||R(λ,A)|| ≤M/|λ− ω|, ∀λ ∈ Sω,θ

(ii) There exists an analytic extension of β̂(λ) in Sω,θ (still denoted

by β̂(λ)) such that ||β̂(λ)|| ≤M/|λ− ω|α, ∀λ ∈ Sω,θ.

We fix once and for all a maximal analytic extension of β̂(λ) (still
denoted by β̂(λ)) and we denote by Ω its domain of definition. Set

(2.3) ρF = {λ ∈ Ω;λ+ λβ̂(λ) ∈ ρ(A)}
and

(2.4) F (λ) = R(λ+ λβ̂(λ), A), ∀λ ∈ ρF .
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Let us remark that we do not assume thatD(A) is dense inX and that
β is right differentiable at 0. Examples of kernels fulfilling hypotheses
(2.2) are β(t) = e−ωttα−1, ω ≥ 0, α ∈ ]0, 1[.

LEMMA 2.1. Assume (2.2). Then there exists an r > 0 such that,
setting ωθ = ω + rsec θ, one has ρF ⊃ Sωθ,θ and

(2.5) ||F (λ)|| ≤ 2M
|λ− ω| , ∀λ ∈ Sωθ,θ

(2.6) F (λ) = R(λ,A)[1 + λβ̂(λ)R(λ,A)]−1, ∀λ ∈ Sωθ,θ.

Finally, there exists M1 > 0 such that

(2.7) ||AF (λ)|| ≤M1, ∀λ ∈ Sωθ,θ.

PROOF. Given y ∈ X and λ ∈ Sω,θ, consider the equation

(2.8) λx+ λβ̂(λ)x−Ax = y.

Setting λx−Ax = z (2.8) reduces to

(2.9) z + λβ̂(λ)R(λ,A)z = y.

By (2.2) there exists an r > 0 such that

(2.10) ||λβ̂(λ)R(λ,A)|| ≤ 1
2
, ∀λ ∈ Sωθ,θ.

Now (2.5) and (2.6) follow by a standard fixed point argument.

It remains to prove (2.7). Recalling (2.6),

(2.11)
AF (λ) = (λ+ λβ̂(λ))F (λ)− 1

= λF (λ) + λβ̂(λ)R(λ,A)[1 + λβ̂(λ)R(λ,A)]−1 − 1

so that (2.7) follows from (2.5) and (2.10).
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We now set

(2.12) R(t) =
1

2πi

∫
γ

eλtF (λ) dλ, t > 0,

where γ = γ− ∪ γ+, γ± = {λ ∈ C : λ = ωθ + ρe±iθ, ρ ≥ 0} is oriented
counterclockwise.

The following result is proved as in [3, 6].

PROPOSITION 2.2. Assume (2.2) and let R(t) be defined by (2.12).
Then the following statements hold

(i) There exists K > 0 such that

||R(t)|| ≤ Keωθt, t ≥ 0,(2.13)

||R′(t)|| ≤ K

t
eωθt, t ≥ 0.(2.14)

(ii) We have

(2.15) lim
t→0

R(t)x = x, ∀x ∈ D(A).

Thus R(·)x, β ∗R(·)x ∈ C([0,∞[;X), for all x ∈ D(A).

(iii) R is analytic in the sector S0,θ−π/2.

(iv) For all t > 0 and x ∈ X,R(t)x ∈ D(A) and AR(·) is analytic in
the sector S0,θ−π/2.

(v) For all t > 0,

(2.16) R′(t) +
∫ t

0

β(s)R′(t− s) ds = AR(t).

PROPOSITION 2.3. If x ∈ D(A) and Ax ∈ D(A) we have

(2.17) lim
t→0

d

dt
(R(t)x+ (β ∗R(·)x)(t)) = Ax.

Thus R(·)x+ (β ∗R)(·)x ∈ C1([0,∞[;X) and AR(·)x ∈ C([0,∞[;X).
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PROOF. From Proposition 2.2,

d

dt
(R(t)x+ (β ∗R(·)x)(t)) = AR(t)x = R(t)Ax, t > 0.

Since Ax ∈ D(A), (2.17) follows from (2.15).

PROPOSITION 2.4. If x ∈ D(A), then R(·)x+ (β ∗R)(·)x is Lipschitz
continuous. Moreover, there is a K ′ > 0 such that

(2.18) |R′(t)x| ≤ K ′tα−1|x|.

PROOF. Let x ∈ D(A); if t > 0, by (2.16), we have

d

dt
(R(t)x+ (K ∗R(·)x)(t)) = AR(t)x = R(t)Ax.

Thus, by (2.16), R(·)x+ (β ∗R)(·)x is Lipschitz continuous. Moreover,

R′(t)x =
1

2iπ

∫
γ

λeλtF (λ)x dλ =
1

2iπ

∫
γ

eλt(λF (λ) − I)xdλ

=
1

2iπ

∫
γ

eλt(AF (λ)x− λK̂(λ)F (λ)x) dλ

= R(t)Ax− 1
2iπ

∫
γ

eλtλK̂(λ)F (λ)x dλ.

The first term is bounded near 0 by (2.13). Concerning the second one,

∣∣∣∣
∣∣∣∣ 1
2iπ

∫
γ

eλtλK̂(λ)F (λ)x dλ
∣∣∣∣
∣∣∣∣ ≤M

eω0t

π

∫ ∞

0

eρt cos ηρ−αdρ||x||,

and the conclusion follows.
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PROPOSITION 2.5. Assume (2.2), let z ∈ X and set v(t) =∫ t

0
R(s)z ds. Then

(i) For all T > 0, v ∈ L∞(0, T : D(A)) ∩W 1,∞(0, T : X).

(ii) If z ∈ D(A), then v ∈ C(0, T : D(A)) ∩ C1(0, T : X).

PROOF. Let ρ > ω, then, by taking the Laplace transforms, one can
check the identity

v(t) = R(ρ,A){ρv(t) − R(t)z − (β ∗R(·)z)(t)},
and the conclusion follows.

We now want to characterize those elements x of X such that R(·)x
is Hölder continuous. This problem is connected with the asymptotic
behavior of ||λF (λ)x− x||, as the following lemma shows.

PROPOSITION 2.6. Assume (2.2) and let R(t) be defined by (2.12). Let
x ∈ D(A), and γ ∈ ]0, 1[, then the following assertions are equivalent:

(i) ∀ η ∈ ]0, θ[, there exists a constant K1(η) > 0 such that

(2.19) ||R(re±iη)x− x|| ≤ K1(η)eωθr cos ηrγ , ∀ r > 0.

(ii) ∀ η ∈ ]0, θ[, there exists a constant K2(η) > 0 such that

(2.20) ||R′(re±iη)x|| ≤ K2(η)eωθr cos ηrγ−1, ∀ r > 0.

(iii) ∀ η ∈ ]0, θ[, there exists a constant K3(η) > 0 such that

(2.21)

||λF (λ)x−x|| ≤ K3(η)|λ−ω|−γ , for λ = ωθ + ρe±i(π/2+η), ∀ ρ > 0

where the constants Ki(η), i = 1, 2, 3, are increasing in η.

PROOF. (i)⇒(iii). It is sufficient to prove (iii) for λ = ωθ +
ρe±i(π/2+η−ε), ∀ ρ > 0, with ε ∈ ]0, η[ and η ∈ ]0, θ[. Set

I±iη := {z ∈ C : z = re±iη, r > 0}.
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We consider the case λ = ω+ρei(π/2+η−ε), the other case being similar.
First we define

(2.22) Q(λ)x =
∫

I±η

e−λzR(z)x dz, x ∈ X.

Q(λ) is well defined and analytic on the sector S0,η+π/2; thus, Q(λ)x =
F (λ)x. It follows that

λF (λ)x− x =
1

2iπ

∫
I±η

λe−λz(R(z)x− x) dz

which yields (iii) by a simple computation.

(iii)⇒(ii). We consider only the case z = reiη, the other case being
similar. Let η ∈ ]0, θ[, r > 0, and x satisfying (2.21). From Proposition
2.2, we have, for r > 0,

R′(reiη)x =
1

2iπ

∫
γ

λeλzF (λ)x dλ =
1

2iπ

∫
γ

eλz(λF (λ)x− x) dλ,

and (ii) follows.

(ii)⇒(i). We only consider the case z = reiη. We have

|R(reiη)x− x| = lim
ε→0

∣∣∣∣∣
∫ r

ε

R′(reiη)x dr

∣∣∣∣∣
≤ lim

ε→0
(r − ε)K2(η)eωθr cos ηrγ−1,

and the proof is complete.

The next proposition states a relation among the assumptions of
Proposition 2.5 and real interpolation spaces DA(γ,∞) introduced in
[4]. Let us recall the definition of DA(γ,∞), γ ∈ ]0, 1[; we set

(2.23) ||x||γ,η = Sup
ρ>0

{||λγR(λ,A)x||; λ = ωθ + ρe±iη}, η ∈ ]0, θ[.

It is well known that the norms {||x||γ,η; η ∈ ]0, θ[} are equivalent.
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PROPOSITION 2.7. Assume (2.2), and let R(t) be defined by (2.12).
Let x ∈ D(A), and γ ∈ ]0, α]; then the following assertions are
equivalent:

(i) x ∈ DA(γ,∞).

(ii) ∀ η ∈ ]0, θ[, there exists a constant K3(η) > 0 such that (2.21)
holds.

PROOF. (i)⇒(ii). Let x ∈ DA(γ,∞), λ = ωθ + ρe±iη. Then

(2.24)
λF (λ)x−x = AF (λ)x− λβ̂(λ)F (λ)x

= [1+λβ̂(λ)R(λ,A)]−1AR(λ,A)x−λβ̂(λ)F (λ)x.

Thus there exists a constant C > 0 such that

||λF (λ)x− x|| ≤ C

{
|λ|γ ||x||γ,η +

1
|λ− ω|α ||x||

}
.

Since γ ≤ α, this completes the proof of the first implication.

(ii)⇒(i). By (2.24), we have

(2.25) R(λ,A)x = [1 + λβ̂(λ)R(λ,A)]{λF (λ)x− x+ λβ̂(λ)F (λ)x},

and now the conclusion follows easily.

We end this section with an approximation result which will be used
later. Let An be the Yosida approximation of A, i.e., An = nJn − n,
where Jn = nR(n,A). Set

(2.26) ρFn
= {λ ∈ Ω;λ+ λβ̂(λ) ∈ ρ(An)}

(2.27) Fn(λ) = R(λ+ λβ̂(λ), An), ∀λ ∈ ρFn

(2.28) Rn(t) =
1

2πi

∫
γ

eλtFn(λ) dλ, t > 0.
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PROPOSITION 2.8. Assume (2.2), and let R(t) be defined by (2.12)
and Rn(t) by (2.28). Then

(2.29) ||Rn(t)|| ≤ Keωθt, t ≥ 0,

and

(2.30) lim
n→∞Rn(t) = R(t), ∀ t > 0 in L (X)

uniformly on bounded sets of ]0,∞[.

3. The nonhomogeneous problem. We are here concerned with
the problem

(3.1)
{

d
dt (u(t) + (β ∗ u)(t)) = Au(t) + f(t), t > 0,
u(0) = x,

where x ∈ X, f ∈ C([0, T ];X) and A and β verify (2.2).

We denote by R(t) the resolvent defined by (2.12). We say that
u ∈ C([0, T ];X) is a mild solution of problem (3.1) if it satisfies the
integral equation

(3.2) u(t) = R(t)x+
∫ t

0

R(t− s)f(s) ds, t ≥ 0.

We want now to define a strict solution of (3.1). Remark that if A = 0
and f = 0, it is not in general true that u(t) = R(t)x is of class C1.
Thus the following definition seems to be natural.

Definition. u is called a strict solution of (3.1) if u ∈ C([0, T ];D(A)),
u+ β ∗ u ∈ C1([0, T ];X) and fulfills (3.1).

PROPOSITION 3.1. Assume (2.2), and let f ∈ Cδ([0, T ];X), for some
δ ∈ ]0, 1[, x ∈ D(A), Ax + f(0) ∈ D(A). Then the mild solution u to
(3.1) is a strict solution.

PROOF. Set

(3.3) u(t) = u1(t) + u2(t) + u3(t) + u4(t),
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where

u1(t) = R(t)x(3.4)

u2(t) =
∫ t

0

R(t− s)[f(s) − f(t)] ds(3.5)

u3(t) =
∫ t

0

R(s)[f(t) − f(0)] ds(3.6)

u4(t) =
∫ t

0

R(s)f(0) ds.(3.7)

Since

(3.8) u4(t) = A−1[R(t)f(0) + (β ∗R)(·)f(0)(t)− f(0)],

we have
(3.9)

A(u1(t) + u4(t))
= R(t)(Ax+ f(0)) + (β ∗R)(·)f(0)(t) − f(0) ∈ C([0, T ];X).

By Proposition 2.3,

R(·)x+ (β ∗R)(·)x ∈ C1([0,∞[;X), and AR(·)x ∈ C([0,∞[;X).

Thus we have only to check that v is a strict solution of (3.1) with
x = 0. Set

(3.10) vn(t) =
∫ t

0

Rn(t− s)f(s) ds,

where Rn(t) is defined in (2.28). We have

(3.11)
d

dt
(vn(t)) = (1 −Rn(t))f(t) +

∫ t

0

d

dt
Rn(t− s)[f(s) − f(t)] ds

=: zn(t) + wn(t).

Now zn(t) = f(t) − Rn(t)[f(t) − f(0)] + Rn(t)f(0); since f(0) ∈
D(A)R(·), f(0) is continuous in [0, T ] by Proposition (2.2); moreover,
it is easy to check that R(·)(f(·)−f(0)) is also continuous in [0, T ]. So,

(3.12)
lim

n→∞ zn(t) =(1 −R(t))f(t) in C([0, T ];X),

(1 −R(·))f(·) ∈ C([0, T ];X).
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Moreover, by recalling (2.14) and using the hypothesis f ∈ Cδ([0, T ];X),
one sees that there exists a constant C such that∣∣∣∣

∣∣∣∣ ddtRn(t− s)[f(s) − f(t)]
∣∣∣∣
∣∣∣∣ ≤ C|t− s|δ−1.

It follows that
(3.13)

lim
n→∞wn(t) =

∫ t

0

d

dt
R(t− s)[f(s) − f(t)] ds =: w(t) in C([0, T ];X),

and so v ∈ C1([0, T ];X). Since v(0) = 0, we also have β ∗ v ∈
C1([0, T ];X), and, consequently, v ∈ C1([0, T ];D(A)). This implies
that u is a strict solution of (3.1).

4. Some additional properties of R(t). In this section, we prove
some additional estimates for the resolvent ||R(t)||, which will be used
in the next section. Also, we consider a closed convex cone Q in X and
give sufficient conditions in order that R(t)(Q) ⊂ Q.

We assume, besides (2.2),

(4.1)
{

(i) ∃ ω ≤ 0 such that ||etA|| ≤ eωt, for all t ≥ 0,
(ii) β is nonnegative and nonincreasing.

For any kernelK we denote by sK the solution of the integral equation

(4.2) sK +K ∗ sK = 1.

It is well known (see for instance [1]) that, if K is nonnegative and
nonincreasing, then sK(t) ≥ 0 for all t ≥ 0.

PROPOSITION 4.1. Assume (2.2) and (4.1). Let R(t) be defined by
(2.12). Then the following estimate holds:

(4.3) ||R(t)|| ≤ sβ+ω(t), ∀ t ≥ 0,

where sβ+ω is defined in (4.2).
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If, moreover, etA(Q) ⊂ Q, then R(t)(Q) ⊂ Q, ∀ t ≥ 0.

PROOF. In view of Proposition 2.7, it suffices to prove that

(4.4) ||Rn(t)|| ≤ s[nω/(n+ω)+β](t) ∀ t ≥ 0,

where Rn(t) is defined by (2.28).

Let x ∈ X, and let un(t) = Rn(t)x; then Rn(t)x is the solution of the
problem

(4.5)
{
nun(t) + d

dt (un(t) + (β ∗ un)(t)) = nJnun(t), t > 0,
un(0) = x,

which is equivalent to

(4.6) un + (β + n) ∗ un = x+ 1 ∗ nJnun

and also to

(4.7) un = sn+βx+ sn+β ∗ nJnun.

Since sn+β ≥ 0, it follows that

(4.8) ||un(t)|| ≤ sn+β(t)||x|| + n2

n+ ω

∫ t

0

sn+β(t− s)||un(s)|| ds,

which implies, by a classical argument,

(4.9) ||un(t)|| ≤ φn(t)||x||,

where φn is the solution to the integral equation

(4.10) φn − n2

n+ ω
sn+β ∗ φn = sn+β.

Since the Laplace transform of φn and sn are given, respectively, by

(4.11) φ̂n(λ) =
ŝn+β(λ)

1 − n2

n+ω ŝn+β(λ)
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and

(4.12) ŝn(λ) =
1

λ+ n+ λβ̂(λ)
,

we have

(4.13) φ̂n(λ) =
1

λ+ nω
n+ω + λβ̂(λ)

= ŝ[nω/(n+ω)+β](λ),

which implies (4.4). Finally, to prove the last statement it suffices to
remark that, by (4.6), it follows that un(t) ∈ Q, for all t ≥ 0, since
Jn(Q) ⊂ Q.

5. Semilinear equations. Let X be a complex Banach space and
Q a closed convex cone in X. For any r > 0 we shall denote by Br

the ball Br = {z ∈ X; ||z|| ≤ r}. Let A : D(A) ⊂ X → X be a closed
linear operator, β : [0,∞[ → R a Laplace transformable function and
F : X → X a nonlinear mapping.

We are concerned here with the semilinear problem

(5.1)
{

d
dt (u(t) + (β ∗ u)(t)) = Au(t) + F (u(t)), t > 0,
u(0) = x.

We assume (2.2), (4.1) (with ω = 0, for simplicity) and, concerning F ,

(5.2)

⎧⎪⎪⎨
⎪⎪⎩

(i) For all r > 0, there exists Mr > 0 such that
||F (x) − F (y)|| ≤Mr||x− y||, ∀x, y ∈ Br.

(ii) For all δ > 0 and all x ∈ X, ||x|| ≤ ||x− δF (x)||.
(iii) F (0) = 0.

We say that u ∈ C([0, T ];X) is a mild solution of problem (5.1) if u
fulfills the integral equation

(5.3) u(t) = R(t)x+
∫ t

0

R(t− s)F (u(s)) ds,

where the resolvent R(t) is defined by (2.12).
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In the following lemma, we gather, for later use, some properties of
the nonlinear mapping F .

LEMMA 5.1. Let F be a mapping in X such that hypotheses (5.2)
are fulfilled. For any r > 0, set δr = M2r/2. Then, if δ ∈ ]0, δr[, the
mapping 1 − δF : B2r → X is one-to-one and (1 − δF )(B2r) ⊃ Br.
Define a mapping Jδ,r : Br → X, for all r > 0 and δ ∈ ]0, δr[, by
setting

(5.4) Jδ,r(x) = (1 − δF )−1(x), x ∈ Br.

Then

(5.5) ||Jδ,r(x)|| ≤ ||x||, ∀x ∈ Br,

(5.6) lim
δ→0

Jδ,r(x) = x, ∀x ∈ Br.

PROOF. The first statement follows from (5.2)(i) and the Contraction
Principle. Moreover, (5.5) follows from (5.2)(ii) and (5.3) is easily
checked.

We set, finally,

(5.7) Fδ,r(x) = F (Jδ,r(x)) =
1
δ
(Jδ,r(x) − x), x ∈ Br, δ ∈ ]0, δr[.

By (5.5), it follows that

(5.8) lim
δ→0

Fδ,r(x) = F (x), ∀x ∈ Br.

We prove the main result of this section:

THEOREM 5.2. Assume (2.2), (4.1) (with ω = 0) and (5.2). Then
problem (5.1) has a unique mild solution u. If, moreover, Jδ,r(Q) ⊂ Q
for δ ∈ ]0, δr[ and x ∈ Q, then u(t) ∈ Q for all t ≥ 0.
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PROOF. Fix r > 0, let x ∈ Br and δ ∈ ]0, δr[. Consider the
approximating problem

(5.9)
{

d
dt (uδ(t) + (β ∗ uδ)(t)) = Auδ(t) + Fδ,r(uδ(t)), t > 0,
uδ(0) = x,

which is equivalent to

(5.10) uδ(t) = Rδ(t)x+
1
δ

∫ t

0

Rδ(t− s)Jδ,r(uδ(s)) ds,

where Rδ is the resolvent operator of problem (2.1) with A replaced by
A−1/δ. By standard arguments, equation (5.10) has a unique solution
in a maximal interval [0, τδ[. By (4.3) and (5.5),

(5.11) ||uδ(t)|| ≤ sβ+1/δ(t)||x|| + 1
δ

∫ t

0

sβ+1/δ(t− s)||uδ(s)|| ds.

Then

(5.12) ||uδ(t)|| ≤ ψδ(t)||x||,

where ψδ is the solution to the integral equation

(5.13) ψδ(t) = sβ+1/δ(t) +
1
δ

∫ t

0

sβ+1/δ(t− s)ψδ(s) ds.

As is easily checked, ψδ(t) = sβ(t), so that

(5.14) ||uδ(t)|| ≤ sβ(t)||x||.

This implies that the solution uδ of (5.10) is global.

Now, it remains to prove that there exists the limit limδ→0 uδ(t) =
u(t) and that u is the required solution. For this purpose we consider
the solution u(t) of equation (5.3) in its existence maximal interval
[0, τ [; by (5.8) and the Contraction Principle (depending on the pa-
rameter δ), it follows that

(5.15) lim
δ→0

uδ(t) = u(t)
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uniformly in all intervals [0, t1] ⊂ [0, τ [. Thus we obtain the a priori
estimate

(5.16) ||u(t)|| ≤ sβ(t)||x||, for all t ∈ [0, τ [,

and problem (3.1) has a global solution.

Let us now assume that nJδ,r(Q) ⊂ Q; then, by (5.10), it follows that
uδ(t) ∈ Q for all t ≥ 0 and δ > 0. Thus, by (5.15), we have u(t) ∈ Q
for all t ≥ 0, and the proof is complete.
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