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1. Introduction. The aim of this note is to establish global
existence of smooth rectilinear shearing motions of incompressible
nonlinear viscoelastic fluids of K − BKZ type. These fluids, which are
described by constitutive relations of integral type, were introduced
independently by Kaye [7] and Bernstein, Kearsley and Zapas [1].
Global existence theorems have been obtained previously by Kim [8]
and by Renardy, Hrusa and Nohel [10, Section IV.5]. Kim discusses
a situation in which the fluid occupies all of R3 and the nonlinearity
in the constitutive equation has a special form. Renardy, Hrusa and
Nohel study spatially periodic three-dimensional motions with a general
nonlinearity in the constitutive equation. In [8] and [10] the initial data
are assumed to be smooth and small and the kernel of the constitutive
relation is assumed to be smooth on [0,∞).

The equation of motion that we shall consider is
(1.1)

utt(x, t) =
∫ ∞

0

a′(s)g(ux(x, t)−ux(x, t−s))x ds+f(x, t), x ∈ B, t ≥ 0,

where subscripts x and t indicate partial derivatives and a′ denotes
the derivative of a. Here the unknown u is a component of the
displacement, f is a forcing function, a : [0,∞) → R and g : R → R are
smooth constitutive functions, and B ⊂ R is an interval. It follows from
symmetry considerations that g is an odd function, i.e., g(−ξ) = −g(ξ)
for all ξ ∈ R. We refer to Coleman and Noll [4] and to Sections 2 and 3
of Coleman and Gurtin [3] for a general discussion of shearing motions
of incompressible viscoelastic fluids. The monograph [10] contains
relevant information on K − BKZ fluids as well as derivation of (1.1)
for rectilinear shearing motions.
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If the displacement u is sufficiently regular then we may rewrite (1.1)
in the form

(1.2) vt(x, t) =
∫ ∞

0

a′(s)g(vt
x(x, s))x ds + f(x, t), x ∈ B, t ≥ 0,

where v := ut is the velocity and vt is the summed history up to time
t of v, i.e.,

(1.3) vt(x, s) :=
∫ t

t−s

v(x, λ) dλ.

For our purposes, it will be convenient to work with (1.2) in place of
(1.1). We assume that the fluid has been at rest prior to time t = 0
and that an initial velocity is prescribed at t = 0+. We treat in detail
the case when B = [0, 1] and nonslip boundary conditions are imposed:

vt(x, t) =
∫ ∞

0

a′(s)g(vt
x(x, s))x ds + f(x, t), x ∈ [0, 1], t ≥ 0,

(1.4)1

v(0, t) = v(1, t) = 0, t ≥ 0,(1.4)2
v(x, τ) = 0 x ∈ [0, 1], τ < 0.(1.4)3
v(x, 0) = v0(x), x ∈ [0, 1].(1.4)4

We assume that the constitutive functions a and g satisfy

a, a′, a′′ ∈ L1(0,∞), a is strongly positive,(1.5)

g ∈ C3(R), g is odd, ∃ γ > 0 such that g′(ξ) ≤ − γ ∀ ξ ∈ R.
(1.6)

The derivatives appearing in (1.5) and throughout the remainder of the
paper should be interpreted in the sense of distributions. The definition
of a strongly positive kernel is given in the next section. For now, we
note that (1.5) implies

(1.7) a ∈ C1[0,∞), a(0) > 0, a′(0) < 0;

moreover, if a satisfies

(1.8) a ∈ C2[0,∞), a ≥ 0, a′ ≤ 0, a′′ ≥ 0, a′(0) < 0,
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then a is strongly positive. Regarding the smoothness of v0 and f , we
require

(1.9) v0 ∈ H2(0, 1), i.e., v0, v
′
0, v

′′
0 ∈ L2(0, 1),

(1.10)
f, fx, ft ∈ Cb([0,∞); L2(0, 1)) ∩ L2([0,∞); L2(0, 1)),

ftt ∈ L2([0,∞); L2(0, 1)),

where Cb([0,∞); L2(0, 1)) denotes the set of all w : [0, 1] × [0,∞) → R
such that the mapping t �→ w(·, t) is bounded and continuous from
[0,∞) to L2(0, 1). We also assume that v0 and f are compatible with
the boundary conditions in the sense that

(1.11) v0(0) = v0(1) = f(0, 0) = f(1, 0) = 0.

Assumptions (1.5) and (1.6) ensure that equation (1.4)1 is of hyper-
bolic type and that the memory has a dissipative effect. However, we
cannot expect (1.4) to have a globally defined smooth solution unless
some restrictions are placed on the “sizes” of v0 and f . (Compare with
Coleman and Gurtin [3] who show that, in shearing motions of a gen-
eral nonlinear viscoelastic fluid, acceleration waves of small amplitude
decay, but waves of large amplitude can explode in finite time.)

To “measure” v0 and f we define

V0(v0) :=
∫ 1

0

{v0(x)2 + v′0(x)2 + v′′0 (x)2} dx

(1.12)

F (f) := sup
t≥0

∫ 1

0

{f2 + f2
x + f2

t }(x, t) dx

+
∫ ∞

0

∫ 1

0

{f2 + f2
x + f2

t + f2
tt}(x, t) dx dt.(1.13)

There are some superfluous terms in (1.12) and (1.13) that can be
eliminated because of Poincaré’s inequality and the Sobolev embedding
theorem. However, for our proof of global existence, it is convenient to
define V0 and F as above.
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We shall not obtain a time-independent bound for vt
x. Consequently,

for technical reasons, we need to make an assumption concerning the
rate of growth of g at infinity relative to the rate of decay of a. Precisely,
we assume that there are constants K > 0 and k > 1 such that

(1.14) |g(j)(ξ) − g(j)(0)| ≤ K(|ξ| + |ξ|k), j = 1, 2, 3, ∀ ξ ∈ R,

and

(1.15)
∫ ∞

0

|a′(z)|z k
2 +1 dz,

∫ ∞

0

|a′′(z)|z k
2 dz < ∞.

THEOREM 1.1. Assume that (1.5), (1.6), (1.14) and (1.15) hold. Then
there is a number δ > 0 such that, for every v0 and f satisfying (1.9),
(1.10), (1.11) and

(1.16) V0(v0) + F (f) ≤ δ,

the problem (1.4) has a unique solution v with
(1.17)

v, vx, vt, vxx, vxt, vtt ∈ Cb([0,∞); L2(0, 1)) ∩ L2([0,∞); L2(0, 1)).

REMARK 1.1. It follows from (1.17) and standard embedding theorems
that v ∈ C1([0, 1] × [0,∞)) and v, vx, vt → 0 uniformly on [0, 1] as
t → ∞.

A similar theorem holds when B = R, i.e., for the problem

vt(x, t) =
∫ ∞

0

a′(s)g(vt
x(x, s))x ds + f(x, t), x ∈ R, t ≥ 0,

(1.18)1

v(x, τ) = 0, x ∈ R, τ < 0,(1.18)2
v(x, 0) = v0(x), x ∈ R.(1.18)3

In place of (1.9), (1.10) and (1.11), we assume that

(1.19) v0 ∈ H2(R),
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(1.20)
f, fx, ft ∈ Cb([0,∞); L2(R)),
fx, ft, ftt ∈ L2([0,∞); L2(R)),
f ∈ L1([0,∞); L2(R)),

and we use

V ∗
0 (v0) :=

∫ ∞

−∞
{v0(x)2 + v′0(x)2 + v′′0 (x)2} dx,(1.21)

F ∗(f) : = sup
t≥0

∫ ∞

−∞
{f2 + f2

x + f2
t }(x, t) dx

+
∫ ∞

0

∫ ∞

−∞
{f2

x + f2
t + f2

tt}(x, t) dx dt(1.22)

+

(∫ ∞

0

(∫ ∞

−∞
f(x, t)2 dx

) 1
2

dt

)2

to measure the data.

THEOREM 1.2. Assume that (1.5), (1.6), (1.14) and (1.15) hold. Then
there is a number δ∗ > 0 such that, for every v0 and f satisfying (1.19),
(1.20) and

(1.23) V ∗
0 (v0) + F ∗(f) ≤ δ∗,

the problem (1.18) has a unique solution v with

(1.24)
v, vx, vt, vxx, vxt, vtt ∈ Cb([0,∞); L2(R)),
vx, vt, vxx, vxt, vtt ∈ L2([0,∞); L2(R)).

REMARK 1.2. It follows from (1.24) and standard embedding the-
orems that v ∈ C1(R × [0,∞)) and that v, vx, vt → 0 uniformly,
vx, vt → 0 in L2(R) as t → ∞.

Similar existence theorems for viscoelastic solids have been estab-
lished by various authors (cf., e.g., [5, 10] and the references cited
therein). (For solids, one generally can also obtain precise information
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on the behavior of the displacement as t → ∞.) Moreover, for non-
linear constitutive equations, several authors have shown that smooth
solutions can develop singularities in finite time if the data are too
large; such results have been obtained both for fluids and solids (cf.,
e.g., [10, 11]). In the theorems concerning formation of singularities
it is assumed that the kernel is smooth on [0,∞). We refer to the
paper of Engler [6] for some interesting results concerning global exis-
tence of weak solutions for equations with singular kernels and data of
unrestricted size.

The next section contains some preliminary material concerning
strong positivity of the kernel. In Section 3 we prove Theorem 1.1
and point out the modifications needed to prove Theorem 1.2.

2. Preliminaries. This section contains some preliminary material
concerning the kernel a. Since the notion of strong positivity plays an
important role in our analysis, we briefly recall a few basic concepts.
Let b ∈ L1

loc [0,∞) be given. We say that b is a kernel of positive type
if

(2.1)
∫ t

0

y(s)
∫ s

0

b(s − τ )y(τ ) dτ ds ≥ 0, ∀ t ≥ 0,

for every y ∈ C[0,∞); we say that b is of strongly positive type if there
exists ε > 0 such that the kernel t �→ b(t)− εe−t is of positive type. As
the terminology suggests, strong positivity of b implies positivity of b.

The above definitions generally are not easy to check directly. We
note that if

(2.2) b ∈ C2[0,∞), b ≥ 0, b′ ≤ 0, b′′ ≥ 0, b′ �≡ 0,

then b is strongly positive (cf., e.g., Corollary 2.2 of [9]). Strong
positivity does not imply any global sign conditions (e.g., e−t cost is
strongly positive). However, if a strongly positive function is sufficiently
regular, then statements can be made regarding its pointwise behavior
near zero. In particular, (1.5) implies

(2.3) a(0) > 0, a′(0) < 0.
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For each T > 0 and w ∈ C([0, T ]; L2(0, 1)), let us put
(2.4)

Q(w, t, a) =
∫ t

0

∫ 1

0

w(x, s)
∫ s

0

a(s− τ )w(x, τ) dτ dx ds ∀ t ∈ [0, T ].

Strong positivity of a implies some very useful estimates of coercive type
for Q(w, t, a). Our first lemma, which was established by Brandon (cf.
Lemma 2.4 of [2]), generalizes an inequality that was used by Dafermos
and Nohel [5] to obtain global estimates for a one-dimensional nonlinear
viscoelastic solid. The basic idea is that a time-independent bound for
Q(w, t, a) + Q(wt, t, a) yields a time-independent bound for

∫ 1

0

w(x, t)2 dx +
∫ t

0

∫ 1

0

w(x, s)2 dx ds.

For technical reasons, we use difference operators

(2.5) (Δhw)(x, t) := w(x, t + h) − w(x, t)

in place of derivatives.

LEMMA 2.1. Assume that (1.5) holds. Then there is a constant L > 0
such that, for every T > 0 and every w ∈ C([0, T ]; L2(0, 1)), we have
(2.6)∫ 1

0

w(x, t)2 dx +
∫ t

0

∫ 1

0

w(x, s)2 dx ds

≤ L

{∫ 1

0

w(x, 0)2 dx + Q(w, t, a) + lim inf
h↓0

1
h2

Q(Δhw, t, a)
}

∀ t ∈ [0, T ].

Our next lemma is due to Staffans (cf. Lemma 4.2 of [12]).

LEMMA 2.2. If a satisfies (1.5), then, for every T > 0 and every
w ∈ C([0, T ]; L2(0, 1)), we have

(2.7)
∫ 1

0

(∫ t

0

a(t− τ )w(x, τ) dτ

)2

dx ≤ 2a(0)Q(w, t, a) ∀ t ∈ [0, T ].
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Lemmas 2.1 and 2.2 will be used to obtain a priori bounds for the
(local) solution v of (1.4) directly from energy integrals. We shall need
an additional bound that can be obtained by expressing vxx in terms
of vtt through an inverse Volterra operator.

If (1.5) holds, then, for each h ∈ L1
loc [0,∞), the Volterra equation

(2.8) a(0)y(t) +
∫ t

0

a′(t − τ )y(τ ) dτ = h(t), t ≥ 0,

has a unique solution y ∈ L1
loc [0,∞); the solution can be expressed in

the form

(2.9) y(t) =
1

a(0)

(
h(t) +

∫ t

0

r(t − τ ) h(τ ) dτ

)
,

where r is the resolvent kernel associated with (2.8), i.e., the unique
solution of

(2.10) a(0)r(t) +
∫ t

0

a′(t − τ )r(τ ) dτ = − a′(t).

It follows from the Paley-Wiener theorem that r �∈ L1(0,∞). However,
we do have the following result.

LEMMA 2.3. Assume that (1.5) holds and let r be the resolvent kernel
associated with (2.8), i.e., the solution of (2.10). Then r is locally
absolutely continuous on [0,∞) and r′ ∈ L1(0,∞).

See, for example, Lemma 2.3 of [2] for a proof. (In [2] it is also
assumed that a′′′ ∈ L1(0,∞). However, this assumption is not needed
for the proof of Lemma 2.3.)

REMARK 2.1. For a viscoelastic solid the analog of equation (2.8)
has a resolvent kernel that belongs to L1(0,∞). Nonintegrability of
the resolvent kernel is one of the key reasons why it is generally more
difficult to obtain estimates for a viscoelastic fluid than for a viscoelastic
solid.
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REMARK 2.2. Lemmas 2.1 and 2.2 remain valid if the spatial interval
[0, 1] is replaced by (−∞,∞) throughout.

3. Proof of Theorem 1.1. Our proof is based on essentially
the same line of argument as the one employed in Section 3 of [2].
Therefore, some of the steps that are virtually identical will not be
repeated here.

The local existence of a smooth solution can be established by a
routine contraction-mapping argument. The relevant result is recorded
below without proof. We refer the reader to Chapter III of [10] and
Lemma 2.1 of [2] for proofs of similar results.

PROPOSITION. Assume that (1.5), (1.6), (1.9) (1.11), (1.14) and
(1.15) hold. Then the initial-value problem (1.4) has a unique solution
v, defined on a maximal time interval [0, T0), T0 > 0, satisfying

(3.1) v, vx, vt, vxx, vxt, vtt ∈ C([0, T0); L2(0, 1)).

Moreover, if

(3.2) sup
t∈[0,T0)

∫ 1

0

(v2 + v2
x + v2

t + v2
xx + v2

xt + v2
tt)(x, t) dx < ∞,

then T0 = ∞.

In order to prove that (1.4) has a solution which is defined globally in
time, it suffices to show that if (1.16) holds for δ > 0 sufficiently small,
then the local solution satisfies (3.2). For this purpose it is convenient
to introduce the quantities

(3.3)

E (t) := sup
s∈[0,t]

∫ 1

0

(v2 + v2
x + v2

t + v2
xx + v2

xt + v2
tt)(x, s) dx

+
∫ t

0

∫ 1

0

(v2 + v2
x + v2

t + v2
xx + v2

xt + v2
tt)(x, s) dx ds,

t ∈ [0, T0)
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and
(3.4)

ν(t) := sup
x∈[0,1]
s∈[0,t]

(v2 + v2
x+v2

t )
1
2 (x, t) +

(∫ t

0

( sup
x∈[0,1]

|vx(x, s)|)2 ds

) 1
2

,

t ∈ [0, T0).

It is also convenient to rewrite (1.4)1 as

(3.5)

vt(x, t) + g′(0)
∫ t

0

a(t − s)vxx(x, s) ds

= f(x, t) +
∫ t

0

vxx(x, s)
∫ ∞

t−s

a′(z)[g′(vt
x(x, z)) − g′(0)] dz ds,

x ∈ [0, 1], t ∈ [0, T0).

Our aim is to establish inequality (3.28) below; to do so we use energy
methods. Most of the estimates are derived from energy integrals;
some additional ones are obtained from equation (3.5) by inverting
the Volterra operator. In the energy integrals, the left-hand side of
(3.5) yields positive definite terms, and the right-hand side leads to
expressions which are under control near equilibrium.

In the calculations below we frequently use the inequalities

(3.6)

(
n∑

i=1

Ai

)2

≤ n
n∑

i=1

A2
i , A1, . . . , An ∈ R,

(3.7) |AB| ≤ A2

4λ
+ λB2, A, B ∈ R, λ > 0,

and

(3.8) ||A ∗ B||LP ((0,T );L2(0,1)) ≤ ||A||L1(0,∞)||B||LP ((0,T );L2(0,1))

for every T > 0, A ∈ L1(0,∞) and B ∈ LP ((0, T ); L2(0, 1)), where
p ∈ [1,∞] and ∗ denotes convolution in the time variable. We use Γ
to denote a (possibly large) positive generic constant, independent of
v0, f and T0.
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The first energy integral is obtained by multiplying (3.5) by v and
integrating over [0, 1] × [0, t], t ∈ [0, T0). After integration by parts, we
obtain the identity

(3.9)

1
2

∫ 1

0

v2(x, t) dx − g′(0)Q(vx, t, a)

=
1
2

∫ 1

0

v2
0(x) dx +

∫ t

0

∫ 1

0

v(x, s)f(x, s) dx ds

+
∫ t

0

∫ 1

0

v(x, s)
∫ s

0

vxx(x, y)
∫ ∞

s−y

a′(z)[g′(vs
x(x, z))

− g′(0)] dz dy dx ds, t ∈ [0, T0).

We now differentiate (3.5) with respect to t to obtain
(3.10)

vtt(x, t) + g′(0)a(0)vxx(x, t) + g′(0)
∫ t

0

a′(t − s)vxx(x, s) ds

= ft(x, t) +
∂

∂t

{∫ t

0

vxx(x, s)
∫ ∞

t−s

a′(z)[g′(vt
x(x, z)) − g′(0)] dz ds

}
,

x ∈ [0, 1], t ∈ [0, T0).

Multiplying (3.10) by vt and then integrating over [0, 1] × [0, t], t ∈
[0, T0), obtains the relation

(3.11)

1
2

∫ 1

0

v2
t (x, t) dx − g′(0)Q(vxt, t, a)

=
1
2

∫ 1

0

v2
t (x, 0) dx − g′(0)

∫ t

0

∫ 1

0

vt(x, s)a(s)v′′0 (x) dx ds

+
∫ t

0

∫ 1

0

vt(x, s)ft(x, s) dx ds

+
∫ t

0

∫ 1

0

vt(x, s)
∂

∂s

{∫ s

0

vxx(x, y)
∫ ∞

s−y

a′(z)[g′(vs
x(x, z))

− g′(0)] dz dy

}
dx ds, t ∈ [0, T0).

Observe that

(3.12) vt(x, 0) = f(x, 0), x ∈ [0, 1],

by virtue of (3.5).
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We next apply the forward difference operator Δh to (3.10). We
multiply the resulting equation by Δhvt and integrate over [0, 1] ×
[0, t], t ∈ [0, T0). We integrate several terms by parts, divide both sides
by h2, and let h ↓ 0 to get

1
2

∫ 1

0

v2
tt(x, t) dx − g′(0) lim

h↓0
1
h2

Q(Δhvxt, t, a)

(3.13)

=
1
2

∫ 1

0

v2
tt(x, 0) dx − g′(0)

∫ t

0

∫ 1

0

vtt(x, s)a′(s)v′′0 (x) dx ds

− g′(0)
∫ t

0

∫ 1

0

vxt(x, s)a′(s)vxt(x, 0) dx ds

+ g′(0)
∫ 1

0

a(t)vxt(x, t)vxt(x, 0) dx

− g′(0)
∫ 1

0

a(0)v2
xt(x, 0) dx +

∫ t

0

∫ 1

0

vtt(x, s)ftt(x, s) dx ds

+
∫ t

0

∫ 1

0

vtt(x, s)
∫ s

0

vxx(x, y)
∫ ∞

s−y

a′(z)
∂

∂s
{g′′(vs

x(x, z))}[vx(x, s)

− vx(x, s − z)] dz dy dx ds

+ 2
∫ t

0

∫ 1

0

vtt(x, s)
∫ ∞

0

a′(z)
∂

∂s
{g′(vs

x(x, z))}[vxx(x, s)

− vxx(x, s − z)] dz dx ds

− 1
2

∫ 1

0

v2
xt(x, t)

∫ ∞

0

a′(s)[g′(vt
x(x, s) − g′(0))] ds dx

+
1
2

∫ t

0

∫ 1

0

v2
xt(x, s)

∂

∂s

{∫ ∞

0

a′(z)[g′(vs
x(x, z)) − g′(0)] dz

}
dx ds

+
∫ 1

0

vxt(x, t)
∫ t

0

a′(s)[g′(vt
x(x, s)) − g′(0)]vxt(x, t − s) ds dx

−
∫ t

0

∫ 1

0

vxt(x, s)
∫ s

0

a′′(z)[g′(vs
x(x, z))

− g′(0)]vxt(x, s − z) dz dx ds
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−
∫ t

0

∫ 1

0

vxt(x, s)vx(x, s)
∫ s

0

a′(z)g′′(vs
x(x, z))

· vxt(x, s − z) dz dx ds, t ∈ [0, T0).

The initial values of vtt and vxt can be expressed in terms of f and v0.
In particular, (3.10) and (3.12) imply

vtt(x, 0) = ft(x, 0) − g′(0)a(0)v′′0 (x), x ∈ [0, 1],(3.14)

and

vxt(x, 0) = fx(x, 0), x ∈ [0, 1].(3.15)

We note that limh↓0(1/h2)Q(Δhvxt, t, a) exists for t ∈ [0, T0), since
the limit of each of the other terms in the derivation of (3.13) exists.
Furthermore, the limit under consideration is nonnegative.

We add (3.9), (3.11) and (3.13) and use Lemma 2.2 to obtain a lower
bound for the left-hand side. After making some routine estimations
we arrive at
(3.16)∫ 1

0

(v2 + v2
x + v2

t + v2
xt + v2

tt)(x, t) dx +
∫ t

0

∫ 1

0

(v2
x + v2

xt)(x, s) dx ds

≤ Γ(V0 + F ) + Γ(
√

V0 +
√

F )
√
E (t) + Γ(ν(t) + νk+2(t))E (t),

∀ t ∈ [0, T0).

We will now give an indication of how (3.16) was derived. We show the
details of the estimation of several terms that arise in (3.9), (3.11) and
(3.13). Many of the terms can be estimated in a simple way, e.g.,

(3.17)

∣∣∣∣
∫ t

0

∫ 1

0

vt(x, s)ft(x, s) dx ds

∣∣∣∣
≤
(∫ t

0

∫ 1

0

v2
t (x, s) dx ds

) 1
2
(∫ t

0

∫ 1

0

f2
t (x, s) dx ds

) 1
2

≤ Γ
√

F
√
E (t), ∀ t ∈ [0, T0)
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and
(3.18)∣∣∣∣g′(0)

∫ t

0

∫ 1

0

vtt(x, s)a′(s)v′′0 (x) dx ds

∣∣∣∣
≤ Γ

(∫ t

0

∫ 1

0

v2
tt(x, s) dx ds

) 1
2
(∫ t

0

a′(s)2 ds

∫ 1

0

v′′0 (x)2 dx

) 1
2

≤ Γ
√

V0

√
E (t), ∀ t ∈ [0, T0).

The following two estimations are much more involved than (3.17) and
(3.18). Recall here that g′′(0) = 0. From (3.13), we consider

∣∣∣∣
∫ t

0

∫ 1

0

vxt(x, s)vx(x, s)
∫ s

0

a′(z)g′′(vs
x(x, z))vxt(x, s − z) dz dx ds

∣∣∣∣
(3.19)

≤ sup
x∈[0,1]
s∈[0,t]

|vx(x, s)|
∫ t

0

∫ 1

0

|vxt(x, s)|
∫ s

0

|a′(z)| · |g′′(vs
x(x, z)) − g′′(0)|

· |vxt(x, s − z)| dz dx ds

≤ ν(t)
∫ t

0

∫ 1

0

|vxt(x, s)|
∫ s

0

|a′(z)|K[|vs
x(x, z)| + |vs

x(x, z)|k]

· |vxt(x, s − z)| dz dx ds

≤ Γν(t)
∫ t

0

∫ 1

0

|vxt(x, s)|
∫ s

0

|a′(z)|
[√

z

(∫ s

s−z

v2
x(x, ξ) dξ

)1
2

+ (
√

z)k

(∫ s

s−z

v2
x(x, ξ) dξ

)k
2
]
|vxt(x, s − z)| dz dx ds

≤ Γν(t)
(∫ t

0

∫ 1

0

v2
xt(x, s) dx ds

) 1
2
(∫ t

0

∫ 1

0

(∫ s

0

|a′(z)|[√z ν(t)

+ (
√

z)kνk(t)]|vxt(x, s − z)| dz

)2

dx ds

) 1
2
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≤ Γν(t)
√
E (t)

(∫ t

0

∫ 1

0

v2
xt(x, s) dx ds

) 1
2
{

ν(t)
∫ ∞

0

|a′(z)|√z dz

+ νk(t)
∫ ∞

0

|a′(z)|(√z)k dz

}
≤ Γν(t)(ν(t) + νk(t))E (t)

= Γ(ν2(t) + νk+1(t))E (t), ∀ t ∈ [0, T0).

The following expression, arising after differentiation with respect to s,
is carried out in the last term of (3.11):

∣∣∣∣
∫ t

0

∫ 1

0

vt(x, s)
∫ s

0

vxx(x, y)
∫ ∞

s−y

a′(z)g′′(vs
x(x, z))vx(x, s−z) dz dy dx ds

∣∣∣∣
(3.20)

≤ sup
x∈[0,1]
s∈[0,t]

|vx(x, s)|
∫ t

0

∫ 1

0

|vt(x, s)|
∫ s

0

|vxx(x, y)|
∫ ∞

s−y

|a′(z)|

· |g′′(vs
x(x, z)) − g′′(0)|dz dy dx ds

≤ ν(t)
∫ t

0

∫ 1

0

|vt(x, s)|
∫ s

0

|vxx(x, y)|
∫ ∞

s−y

|a′(z)|K[|vs
x(x, z)|

+ |vs
x(x, z)|k] dz dy dx ds

≤ Γν(t)
(∫ t

0

∫ 1

0

v2
t (x, s) dx ds

) 1
2

·
(∫ t

0

∫ 1

0

(∫ s

0

|vxx(x, y)|
∫ ∞

s−y

|a′(z)|[√z ν(t)

+ (
√

z)kνk(t)] dz dy

)2

dx ds

) 1
2

≤ Γ(ν2(t) + νk+1(t))
√
E (t)

(∫ t

0

∫ 1

0

v2
xx(x, s) dx ds

) 1
2

∫ ∞

0

∫ ∞

s

|a′(z)|(√z + (
√

z)k) dz ds

≤ Γ(ν2(t) + νk+1(t))E (t), ∀ t ∈ [0, T0).

In the derivation of (3.20) we have used (3.8) with A(s) :=
∫∞

s
|a′(z)|·

(
√

z + (
√

z)k/2) dz. The estimations (3.17) (3.20) are typical of the
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calculations necessary to obtain (3.16). All the terms appearing on the
right-hand side of (3.9), (3.11) and (3.13) can be estimated in the same
spirit as (3.17), (3.18), (3.19) or (3.20).

A temporal L2 bound for vt follows from Poincaré’s inequality and
(3.16). However, since Poincaré’s inequality cannot be applied in the
proof of Theorem 1.2, we shall derive an additional energy integral.
We multiply (3.5) by vxx and integrate over [0, 1] × [0, t], t ∈ [0, T0), to
obtain

(3.21)

1
2

∫ 1

0

v2
x(x, t) dx − g′(0)Q(vxx, t, a)

=
1
2

∫ 1

0

v′0(x)2 dx +
∫ t

0

∫ 1

0

vxx(x, s)f(x, s) dx ds

+
∫ t

0

∫ 1

0

vxx(x, s)
∫ s

0

vxx(x, y)
∫ ∞

s−y

a′(z)[g′(vs
x(x, z))

− g′(0)] dz dy dx ds, t ∈ [0, T0),

which implies
(3.22)

Q(vxx, t, a) ≤ ΓV0 + Γ
√

F
√
E (t) + Γ(ν(t) + νk(t))E (t), ∀ t ∈ [0, T0).

We now square (3.5) and integrate over [0, 1] × [0, t], t ∈ [0, T0). The
terms resulting from the right-hand side of (3.5) can be controlled near
equilibrium; Lemma 2.1 and (3.22) can be employed to estimate the
square of the convolution term from the left-hand side of (3.5). Thus
we have

(3.23)∫ t

0

∫ 1

0

v2
t (x, s) dx ds

≤ Γ(V0 + F ) + Γ
√

F
√
E (t) + Γ(ν(t) + ν2k(t))E (t), ∀ t ∈ [0, T0).

If we set G equal to the right-hand side of (3.5), we can invert (3.10)
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to express vxx in terms of vt, vtt, G and Gt (see (2.8) et seq.), i.e.,

(3.24)

g′(0)a(0)vxx(x, t)

= Gt(x, t)−vtt(x, t)− a′(0)
a(0)

(G(x, t)−vt(x, t))

+
∫ t

0

r′(t−s)(G(x, s)−vt(x, s)) ds, x ∈ [0, 1], t ∈ [0, T0).

We now square (3.24) and integrate over [0, 1]. Using (3.16) and Lemma
2.3 we arrive at
(3.25)∫ 1

0

v2
xx(x, t) dx

≤ Γ(V0+F ) + Γ(
√

V0+
√

F )
√
E (t) + Γ(ν(t) + ν2k+2(t))E (t),

∀ t ∈ [0, T0).

We next multiply (3.24) by vtt and integrate over [0, 1]×[0, t], t ∈ [0, T0)
to obtain
(3.26)∫ t

0

∫ 1

0

v2
tt(x, s) dx ds

≤ Γ(V0+F ) + Γ(
√

V0+
√

F )
√
E (t) + Γ(ν(t) + νk+2(t))E (t),

∀ t ∈ [0, T0).

Here, we made crucial use of Lemma 2.3 and inequality (3.7). We
again square (3.24), but now we integrate over [0, 1] × [0, t], t ∈ [0, T0),
to establish a temporal L2 estimate for vxx. We employ (3.16), (3.23),
(3.26) and Lemma 2.3 to get

(3.27)

∫ t

0

∫ 1

0

v2
xx(x, s) dx ds

≤ Γ(V0 + F ) + Γ(
√

V0 +
√

F )
√
E (t)

+ Γ(ν(t) + ν2k+2(t))E (t), ∀ t ∈ [0, T0).

Therefore, by combining (3.16), (3.23), (3.25), (3.26), (3.27) and using
Poincaré’s inequality to obtain a temporal L2 bound for v, we arrive at

(3.28)
E (t) ≤ Γ(V0 + F ) + Γ(

√
V0 +

√
F )
√
E (t)

+ Γ(ν(t) + ν2k+2(t))E (t), ∀ t ∈ [0, T0).
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It follows from (3.28) and (3.7) (with λ sufficiently small) that

(3.29) E (t) ≤ Γ(V0 + F ) + Γ(ν(t) + ν2k+2(t))E (t), ∀ t ∈ [0, T0),

where Γ denotes a fixed positive constant which is independent of v0, f
and T0. We choose E , δ > 0, such that

(3.30) Γ(
√

2E + (
√

2E )2k+2) ≤ 1
4
, Γδ ≤ 1

4
E .

Suppose that (1.16) holds for the above choice of δ. By the Sobolev
embedding theorem,

(3.31) ν(t) ≤
√

2E (t), ∀ t ∈ [0, T0).

Hence (3.29) implies that, for any t ∈ [0, T0) with E (t) ≤ E , we actually
have E (t) ≤ E /2; thus, by continuity, if E (0) ≤ E /2, then

(3.32) E (t) ≤ 1
2
E , ∀ t ∈ [0, T0).

Clearly, one can choose a smaller δ > 0 (if necessary) so that (1.16)
yields E (0) ≤ E /2. Therefore, for δ > 0 sufficiently small, (3.32) holds
and T0 = ∞. Furthermore, (1.17) follows directly from (3.32).

The proof of Theorem 1.1 is now complete.

The proof of Theorem 1.2 is almost identical. The only significant
difference is that we do not obtain a bound for v in L2([0,∞); L2(R))
because Poincaré’s inequality fails on unbounded spatial intervals.
Since we do obtain a bound for v ∈ L∞([0,∞); L2(R)), the assumption
f ∈ L1([0,∞); L2(R)) allows us to control the term

∫ t

0

∫∞
−∞ fv. The

last term on the right-hand side of (3.9) also requires special attention.
To treat this integral we integrate by parts with respect to z and then
with respect to x.
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