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DISSIPATIVE BOUNDARY CONDITIONS FOR
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To John Nohel for his sixty-fifth birthday

1. Introduction. There has been a great deal of work in recent
years on evolution equations which contain memory terms. The most
interesting situation occurs for wave propagation in elastic materials.
One starts with a model which conserves energy and then modifies it
by including a memory term which produces damping (viscoelasticity).
John Nohel has been a major figure in these studies and the results are
summarized in his book with Hrusa and Renardy [7].

The present paper is concerned with a closely related but slightly
different idea. Here we maintain an energy conserving equation but
produce damping through boundary conditions. Let us describe the
problem and then we will indicate why it is of interest.

We deal with one-dimensional longitudinal motions of a bar which has
uniform cross section but may be inhomogeneous. The basic balance
law, in the absence of body forces, is

(1.1) ρutt = σx,

where ρ is density, u displacement and σ stress. The specific problem
we consider is this:

(P (ϕ, ψ))
ρ(x)utt(x, t) = (μ(x)ux(x, t))x, 0 < x < L,

u(x, 0) ≡ ut(x, 0) ≡ 0
u(0, t) = ϕ(t), μ(L)ux(L, t) = F [ut(L, ·)] + ψ(t).

Here, ϕ and ψ are given and F denotes a functional of the history

ut(L, τ) = u(L, t− τ ).
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The differential equation in (P (ϕ, ψ)) is energy conserving. We seek
conditions on F so that the boundary conditions at x = L produce
dissipation, that is damping. This means, roughly, that if ϕ and ψ
tend to zero as t tends to infinity, so should u. (See Remark 2.3.)
These ideas are also described in [2] and [8].

Let us motivate the above problem. Suppose the bar is actually semi-
infinite, 0 < x <∞, but is inhomogeneous with σ(x, t) = μ(x)ux(x, t).
It starts from rest (for ease of exposition) with a prescribed displace-
ment at the left end, x = 0. The total problem is then like (P (ϕ, ψ))
on 0 < x. There is no second boundary condition but the solution
needs to be outgoing. Suppose we are only interested in a finite inter-
val 0 < x < L. Then one could (in theory) solve the equation on x > L
and obtain a relation between the stress at x = L and the displacement
at x = L. This relation will have the history form in (P (ϕ, ψ)). We
carry out this calculation in Section 4. Since energy is flowing off to
infinity we expect to have damping on (0, L), and this can come only
from the boundary condition at x = L.

A second idea is this. Suppose the bar is composite with an abrupt
change at x = L. Let σ(x, t) = μ(x)ux(x, t), 0 < x < L, and suppose
the portion x > L is homogeneous but viscoelastic. Once again one
could solve on x > L to obtain a relation between σ(L, t) and the
history ut(L, ·). Since both u and σ are continuous across x = L this
yields a problem of the form (P (ϕ, ψ)). This case is also treated in
Section 4.

The final notion is what really prompted this study, the idea of
approximate boundary conditions. This is a numerical device. Even
if one knew what the functional F was, (P (ϕ, ψ)) would be difficult
to handle numerically because of the time non-locality. What we seek
are approximate functionals which are more localized in time to use
instead of F . This idea has been pursued for wave scattering problems
in exterior regions by many authors, starting with Engquist and Majda
[4, 5].

In [1] the authors studied the application of this method to the semi-
infinite bar problem. It serves as a very simple model problem. The
main difficulty is to devise approximate conditions which preserve the
dissipativity. We discuss this in Section 5, examining some possible
approximations and giving some partial results on their validity.
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In Section 2 we discuss dissipativity of the boundary function F . We
first give conditions in the time domain and show how they produce
damping. In Section 3 we give alternate conditions in the frequency
domain. These are conditions which are familiar in viscoelastic theory,
and they are the ones most useful in the applications.

2. Dissipative boundary conditions. The functionals F in
(P (ϕ, ψ)) will be assumed to have the form

(2.1) F [ζt] = − d

dt
(αζ(t) + (k ∗ ζ)(t)),

where k ∗ ζ denotes convolution. We make the following hypotheses:

(H1) α > 0, k = k∞ +K, k∞ ≥ 0, K ∈ L1(0,∞).

There is a γ > 0 such that, for any T > 0 and any ζ,

(H2)
∫ T

0

(αζ(t) + (k ∗ ζ)(t))ζ(t) dt ≥ γ

∫ T

0

ζ(t)2 dt.

Hypotheses (H1) and (H2) yield the following estimate if ζ(0) = 0:

(2.2)

∫ T

0

ζ̇(t)F [ζt] dt = −α

∫ T

0

ζ̇(t)2 dt−
∫ T

0

k∞ζ̇(t)ζ(t) dt

−
∫ T

0

ζ̇(t)(k ∗ ζ̇)(t) dt

≤ − γ

∫ T

0

ζ̇(t)2 dt− 1
2
k∞ζ2(T ).

For technical convenience we will assume that the functions ϕ and
ψ have derivatives of all orders, continuous on t ≥ 0, and vanishing
when t = 0. It is easier to state our results if we make a preliminary
transformation. Let v0(x) = (1 − x/L)2 and, for any solution u of
(P (ϕ, ψ)), put w = u− ϕv0. Then w satisfies the problem

(P (f, ψ))
ρwtt = (μwx)x + f, 0 < x < L,

w(x, 0) = wt(x, 0) = 0
w(0, t) = 0, μ(L)wx(L, t) = F [wt(L, ·)] + ψ(t),
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where

(2.3) f = ϕ(μv′0)
′ − ρϕ̈v0.

We will need the following hypotheses:

(H3)k

∂jf

∂tj
∈ L1((0,∞) : L2(0, L)) ∩ L2((0,∞) : L2(0, L))

ψ(j) ∈ L2(0,∞), j ≤ k.

For (f, ψ) satisfying (H3)k, we set

(2.4)

||(f, ψ)||2k =
k∑

j=0

{∣∣∣∣
∣∣∣∣∂jf

∂tj

∣∣∣∣
∣∣∣∣
2

L1((0,∞):L2(0,L))

+
∣∣∣∣
∣∣∣∣∂jf

∂tj

∣∣∣∣
∣∣∣∣
2

L2((0,∞):L2(0,L)

+ ||ψ(j)||2L2(0,∞)

}
.

For the functions w, we introduce the norms

(2.5)
E k[w](t) =

k+1∑
j=0

∣∣∣∣
∣∣∣∣∂jw

∂tj

∣∣∣∣
∣∣∣∣
2

L2(0,L)

+
k∑

j=0

∣∣∣∣
∣∣∣∣∂jw

∂tj

∣∣∣∣
∣∣∣∣
2

H1(0,L)

E k

T
[w] =

∫ T

0

(E k[w](t))2 dt.

All of our theorems hold under hypotheses (H1) and (H2). They
are stated for solutions w of (P (f, ψ)) but, from (2.3), they are easily
translated into theorems about solutions u of (P (ϕ, ψ)). The first two
results are energy estimates:

THEOREM 2.1. There is a constant M > 0 such that, for any (f, ψ)
satisfying (H3)k,

(2.6)

E k[w](T ) +
k∑

j=0

∣∣∣∣
∣∣∣∣∂jw

∂tj
(L, ·)

∣∣∣∣
∣∣∣∣
2

L2(0,T )

≤M ||(f, ψ)||2k, ∀T ∈ (0,∞).
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THEOREM 2.2. If k∞ = 0, there is a constant N > 0 such that, for
any (f, ϕ) satisfying (H3)k,

(2.7) E k
T [w] ≤ N ||(f, ψ)||2k ∀T ∈ (0,∞).

From these theorems we obtain immediately two decay results:

THEOREM 2.3. For any (f, ψ) satisfying (H3)1,

(2.8) wt(L, t) → 0 as t→ ∞.

THEOREM 2.4. If k∞ = 0 then, for any (f, ψ) satisfying (H3)1,

(2.9) w(x, t) → 0 as t→ ∞ ∀x ∈ (0, L).

Proof of Theorem 2.3. By Theorem 2.1, wt(L, t) and wtt(L, t)
both belong to L2(0,∞) from which (2.8) follows.

Proof of Theorem 2.4. By Theorem 2.2, the maps t →
||w(·, t)||H1(0,L) and t → ||wt(·, t)||H1(0,L) are both in L2(0,∞). Hence
||w(·, t)||H1(0,L) → 0 as t→ ∞ and (2.9) follows since w(0, t) = 0.

REMARK 2.1. We are not sure of the status of decay of solutions
if k∞ > 0. Notice that, in this case, Theorem 2.3 says only that the
velocity at x = L goes to zero as t tends to infinity. In the examples of
Section 4 we will have k∞ = 0 so that we get the strong decay result
(2.9). When we deal with the approximate condition in Section 5,
however, it will not always be true that k∞ = 0. We comment further
there. We suspect there is decay even if k∞ �= 0.

REMARK 2.2. Theorem 2.4 admits an extension to the case of
approach to steady state. Suppose k∞ = 0 and consider P (ϕ, 0) when

(2.10) ϕ(t) = ϕ∞ + Φ(t).
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Let u(x) be the solution of the problem

(2.11)
(μu′)′ = 0, 0 < x < L,

u(0) = ϕ∞, μ(L)u′(L) = 0.

If u is the corresponding solution of P (ϕ, 0), put v = u− u. Then one
readily checks that v is a solution of P (Φ, ψ), where

(2.12) ψ(t) = F [ut] = − d

dt

( ∫ T

0

k(t− τ ) dτ
)
u(L) = −K(t)u(L).

It will be seen in Section 3 how to insure that k and k̈ are in L2(0,∞).
It is then easy to see that, if one suitably restricts Φ in (2.10), one can
apply Theorem 2.4 to conclude that v(x, t) → 0 as t→ ∞.

Proof of Theorem 2.1. We multiply the equation in (P (f, ψ)) by
wt and integrate by parts to obtain∫ L

0

[ρwtt − (μwx)x]wt dx =
∫ L

0

[ρwttwt dx+ μwxwxt] dx

− μ(L)wx(L, t)wt(L, t)

=
1
2
d

dt

{∫ L

0

(ρw2
t + μw2

x) dx
}

− μ(L)wt(L, t)(F [wt(L, ·)] + ψ(t))

=
∫ L

0

wtf dx.

Now integrate with respect to t from 0 to T and use (2.2):
(2.13)

1
2

∫ L

0

(ρw2
t (x, T ) + μw2

x(x, T )) dx+ γ

∫ T

0

w2
t (L, t) dt

≤μ(L)
∫ T

0

wt(L, t)ψ(t) dt+
∫ T

0

∫ L

0

wtf dx dt ≤ γ

2

∫ T

0

w2
t (L, t) dt

+
μ2(L)

2

∫ T

0

ψ2(t) dt

+
∫ T

0

( ∫ L

0

ρ

2
w2

t (x, t) dx
)1/2∫ T

0

( ∫ L

0

2f2(x, t)
ρ

dx

)1/2

dt.
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Put

ζ(t) =
1
2

∫ L

0

ρw2
t (x, t) dx, χ(t) =

( ∫ L

0

2 f2(x, t)
ρ

dx

)1/2

,

C =
μ2(L)

2

∫ T

0

ψ2(t) dt;

then (2.13) yields

(2.14) ζ(T ) ≤ γ

2

∫ T

0

w2
t (L, t) dt ≤ C +

∫ T

0

χ(t)ζ(t)1/2 dt.

From (2.14), we obtain

ζ(T ) +
γ

2

∫ T

0

w2
t (L, t) dt ≤ 2C +

1
2

∫ T

0

χ(t) dt,

and this yields (2.6) for k = 0.

In order to obtain the higher k estimates we simply differentiate the
problem (P (f, ψ)) with respect to t. The vanishing of the derivatives of
ϕ at t = 0 implies, by (2.3), that the t derivatives of f vanish at t = 0
and hence, by the differential equation in (P (f, ψ)), the vanishing of
the derivatives of w at t = 0. Since the derivatives of ψ also vanish at
t = 0 we have, by (2.1),

(
∂

∂t

)j

(F [wt(L, ·) + ψ(t)) = F [(wj(L, ·))t] + ψ(j)(t).

Thus ∂jw/∂tj is a solution of P (∂jf/∂tj , ψ(j)) and we can apply the
estimate (2.6) for k = 0, for j = 1, . . . , k, to obtain (2.6).

Proof of Theorem 2.2. Put

Z[w](t) =
∫ L

0

g(x)wx(x, t)wt(x, t) dx,
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where g is to be chosen, subject to g(0) = 0. We have
(2.15)

Ż[w](t) =
∫ L

0

[
gwtwtx +

g

ρμ
(μwx)ρwtt

]
dx

=
1
2

∫ L

0

g(w2
t )x dx+

∫ L

0

[
g

ρμ
(μwx)(μwx)x +

g

ρ
wxf

]
dx

=
1
2

∫ L

0

[
g(w2

t )x +
g

ρμ
((μwx)2)x +

2g
ρμ
μwxf

]
dx

=
1
2
g(L)w2

t (L, t) +
g(L)

ρ(L)μ(L)
(μ(L)wx(L, t))2

− 1
2

∫ L

0

g′w2
x dx− 1

2

∫ L

0

(
g

ρμ

)′
μw2

x dx+
∫ L

0

g

ρ
wxf dx.

When k∞ = 0, we have, by (2.1) and (H1),

(2.16)∫ T

0

(μ(L)wx(L, t))2 dt =
∫ T

0

(αwt(L, t) +Kwt(L, ·)(t) + ψ(t))2 dt

≤ C
{
α+ ||K||L1(0,∞)||wt(L, ·)||2L2(0,T )

+ ||ψ||2L2(0,T )

}
.

We have also, for any ε > 0,

(2.17)
∫ L

0

g

ρ
wx(x, t)f(x, t) dx ≤ ε||w(·, t)||2H1(0,L) +

1
4ε

||gf/ρ||2L2(0,L).

We choose g so that g′(x) > 0 and (g/(ρμ))′ (x) > 0 on 0 ≤ x ≤ L,
and we choose ε so small that

(2.18)
1
2

∫ L

0

(
g

ρμ

)′
μw2

x dx− ε||w(·, t)||2H1(0,L) ≥ δ||w(·, t)||2H1(0,L),

with δ > 0. Now integrate (2.13) from 0 to T and use (2.16) (2.18) to
obtain the estimate

(2.19)
Z[w](T ) + E T [w] ≤ C ′{α+ ||K||L1(0,∞)||wt(L, ·)||2L2(0,T )

+ ||ψ||2L2(0,T ) + ||f ||L2(0,T :L2(0,L))

}
.
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From Theorem 2.1 and the hypotheses on f , the right side of (2.19)
is bounded independently of T . We see also that Theorem 2.1 implies
that Z[w](T ) is similarly bounded. Hence we obtain (2.7) for k = 0.
Once again we can obtain the higher order estimates by successive
differentiation with respect to t.

REMARK 2.3. The use of the functional Z[w] was suggested by
Professor J. Lagnese.

3. Frequency domain methods. For any function ϕ we write
ϕ̂(s) = L [ϕ](s), s = ξ+ iη, for its Laplace transform whenever it exists.
We put Π = {s : ξ > 0}. The functions we study will have transforms
which belong to a space we call A. A = set of all functions ϕ̂ : Π → C
such that

(3.1)
ϕ̂ ∈ C(2)(Π), ϕ̂ analytic in Π, ϕ̂ real on η = 0,

ϕ̂(s) = ϕ0s
−1 + ϕ1s

−2 + 0(s−3), ϕ̂′(s) = −ϕ1s
−2 + 0(s−3)

ϕ̂′′(s) = 0(s−3) as s→ ∞.

LEMMA 3.1. Suppose ϕ satisfies the following conditions

ϕ ∈ C(2)[0,∞), tjϕ(k) ∈ L1(0,∞), j = 0, 1, 2, k = 0, 1, 2.

Then ϕ has a transform ϕ̂ ∈ A.

PROOF. We have ϕ̂(s) =
∫ ∞
0
e−stϕ(t) dt. This is well defined and

continuous in Π and is analytic in Π. We have

ϕ̂(s) = ϕ(0)s−1 + ϕ̇(0)s−2 + s−2

∫ ∞

0

e−stϕ̈(t) dt.

We have, further, ϕ̂(j)(s) =
∫ ∞
0
e−st(−1)jtjϕ(t) dt, and the estimates

in (3.1) follow.

LEMMA 3.2. Suppose ϕ̂ ∈ A and

(3.2) ϕ(t) = (2π)−1

∫ +∞

−∞
eiηtϕ̂(iη) dη.

Then ϕ ∈ C(1)[0,∞) ∩ L1(0,∞) with ϕ(0) = ϕ0, ϕ̇(0) = ϕ1.
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PROOF. Let χk(t) = tke−t. Then χ̂k(s) = (k− 1)!(s+1)−k. We then
have ϕ̂(s) = ϕ0χ̂0 + (ϕ1 − ϕ0)χ̂1 + ψ̂ where ψ̂(s) = 0(s−3). Then (3.2)
yields

ϕ(t) = ϕ0e
−t + (ϕ1 − ϕ0)te−t + ψ(t)

ψ(t) = (2π)−1

∫ +∞

−∞
eiηtψ̂(s) ds,

with ψ ∈ C1[0,∞). Thus ϕ ∈ C(1)[0,∞), ϕ(0) = ϕ0, ϕ̇(0) = ϕ1. Next
we integrate (3.2) twice by parts to obtain,

ψ(t) = − 1
2πt2

∫ +∞

−∞
eiηtϕ̂′′(iη) dη.

It follows that ψ(t) = 0(t−2) as t→ ∞, hence ψ ∈ L1(0,∞).

The following result is established in [10].

LEMMA 3.3. Suppose k has a transform k̂ ∈ A. Given any T > 0 and
any ζ ∈ C[0, T ], put ζT (t) = ζ(t), 0 ≤ t < T, ζT (t) = 0, t > T . Then

(3.3)
∫ T

0

ζ(t)(k ∗ ζ)(t) dt =
2
π

∫ ∞

0

Re k̂(iη)|ζ̃T (η)|2 dη

where ζ̃(η) is the Fourier transform of ζT .

The non-local boundary condition in (P (ϕ, ψ)) can be formally trans-
formed to yield the relation

(3.4) μ(L)ûx(x, s) = F̂ (s)û(L, s) + ψ̂(s).

F is actually a distribution, and if it has the form (2.1),

(3.5) F̂ (s) = − s(α+ k̂(s)) = − s(α+ k∞s−1 + K̂(s)).

We want to establish conditions on the transform which will guarantee
that F has the form (2.1) and satisfies (H1) and (H2). Let us do the
formal calculations first and then we will state the theorem.
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We assume that F̂ (s) has the form

(3.6) F̂ (s) = −αs+ β + r̂(s), α > 0,

where r̂ ∈ A. We rewrite this formula as

(3.7)

F̂ (s) = − s(α+ k∞s−1 + K̂(s))

k∞ = − (β + r̂(0)) = −F̂ (0)

K̂(s) =
r̂(0) − r̂(s)

s
=

F̂ (0) − F̂ (s)
s

− α.

Let us study K̂(s). If F̂ ∈ C2(Π) then K̂ ∈ C2(Π\{0}). Since
F̂ (0) − F̂ (s) vanishes at s = 0, K̂ will still be once differentiable
at s = 0 if K̂ ′(s) is defined by its limit at s = 0. If, in addition,
F̂ ∈ C(3)(π), then K̂ ∈ C(2)(π). If r̂ ∈ A, one can readily check that
K̂ satisfies the appropriate behavior at infinity so that K̂ ∈ A. Thus,
for (3.6) with F̂ ∈ C(3)(π), r̂ ∈ A and F̂ (0) ≤ 0, we will have F [ζt] =
−∂[α+ (k ∗ ζ)(t)]/∂t with k(t) = k∞ +K(t), k∞ ≥ 0,K ∈ L1(0,∞).

We have, from (3.7),

(3.8) α+ Re k̂(iη) = − Im F̂ (iη)
η

.

For large η, (3.8) and (3.6) yield

(3.9) α+ Re k̂(iη) = α+ 0
(

1
η

)
as η → ∞.

For small η, (3.8) yields

(3.10) α+ Re k̂(iη) = −F̂ ′(0) + 0(η) as η → 0.

Suppose we impose the conditions

(3.11) −sign η Im F̂ (iη) > 0 for all η �= 0, F̂ ′(0) < 0.

Then from (3.8) (3.11) we see that there is a γ > 0 such that

(3.12) α+ Re k̂(iη) ≥ γ for all η.



318 J. BIELAK AND R.C. MACCAMY

By Lemma (3.3), (3.12) implies (H2). We summarize our result.

THEOREM 3.1. Suppose the transform F̂ of the non-local boundary
conditions has the form (3.6) with F̂ ∈ C(3)(π) and F̂ satisfies the
conditions
(3.13)

F̂ (0) < 0, F̂ ′(0) < 0, − sign η Im F̂ (iη) > 0 for all η �= 0.

Then F has the form (2.1) with (H1) and (H2) satisfied.

REMARK 3.1. The importance of the behavior of F̂ (s) when s is
small was suggested by the work in [3].

4. Exact dissipative boundary conditions.

Example 1. Composite elastic-viscoelastic bar. This example is
suggested by [9]. We suppose our bar is elastic, but inhomogeneous,
on 0 < x < L so that u satisfies the differential equation in (P (ϕ, ψ)).
Suppose that the portion x > L is viscoelastic but homogeneous. This
means that, for x > L,

(4.1)
σ(x, t) =

∂

∂t
a ∗ ux(x, ·)(t)

ρ0utt(x, t) = σx(x, t).

If we use the Laplace transform, we obtain

(4.2)
σ̂(x, s) = sâ(s)(x, s)

ρ0s
2û(x, s) = sâ(s)ûxx(x, s).

We want the solution u to be outgoing in x > L, which means we
want û(x, s) to tend to zero as s → ∞. From (4.2) we obtain the
relations

(4.3)
û(x, s) = e−γ(s)(x−L)û(L, s)

σ̂(L, s) = − sâ(s)γ̂(s)û(L, s) :≡ F̂ (s)û(L, s),
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where γ̂(s) =
√
ρ0s/â(s). We give conditions which guarantee that F̂

in (4.3) satisfies the hypotheses of Theorem 3.1.

The conditions on a in (4.1) are dictated by viscoelasticity theory.
Typical hypotheses, which we will adopt, are

(4.4)
a(t) ∈ C(2)[0,∞), (−1)ja(j)(t) > 0, j = 0, 1, 2

a(t) = a∞ + b(t), a∞ > 0, b(j) ∈ L1(0,∞).

We will assume, in addition, that tjb(j) ∈ L1(0,∞) so that, according
to Lemma 3.1 b̂ ∈ A. We also assume t3b ∈ L1(0,∞) which means that
b̂ ∈ C(3)(Π).

Clearly F̂ ∈ C3(π\{0}). We have

(4.5)

sâ(s) = a(0) + ȧ(0)s+ 0(s−2),

γ̂(s) =
√
ρ0s√
a(0)

(
1 − 1

2
ȧ(0)
a(0)s

+ 0(s−2)
)

as s→ ∞,

F̂ (s) = −
√
a(0)s+

1
2
ȧ(0)√
a(0)

+ 0
(

1
s

)
;

(4.6)

sâ(s) = a∞ + sb̂(0) + 0(s2)

γ̂(s) =
√
ρ0s√
a∞

+ 0(s2) as s→ 0

F̂ (s) = −√
a∞s+ 0(s2).

.

Equation (4.5) gives the relation (2.1) with α = −√
a(0) and

β = −ȧ(0)/(2
√
a(0)). Equation (4.6) shows that F̂ (0) = 0. If the

expansion in (4.6) is continued, it will show that F̂ is three times dif-
ferentiable at s = 0.

It follows from results in [8] that conditions (4.4) imply

(4.7) Re â(iη) > 0 for all η, − sign η Im â(iη) > 0, η �= 0.

We have F̂ (iη) = −iη√iηâ(iη). It follows from (4.7) that Re
√
iηâ(iη)

> 0, hence sign η Im F̂ (iη) > 0 for η �= 0. From (4.6)3 we have
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F̂ ′(0) = −√
a∞ < 0. Thus, all the conditions of Theorem 3.1 are

satisfied.

REMARK 4.1. An interesting question is what happens if the compos-
ite bar is finite and viscoelastic on L < x < L. We conjecture, but have
not yet proved, that the resulting nonlocal condition is dissipative.

REMARK 4.2. A special case of the viscoelastic problem is that in
which a(t) ≡ a∞, that is, the bar is elastic and homogeneous. This
case was considered in [6] when the bar on 0 < x < L is nonlinearly
elastic.

Example 2. Inhomogeneous semi-infinite bar. This was the problem
studied in [1]. We assume that the bar is ultimately homogeneous, i.e.,
ρ(x) ≡ ρ0, σ(x, t) = μ(x)ux(x, t) for x ≥ L. The outgoing condition is
that μ0ux(x, t) ≡ −√

u0ρ0ux(x, t) for x ≥ L, in particular, at x = L.
Thus the problem is

(4.8)
ρ(x)utt(x, t) = (μ(x)ux(x, t))x, 0 < x < L,

u(x, 0) = ut(x, 0) = 0
u(0, t) = ϕ(t), μ0ux(L, t) = −√

μ0ρ0 ut(L, t).

We want to reduce this to problem (P (ϕ, ψ)). Define Û(x, s) by

(4.9)
ρ(x)s2Û(x, s) = (μ(x)Ûx(x, s))x, L < x < L,

Û(L, s) = 1, μ0Ûx(L, s) =
√
μ0ρ0 s Û(L, s).

Then the transform û of the solution of (4.8) satisfies û(x, s) =
Û(x, s)û(L, s) on L ≤ x ≤ L. Thus,

(4.10) μ(L)ûx(L, s) = μ(L)Ûx(L, s)û(L, s) = F̂ (s)û(L, s).

We will establish the following result.

THEOREM 4.1. F̂ , as defined by (4.9), satisfies the hypotheses of
Theorem 3.1.
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The proof is more complicated here since we do not have an explicit
formula for F̂ . We begin with

LEMMA 4.1. Problem (4.9) has a unique solution for any s ∈ Π.

PROOF. To show that (4.9) has a solution for a given s, it suffices to
show that the only solution if Û(L, s) = 1 is replaced by Û(L, s) = 0
is Û(x, s) ≡ 0 (see Appendix). Suppose Û is such a solution. Then we
have

(4.11) s2
∫ L

L

ρ|Û |2 dx+
∫ L

L

μ|Ûx|2 dx+
√
μ0ρ0 s |Û(L, s)2| = 0.

If s = ξ, ξ ≥ 0, one sees immediately from (4.11) that Û(x, s) ≡ 0. If
s = ξ + iη, ξ > 0 we take the imaginary part of (4.11) and conclude∫ L

L
ρ|Û |2dx = 0, hence Û(x, s) ≡ 0. If s = iη, taking the imaginary

part of (4.11) yields Û(L, iη) = 0. Hence Ûx(L, s) = 0 also. But
ρs2Û(x, s) = (μÛx(x, s)x, hence Û(x, s)) ≡ 0.

LEMMA 4.2. F̂ , defined by (4.10), is in C(m)(Π) for any m, is
analytic in Π and real for s real.

PROOF. Suppose that one formally takes the derivative of Û in (4.9)
with respect to s. Then one sees that Ûs satisfies the homogeneous
problem, hence is zero, meaning Û is analytic. This argument can be
made rigorous by taking different quotients. Similarly, suppose one
differentiates in (4.9) with respect to s. Then V̂ = Ûs satisfies

ρ(x)s2V̂ − (μ(x)V̂x)x = − 2sρÛ(x, s)(4.12)

V̂ (L, s) = 0, μ0V̂X(L, s) = −√
μ0ρ0 s V̂ (L, s) −√

μ0ρ0 Û(L, s).

Once again the fact that the homogeneous problem has only the zero
solution guarantees a solution of (4.12) in Π. Again, one makes this
rigorous with difference quotients and one can continue differentiating
to obtain all derivatives. The reality on s real is immediate.

LEMMA 4.3. F̂ satisfies − sign ηF̂ (iη) > 0 for η �= 0.
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PROOF. We multiply the equation in (4.9) by Û(x, s) and integrate
by parts, using (4.10) at x = L. This yields

− η2

∫ L

L

ρ|Û(x, iη)|2 dx+
∫ L

L

μ(x)|Ûx(x, iη)|2 +
√
μ0ρ0 iη|Û(L, iη)|2

(4.13)

+ F̂ (iη)|Û(L, iη)|2 = 0.

We cannot have Û(L, iη) = 0, for then, as above, we would also have
Ûx(L, iη) = 0 and, hence, Û(x, s) ≡ 0. The same argument shows that
Û(L, iη) �= 0, and the conclusion follows by taking the imaginary part
of (4.13).

What remains is to study F̂ for large and small s. The large s
situation was considered in [1]. What was found was that the solution
of (4.9) has a formal asymptotic expansion,

(4.14) Û(x, s) ∼ e−sφ(x)
∞∑

k=0

Uk(x)s−k, φ′(x) =
√
ρ(x)μ(x).

Formulas were given to compute the coefficients Uk, recursively. Then
formal differentiation of (4.14) yields

(4.15) F̂ (s) = μ(L)Ûx(L, s) ∼ −αs− β −
∞∑

k=0

αks
−k.

The coefficients α, β and αk are determined by values of ρ and μ and
their derivatives at x = L. In particular, α =

√
ρ0μ0 > 0.

We will review this procedure briefly in the Appendix and will also
establish its validity by the following results.

LEMMA 4.4. Put F̂N (s) = −αs − β − ∑N
k=0 αks

−k. Then

(4.16) F̂ (s) − F̂N (s) = 0(s−N ) for large s.

This result shows that F̂ has the correct behavior, for large s, to belong
to A.
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Let us consider the small s situation. This was not done in [1]. We
seek a formal expansion of the solution of (4.9) as a power series in s:

(4.17) Û(x, s) =
∞∑

k=1

Uk(x)sk.

The Uk can again be determined recursively. We write down the
expressions for U0 and U1:

(4.18)
(μ(x)U ′

0(x))
′ = 0, U0(L) = 1, μ0U

′
0(L) = 0

μ(x)U ′
1(x) = 0, U1(L) = 0, μ0U

′
1(L) = −√

ρ0μ0 U0(L).

One sees that U0(x) ≡ 1, U1(x) = −√
ρ0μ0

∫ x

L
μ(ξ)−1 dξ. Thus

(4.19) F̂ (s) = μ(L)Ûx(L, x) = −√
ρ0μ0s+ 0(s2).

We will again establish the validity of (4.19) in the Appendix.

Equation (4.19) shows that

F̂ (0) = 0, F̂ ′(0) = −√
ρ0μ0 < 0.

Thus we have established all the hypotheses of Theorem 3.1, and we
have a dissipative boundary condition.

5. Approximate boundary conditions. The idea discussed in [1]
is based on the formula (4.15). This idea is to truncate the series by
using the F̂N of Lemma (4.4). If we translate back to the time domain,
these correspond to nonlocal boundary conditions of the form

(5.1)

FN [ζt] = − ∂

∂t
(α+ kN ∗ ζ),

α =
√
ρ0μ0, kN (t) = β +

∞∑
k=1

1
k!
tk+1.

It is clear that (5.1) does not fit the form (2.1) since kN is not in
L1(0,∞). It was shown in [1] that the use of FN numerically produces
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exponential error growth. What was suggested in [1] was a stabilization
procedure. This amounts to replacing F̂N by a function L̂N such that

(5.2) L̂N (s) − F̂N (s) = 0(s−N−1) as s→ ∞,

but with the associated operator LN stable. In the language of the
present paper this means we want L̂N to satisfy the conditions of
Theorem 3.1.

We illustrate the idea of [1] in the case N = 1. In order for our idea
to work it is essential that the constant β in (4.15) be positive. The
calculations in [1] show that

β =
1

4ρ(L)
(ρμ)′(L).

Thus we must assume that the bar is such that the product ρ μ is
increasing. We set

(5.3) L̂ 1(s) = −αs− β − α1

s+ δ
.

Thus L̂ 1(s) − F̂1(s) = 0(s−2) as s→ ∞ for any δ. We have

L̂ 1(0) = −β − α1

δ
, L ′

1(0) = −α+
α1

δ2
.

If we choose δ > 0 so that

(5.4) δ > max
( |α1|

β
,
|α1|1/2

α1/2

)
,

then L̂ 1(0) and L̂ ′
1(0) will both be negative. Furthermore, for η > 0,

Im L̂ 1(iη) = − iη

(
α− α1

η2 + δ2

)
< − η

(
α− α1

δ2

)
.

Thus (5.4) also insures that − sign η Im L̂ 1(iη) > 0 for η �= 0.

The choice (5.4) thus guarantees that the operator L 1 associated with
L̂ 1 satisfies (H1) and (H2) so that Theorems 2.1 and 2.3 apply. We see
that the operator L 1 is given by

(5.5) L 1[ζt] = −α ζ̇(t) − βζ(t) − α1

∫ t

0

e−δ(t−τ)ζ(τ ) dτ.
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It was observed in [1] that the boundary condition at x = L can be
localized. In the transform domain,

μ(L)ûx(L, s) = −
(
αs+ β +

α1

s+ δ

)
û(L, s) + χ̂(s)

or

(s+ δ)μ(L)ûx(L, s) = [−(αs+ β)(s+ δ) + α1]û(L, s) + (s+ δ)χ̂(s).

Thus,
(5.6)
μ(L)uxt(L, t) + δμ(L)ux(L, t) = −αutt(L, t) − (αδ + β)ut(L, t)

+ (α1 + βδ)u(L, t) + χ̇(t) + δχ(t).

It is shown in [1] how to implement (5.6) in a Galerkin method
procedure.

We note that, although L 1 satisfies (H1) and (H2), we have L̂ 1(0) =
−β − α1/δ which is not, in general, zero. Thus Theorems 2.3 and 2.4
do not apply. We give here an alternative approximation. Define Ĥ 1

by

(5.7) Ĥ 1(s) = s

{
− α− β

s+ δ
+
α1 − δβ

(s+ δ)2

}
.

We have H 1(s)−F̂1(s) = 0(s−2) as s→ ∞. We also have Ĥ 1(0) = 0
and H ′

1(0) = −α < 0. We assert that, if δ is chosen sufficiently large,
we will have

(5.8) − sign η Ĥ 1(iη) > 0 for η �= 0.

We have

Im Ĥ 1(iη) = η

{
− α− βδ

δ2 + η2
+

(δ1 − δβ)(δ2 − η2)
(δ2 − η2)2 + 4δ2η2

}

= η

{
− α− βδ

δ2+ η2
+

(α1− δβ)
δ2

[
1− (η/δ)2

((1− η/δ)2)2+4(η/δ)2

]}
.

The quantity in square brackets is bounded for all η/δ and our
conclusion follows. Relation (5.7) translates into a condition like (5.6)
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in the time domain. Both L and H have generalizations to larger
values of N , but we will not write these explicitly.

Let us summarize our conclusions. The method of [1] yields a se-
quence of approximate boundary conditions FN satisfying the estimate
(5.3). These satisfy the hypotheses of Theorem 2.1 so that, if they are
used in (P (ϕ, ψ)), one has stability. They do not satisfy F̂N (0) = 0, so
one does not have the dissipation result of Theorem 2.3. The idea used
for Ĥ 1 can be extended to yield a sequence also satisfying (5.3) but
with ĤN (0) = 0, so that the hypotheses of Theorem 2.3 are satisfied
and one obtains the decay result. All of these in the time domain can
be expanded in differential forms like (5.6) but with higher order time
derivatives.

We can use our results to give some indications of the validity of the
approximate boundary conditions. Suppose uN and vN are solutions
of (P (ϕ, ψ)) with conditions LN and HN , respectively, at x = L, and
let u be the solution of (P (ϕ, ψ)) with the exact condition F at x = L.
Let UN = u − uN and V N = u − vN represent errors. Thus we will
have

(5.9)
ρUN

tt = (μUN
x )x, UN (x, 0) = UN

t (x, 0) = 0, 0 < x < L,

UN (0, t) = 0, μ(L)UN
x (L, t) = LN [UN (L, ·)t] + ψN (t)

ψN (t) = (F − LN )(ut(L, ·))

(5.10)
ρV N

tt = (μV N
x )x, 0 < x < L, V N (x, 0) = V N

t (x, 0) = 0
V N (0, t) = 0, μN (L)V N

v (L, t) = HN [V N (L, ·)t] + ΨN (t)
ΨN (t) = (F −HN )(ut(L, ·)).

The problems for UN and V N are both of the form P (0, ψ) but with
different functionals at x = L. We can accordingly use Theorem 2.1
for UN and Theorems 2.2, 2.3 for V N .

We will establish the following result in the Appendix.

LEMMA 5.1. For each integer N , there is a constant MN such that,
for any

(5.11)
ζ ∈ C(1)([0,∞)), with ζ(0) = 0 and ζ̇ ∈ L2(0,∞),

||F [ζt] −HN [ζt]||HN+1(0,∞) ≤MN ||ζ̇||L2(0,∞).
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Suppose now that u is a solution of (4.8). Then it will be a solution
of P (ϕ, 0) with F defined by (4.10). We assume ||(ϕ, 0)||0 exists, then
Theorem 2.1 yields ||ut(L, ·)||L2(0,∞) ≤ M ||(ϕ, 0)||0. It follows from
(5.9) (5.10) that there is a constant M ′

N such that

||ΨN ||HN+1(0,∞) ≤M ′
N ||(ϕ, 0)||0.

We can now apply Theorem 2.2, with the device of differentiating with
respect to t, to obtain the result we want.

THEOREM 5.1. Suppose ||(ϕ, 0)||0 exists. Then, for any integer N ,
there is a constant LN such that

(5.12) ||u− vN ||HN+2((0,∞):L2(0,L))

+ ||u− vN ||HN+1((0,∞):H1(0,L)) ≤ LN ||(ϕ, 0)||0.

REMARK 5.1. We want to comment on (5.12). It is an error estimate
but not of a usual type. It does not say that the errors, u−vN , become
small as N becomes large. What it does say is that these errors become
small as t becomes large. Equation (5.12) implies that
(5.13)∥∥∥∥ ∂j

∂tj
(u(·, t) − vN (0, t))

∥∥∥∥
L2(0,L)

→ 0 for j = 0, 1, N+1 as t→ ∞,

∥∥∥∥ ∂j

∂tj
(u(·, t) − vN (·, t))

∥∥∥∥
H1(0,L)

→ 0 for j = 0, . . . , N as t→ ∞,

∂j

∂tj
(u(x, t) − vN (x, t)) → 0 for each x, y = 0, . . . , N as t→ ∞.

Thus, increasing N makes an increasing number of time derivatives go
to zero.

The above result is not too striking since both u and vn are going
to zero anyway. What makes it more striking is the result in Remark
2.3. Thus, if ϕ(t) is tending to ϕ∞ so that u tends to a steady state,
the estimates (5.11) will still hold. This is the crucial role of the
condition F̂ (0) = 0. We cannot draw the same conclusions for the
approximations LN .
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Appendix

ASYMPTOTIC EXPANSIONS

We consider the problem in Section 3, which was

(A.1)
ρs2Û = (μ Ûx)x, L < x < L,

U(L, s) = 1, Ûx(L, s) = −
√
ρ0

μ0
sÛ(L, s),

where ρ(L) = ρ0, μ(L) = μ0, and we assume all derivatives of ρ and μ
are zero at x = L. In [1] we derived an asymptotic expansion for large
s. It has the form
(A.2)

Û(x, s) ∼ e−sφ(x)
∞∑

k=0

Uk(x)s−k, φ′(x) =
√
ρ(x)μ(x), φ(L) = 0.

The functions Uk are determined recursively by the formulas

(A.3)
2μφ′U ′

0 + (μφ′)′U0 = 0, U0(L) = 1
2μφ′U ′

k+1 + (μφ′)′Uk+1 = (μU ′
k)′, Uk+1(L) = 0, k ≥ 0.

Recall that the quantity we want is F̂ (s) = Ûx(L, s). From (A.2) and
(A.3) one obtains, formally,

(A.4) F̂ (s) ∼ μ(L)
{
−sφ′(L)+

∞∑
h=0

U ′
k(L)s−k

}
= −αs−β−

∞∑
k=1

αks
−k.

We see that α = φ′(L) =
√
ρ(L)μ(L). The other coefficients can be

computed by using (A.3) recursively to determine U ′
k(L). In particular,

β = −μ(L)U ′
0(L) =

1
2

(μφ′)′

φ′
=

1
4ρ(L)

(ρ′(L)μ(L) + ρ(L)μ′(L)).

In order to prove Lemma (4.4) we need first to show that (A.2) is a
valid asymptotic expansion. Put

ÛN (x, s) = e−sφ(x)
N∑

k=0

Uk(x)s−k.
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Then one verifies that

(A.5) s2ρÛN − (μ ÛN
x )x = − (μU ′

N )′s−N .

We assert that, for any N , one has ÛN
x (L, s) = −√

(ρ0s/μ0)UN (L, s).
The reason for this is that all derivatives of any of the UN vanish
at x = L. To see this consider the equation for Û0 in (A.2). Since
(μφ′)′ = 0 at x = L we have U ′

0(L) = 0. Differentiating that equation
repeatedly, we see that U (j)

0 (L) = 0 for all j. The equations (A.3), for
k > 0, then show that all derivatives vanish at x = L.

We set V N = Û − ÛN and have

(A.6)
ρs2V N − (μV N

x )x = fN , fN = − (μU ′
n)′s−N

V N (L, s) = 0, V N
x (L, s) = −

√
ρ0

μ0
s V N (L, s).

We need estimates for solutions of (A.6). These are easier if we first
make a Louisville transformation

(A.7) t =
∫ x

L

√
ρ(ξ)
μ(ξ)

dξ, V N (x, s) =
1

(ρμ)1/4
wN (t(x), s).

It is not difficult to see that this transforms (A.6) into

s2wN − wN
tt + q(t)wN = FN(A.8)

wN (0, s) = 0, wN
x (T , s) = − swN (T , s), T =

∫ L

L

√
ρ(ξ)
μ(ξ)

dξ.

Consider the problem

Ztt − s2Z = h, 0 < t < T ,

Z(0) = 0, Z ′(L) = − sZ(L).

One verifies that the solution is

(A.9)

Z(t) =
1
2

∫ T

0

G(t, τ, s)h(τ ) dτ

G(t, τ, s) =

{− 1
2 e

−s(t−τ) + 1
2 e

−s(t+τ), 0 < τ < t,

− 1
2 e

−s(t−τ) − 1
2 e

−s(T+τ), t < τ < T .
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Note that we have, for some M > 0,

(A.10) |G(t, τ, s)| ≤M, |Gt(t, τ, s)| ≤M |s| for any s ∈ Π.

Now (A.8) is equivalent to the integral equation

(A.11)

WN (t, s) =
1
s

∫ T

0

g(t, τ : s)q(τ )WN(τ, s) dτ+
1
2

∫ T

0

G(t, τ : s)FN (t) dτ.

REMARK A.1. The equivalence of (A.8) and the integral equation
(A.11) confirm the statement in the proof of Lemma 4.1 that uniqueness
implies existence.

In view of the bound (A.10) we see that (A.11) can be solved by
successive approximatives for |s| sufficiently large. This shows that
there is an s0 > 0 and P > 0 such that

(A.12) ||WN (·, s)||L∞(0,T ) ≤
P

|s| ||F
N (·)||L∞(0,T ) for |s| ≥ s0.

We can obtain an estimate for WN
t by differentiating (A.11) and using

(A.12). This yields

(A.13) ||WN
t (·, s)||L∞(0,T ) ≤ Q||FN (·)||L∞(0,T ).

It we translate (A.13) back to the original variables, one obtains the
result (4.16).

Proof of Lemma 5.1. Since ĤN differs from F̂ N by terms of order
s−N−1 as s→ ∞, we have, from (A.13),

|F̂ (s) − ĤN (s)| ≤ Q|s|−N for large s.

We also have F̂ (s) − ĤN (s) = 0(s) for small s. Since the difference
F̂ − ĤN is bounded on any compact set in Π, we conclude that, for
some constant MN ,

(A.14) |F̂ (s) − ĤN (s)| ≤ MN |s|
(1 + |s|)N+1

for all s ∈ Π.
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It follows that, for any ζ ∈ C1[0,∞), ζ(0) = 0 and ζ̇ ∈ L2(0,∞),

||F [ζt] −HN [ζt]||HN+1(0,∞) =
∫ +∞

−∞
|F̂ (iη) − ĤN (iη)|2 dη

≤MN

∫ +∞

−∞
|ζ̂(iη)|2 dη = MN ||ζ||L2(0,∞),

which is (5.9).

We also comment on the small s approximation. One proceeds in
a way quite similar to the above proof. Set up the formal series and
truncate to get an approximate solution ÛN . Then the error Û−ÛN will
satisfy a problem which, after Louisville transformation, is equivalent to
an integral equation which can be solved by successive approximations
for s small.
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