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WEAK SOLUTIONS OF THE
EXTERIOR BOUNDARY VALUE PROBLEMS

OF PLANE COSSERAT ELASTICITY

E. SHMOYLOVA, S. POTAPENKO AND L. ROTHENBURG

ABSTRACT. In this paper we formulate exterior Dirichlet
and Neumann boundary value problems of plane Cosserat
elasticity in Sobolev spaces, show that these problems are well-
posed and find the corresponding weak solutions in terms of
integral potentials.

1. Introduction. The theory of micropolar (Cosserat) elasticity [4]
has been developed by Eringen to account for discrepancies between
the classical theory and experiments when the effects of material
microstructure were known to significantly affect the body’s overall
deformation, for example, in the case of granular bodies with large
molecules (e.g. polymers) or human bones, see [7 10]. Significant
progress has been achieved in this direction for the last 30 years (see
[12] for a review of works in this area and an extensive bibliography),
but investigations mainly have been confined to the case of boundary
value problems for domains bounded by sufficiently smooth curves. For
example, three-dimensional problems of Cosserat elasticity have been
formulated in a rigorous setting and solved by means of methods of the
potential theory by Kupradze in [6].

In [5, 13 15], the corresponding boundary value problems for plane
deformations of a micropolar homogeneous, linearly elastic solid were
shown to be well posed and subsequently solved in a rigorous setting
using the boundary integral equation method. Unfortunately, consider-
ation of these problems in the space L2 setting requires that we impose
strict conditions on the curve which represents the boundary of the do-
main. To be precise, this curve must be expressed in terms of a twice
differentiable function. If this condition is not satisfied, i.e., the bound-
ary is not smooth enough or the domain contains cracks, the method
presented in [5, 13 15] fails to produce acceptable results. To over-
come this difficulty it seems reasonable to formulate the corresponding
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boundary value problems of plane Cosserat elasticity in a Sobolev space
and find weak solutions in terms of integral potentials using the bound-
ary integral equation method.

Very recently in [16] we have formulated interior boundary value
problems of Cosserat elasticity in the case of the reduced boundary
smoothness in Sobolev spaces. Such an approach, which in a series of
recent works by Chudinovich and Constanda [1 3] has been applied to
the investigation of boundary value problems arising in plane classical
elasticity and in the theory of plates, allows us to obtain solutions for
domains with irregular boundaries and to facilitate the close monitoring
of the performance of numerical schemes in domains with a relatively
low degree of smoothness.

This work is the extension of our results obtained in [16] for the case
of the exterior boundary value problems of plane micropolar elasticity.
In this paper we formulate exterior Dirichlet and Neumann boundary
value problems of plane Cosserat elasticity in Sobolev spaces and find
the corresponding weak solutions in terms of integral potentials.

2. Preliminaries. In what follows Greek and Latin indices take the
values 1, 2 and 1, 2, 3, respectively, the convention of summation over
repeated indices is understood, Mm×n is the space of (m×n)-matrices,
En is the identity element in Mn×n, the columns of a (3 × 3)-matrix
P are denoted by P (i), a superscript T indicates matrix transposition,
the generic symbol c denotes various strictly positive constants and
(. . . ),α ≡ ∂(. . . )/∂xα. Also, if X is a space of scalar functions and v a
matrix, v ∈ X means that every component of v belongs to X.

Let S− be a region in R2 such that R2\S− is a domain bounded by a
closed curve ∂S. Let S− be occupied by a homogeneous and isotropic
linearly elastic micropolar material with elastic constants λ, μ, α, γ and
ε. The state of plane micropolar strain is characterized by a displace-
ment field u (x′) = (u1 (x′) , u2 (x′) , u3 (x′))T and a microrotation field
φ (x′) = (φ1 (x′) , φ2 (x′) , φ3 (x′))T of the form

(2.1)
uα (x′) = uα (x) , u3(x′) = 0,
φα (x′) = 0, φ3(x′) = φ3 (x) ,

where x′ = (x1, x2, x3) and x = (x1, x2) are generic points in R3

and R2, respectively. The equilibrium equations of plane micropolar
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strain written in terms of displacements and microrotations are given by
[5, 15]

(2.2) L(∂x)u(x) + q(x) = 0, x ∈ S−,

in which now, denoting φ3 by u3, we have u(x) = (u1, u2, u3)T , the
matrix partial differential operator L(∂x) = L(∂/∂xα) is defined by

L (ξ) = L (ξα)

=

(
(μ + α)Δ + (λ + μ − α)ξ2

1 (λ + μ − α)ξ1ξ2 2αξ2

(λ + μ − α)ξ1ξ2 (μ + α)Δ + (λ + μ − α)ξ2
2 −2αξ1

−2αξ2 2αξ1 (γ + ε)Δ − 4α

)
,

where Δ = ξαξα, and vector q = (q1, q2, q3)T represents body forces
and body couples.

Together with L we consider the boundary stress operator T (∂x) =
T (∂/∂xα) defined by

T (ξ) = T (ξα)

=

(
(λ+ 2μ) ξ1n1 + (μ+ α) ξ2n2 (μ − α)ξ1n2 + λξ2n1 2αn2

(μ − α)ξ2n1 + λξ1n2 (λ+ 2μ) ξ2n2 + (μ+ α) ξ1n1 −2αn1

0 0 (γ+ ε)ξαnα

)
,

where n = (n1, n2)T is the unit outward normal to ∂S. To guarantee
the ellipticity of system (2.2), in what follows we assume that

λ+ μ > 0, γ + ε > 0, μ > 0, α > 0.

The space of rigid displacements and microrotations F is spanned by
the columns of the matrix

F =

⎛⎝ 1 0 −x2

0 1 x1

0 0 1

⎞⎠
from which it can be seen that LF = 0 in R2, TF = 0 on ∂S and a
general rigid displacement can be written as Fk, where k ∈ M3×1 is
constant and arbitrary.
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We introduce the class A of vectors u ∈ M3×1 whose components in
terms of polar coordinates, as r = |x| → ∞, are of the form

u1(r, θ) = r−1 (βm0 sin θ +m1 cos θ +m0 sin 3θ +m2 cos 3θ) +O(r−2),
u2(r, θ) = r−1 (m3 sin θ + βm0 cos θ +m4 sin 3θ −m0 cos 3θ) +O(r−2),
u3(r, θ) = r−2 (m5 sin 2θ +m6 cos 2θ) +O(r−3),

where
β =

3μ+ λ

λ+ μ
,

and m0, . . . ,m6 are arbitrary constants. Also, let

A∗ =
{
u : u = Fc+ σA}

,

where c ∈ M3×1 is constant and arbitrary and σA ∈ M3×1 ∩ A.

Using the same technique as in the derivation of the Betti formula
[15], it is easy to show that if u is a solution of (2.2) in S−, then for
any v ∈ C2(S−) ∩ C1(S

−
) ∩A∗

(2.3)
∫

S−
vT q dx = −

∫
S−

vTLudx = 2
∫

S−
E(u, v) dx+

∫
∂S

vTTu ds,

where E (u, v) is the internal energy density given by

2E (u, v) = 2E0 (u, v)
+ (μ+ α) ((u1,2 + u3)(v1,2 + v3) + (u2,1 − u3)(v2,1 − v3))
+ (μ− α) ((u1,2 + u3)(v2,1 − v3) + (v1,2 + v3)(u2,1 − u3))
+ (γ + ε)(u3,1v3,1 + u3,2v3,2),

2E0 (u, v) = (λ+ 2μ) (u1,1v1,1 + u2,2v2,2) + λ(u1,1v2,2 + u2,2v1,1).

A Galerkin representation for the solution of (2.2) when q(x) =
−δ(|x− y|), where δ is the Dirac delta distribution, yields the matrix
of fundamental solutions [15]

(2.4) D(x, y) = L∗(∂x)t(x, y),

where L∗ is the adjoint of L,

(2.5) t(x, y) =
a

8πk4

{
[k2 |x− y|2 + 4] ln |x− y| + 4K0(k|x− y|)

}
,
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and the constants a, k2 are defined by

a−1 = (γ + ε)(λ+ 2μ)(μ+ α), k2 =
4μα

(γ + ε)(μ+ α)
.

In view of (2.4) and (2.5)

D(x, y) = DT (x, y) = D(y, x).

Along with matrix D(x, y) we consider the matrix of singular solutions

(2.5) P (x, y) = (T (∂y)D(y, x))T .

It is easy to verify that D(i)(x, y) and P (i)(x, y) satisfy (2.2) with
q(x) = 0 at all x ∈ R2, x �= y.

Using classical techniques [6] the following theorem can be proved.

Theorem 1 (Somigliana formulae). If u ∈ C2(S−) ∩ C1(S
−

) ∩ A,
is a solution of (2.2) with q(x) = 0 in S−, then

−
∫

∂S

[D(x, y)T (∂y)u(y)−P (x, y)u(y)] ds(y) =

⎧⎪⎨⎪⎩
0 x ∈ S+,
1
2
u(x) x ∈ ∂S,

u(x) x ∈ S−.

Further, we introduce the corresponding single and double layer
potentials given respectively by

(V ϕ)(x) =
∫

∂S

D(x, y)ϕ(y) ds(y),

(Wϕ)(x) =
∫

∂S

P (x, y)ϕ(y) ds(y),

where ϕ ∈ M3×1 is an unknown density matrix.

The properties of the single and double layer integral potentials are
well known and may be formulated in the following theorem, which can
be proved using the technique described in [5, 13 15].
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Theorem 2. (i) If ϕ ∈ C(∂S), then V ϕ, Wϕ are analytic and
satisfy L(V ϕ) = L (Wϕ) = 0 in S+ ∪ S−.

(ii) If ϕ ∈ C0,α(∂S), α ∈ (0, 1), then the direct values Ṽ ϕ, W̃ϕ of
V ϕ, Wϕ on ∂S exist (the latter as principal value), the function

V −(ϕ) = (V ϕ)|
S

− ,

is of class C1,α(S
−

) and

TV −(ϕ) =
(
W̃ ∗ − 1

2
I

)
ϕ,

where W̃ ∗ is the adjoint of W̃ and I is the identity operator.

(iii) If ϕ ∈ C1,α(∂S), α ∈ (0, 1), then the function

W−(ϕ) =

⎧⎨⎩ (Wϕ)|S− in S−,(
W̃ +

1
2
I
)
ϕ on ∂S,

is of class C1,α(S
−

).

3. Auxiliary estimates. We define the (2 × 1)-vector function
�
u = (u1, u2) and, for a domain Ω ⊆ R2, introduce the space L2

ω(Ω) of
(3 × 1)-vector functions u such that

‖u‖2
0,ω;Ω =

∫
Ω

∣∣∣�u(x)
∣∣∣2

(1+ |x|)2(1+ ln |x|)2 dx+
∫

Ω

|u3(x)|2

(1+ |x|)4(1+ ln |x|)2 dx

<∞.

Let H1,ω(R2) be the space of distributions on R2 for which

‖u‖2
1,ω = ‖u‖2

0,ω;R2 + bR2(u, u) <∞,

where
bΩ(u, v) =

∫
Ω

2E(u, v) dx,
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Also, let H1,ω(Ω) be the space of restrictions to Ω of the elements of
H1,ω(R2). The norm in this space can be defined in two equivalent
ways, namely

‖u‖2
1,ω;Ω = ‖u‖2

0,ω;Ω + bΩ(u, u) or ‖u‖1,ω;Ω = inf
v∈H1,ω(R2)

v|Ω=u

‖v‖1,ω ,

and in what follows we make no distinction between the two. Clearly,
if Ω is bounded, then the norm in L2

ω(Ω) is equivalent to that in L2(Ω),
and the norm in H1,ω(Ω) is equivalent to that in the Sobolev space

H1(Ω). Finally,
◦
H1,ω(Ω) is the subspace of H1,ω(R2) of elements with

support in Ω, equipped with the norm ‖·‖1,ω; C∞
0 (Ω) is dense in H1(Ω)

and C∞
0 (Ω) is dense in

◦
H1,ω(Ω).

If Ω has a compact boundary ∂Ω, we denote by γ− the trace operator
defined first on C∞

0 (Ω) and then extended by continuity to a surjection
γ− : H1,ω(Ω) → H1/2(∂Ω). This is possible because of the local
equivalence of H1,ω(Ω) and H1(Ω). We also consider a continuous
extension operator l− : H1/2(∂Ω) → H1(Ω), which, since norm in
H1(Ω) is stronger than that in H1,ω(Ω), can also be regarded as a
continuous operator from H1/2(∂Ω) into H1,ω(Ω).

Let
◦
H−1,ω(Ω) (with norm ‖ · ‖−1,ω) and H−1,ω(Ω) (with norm

‖ · ‖−1,ω;Ω) be the duals of H1,ω(Ω) and
◦
H1,ω(Ω), respectively. It can

be shown that if u ∈
◦
H−1(Ω) and has compact support in Ω, or if∫

Ω

∣∣∣�u(x)
∣∣∣2 (1+ |x|)2(1+ ln |x|)2 dx+

∫
Ω

|u3(x)|2 (1+ |x|)4(1+ ln |x|)2 dx

<∞,

then u ∈
◦
H−1,ω(Ω).

Let Ω = K−
R =

{
x ∈ R2 : |x| > R

}
, R > 1, and ∂Ω = ∂KR ={

x ∈ R2 : |x| = R
}
.

Theorem 3. There are ci(R) = const > 0 such that

(3.1)
‖u‖2

0,ω;K−
R

� c1bK−
R

(u, u) + c2‖
�
u‖2

1/2,∂KR
+ c3‖u3‖2

0,∂KR

for all u ∈ H1,ω(K−
R ),
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where ‖ · ‖0,∂KR
and ‖ · ‖1/2,∂KR

are the norms in L2(∂KR) and
H1/2(∂KR), respectively.

The proof of this theorem is similar to the procedure described in [2].

For simplicity we write bS−(u, v) = b−(u, v).

Theorem 4. There is a c = c(S−) = const > 0 such that any
u ∈ H1,ω(S−) satisfies the estimates

‖u‖2
1,ω;S− � c

[
b−(u, u) +

∣∣∣∣∫
Γ0

u ds
∣∣∣∣2
]
,

(3.2)

‖u‖2
1,ω;S− � c

[
b−(u, u) +

3∑
i=1

〈
u, γ−F (i)

〉2

0,∂S

]
, tag3.3

where Γ0 ⊆ ∂S, mes Γ0 > 0.

Proof. We claim that for any u ∈ H1,ω;S−

‖u‖2
0,ω;S− � c

[
b−(u, u) +

∣∣∣∣∫
Γ0

uds
∣∣∣∣2
]
,(3.4)

‖u‖2
0,ω;S− � c

[
b−(u, u) +

3∑
i=1

〈
u, γ−F (i)

〉2

0,∂S

]
,(3.5)

First suppose that the opposite of formula (3.4) is true. Then we can
construct a sequence {u(n)} ⊂ H1,ω(S−) such that

(3.6) b−(u(n), u(n)) −→ 0,
∫

Γ0

u(n) ds −→ 0

while

(3.7) ‖u‖2
0,ω;S− = 1.

Let ∂KR be a circle with the center at the origin and of radius
R > 1 sufficiently large so that ∂S is contained inside ∂KR. We write
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SR = S− ∩ K−
R . Since SR is bounded, we may repeat the proof [3,

Theorem 4] to deduce that there is a cR = const > 0 such that

(3.8) ‖u‖2
1;SR

� cR

[
bSR

(u, u) +
∣∣∣∣∫

Γ0

u ds
∣∣∣∣2
]

∀u ∈ H1(SR).

Then, by Theorem 3,

‖u(n)‖2
0,ω;S− = ‖u(n)‖2

0,ω;SR
+ ‖u(n)‖2

0,ω;K−
R

� ‖u(n)‖2
0,SR

+ ‖u(n)‖2
0,ω;K−

R

� cR

[
bSR

(u(n), u(n)) +
∣∣∣∣ ∫

Γ0

u(n) ds
∣∣∣∣2] + c1bK−

R
(u(n), u(n))

+ c2‖
�
u(n)‖2

1/2,∂KR
+ c3‖u(n)

3 ‖2
0,∂KR

.

From (3.8) for u(n), we now conclude that u(n) → 0 in H1(SR). Then
u(n) → 0 in H1/2(∂KR), hence in L2(∂KR). Consequently, from the
last inequality we find that limn→∞ ‖u(n)‖2

0,ω;S− = 0, which contradicts
(3.7). Formula (3.5) is proved similarly.

4. Boundary value problems. We consider Dirichlet and Neu-
mann exterior boundary value problems.

The (exterior) Dirichlet problem is formulated as follows:

(D−)
Find u ∈ C2(S−) ∩ C1(S

−
) ∩A∗ satisfying (2.2)

such that u |∂S = f,

where f is prescribed on ∂S.

Let (D−
0 ) be the exterior Dirichlet problem with f = 0. From (2.3)

we see that a solution u of (D−
0 ) satisfies

(4.1) b−(u, v) = 〈q, v〉0,S− for all v ∈ C∞
0 (S−),

where 〈·, ·〉0,S− is the L2(S−)-inner product. Since C∞
0 (S−) is dense in

◦
H1,ω(S−), it is clear that (4.1) holds for any v ∈

◦
H1,ω(S−). Obviously,

any u ∈ C2(S−) ∩ C1(S
−

) ∩ A∗ satisfying (4.1) for any v ∈
◦
H1,ω(S−)
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and u |∂S = 0 is a classical (regular) solution of (D−
0 ). It is easy to

check that such a solution belongs to
◦
H1,ω(S−). Hence, the variational

formulation of (D−
0 ) is as follows.

Find u ∈
◦
H1,ω(S−) such that

(4.2) b−(u, v) = 〈q, v〉0,S− for all v ∈
◦
H1,ω(S−).

Theorem 5. The variational problem (4.2) has a unique solution

u ∈
◦
H1,ω(S−) for every q ∈ H−1,ω(S−), and this solution satisfies the

estimate
‖u‖1,ω � c‖q‖−1,ω;S− .

Proof. By Theorem 4,

‖u‖2
1,ω � cb−(u, u) for all u ∈

◦
H1,ω(S−),

which means that b−(u, u) is coercive on
◦
H1,ω(S−). Since b−(u, u) is

clearly continuous on
◦
H1,ω(S−)×

◦
H1,ω(S−), we apply the Lax-Milgram

lemma [11] to complete the proof.

The variational formulation of (D−) is as follows.

Find u ∈ H1,ω(S−) such that

(4.3) b−(u, v) = 〈q, v〉0,S− for all v ∈
◦
H1,ω(S−)

and

(4.4) γ−u = f.

Theorem 6. Problem (4.3) (4.4) has a unique solution u ∈
H1,ω(S−) for any q ∈ H−1,ω(S−) and any f ∈ H1/2(∂S), and this
solution satisfies the estimate

‖u‖1,ω;S− � c
(
‖q‖−1,ω;S− + ‖f‖1/2,∂S

)
.
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Proof. The substitution u = u0 + l−f reduces (4.3) (4.4) to a new

variational problem, consisting in finding u0 ∈
◦
H1,ω(S−) such that

(4.5) b−(u0, v) = 〈q, v〉0,S− − b−(l−f, v) for all v ∈
◦
H1,ω(S−).

Since, for any v ∈
◦
H1,ω(S−),

|〈q, v〉0,S− − b−(l−f, v)|

� ‖q‖−1,ω;S−‖v‖1,ω +
[
b−(l−f, l−f)

]1/2 [b−(v, v)]1/2

�
(
‖q‖−1,ω;S− + ‖l−f‖1,ω;S−

)
‖v‖1,ω

� c
(
‖q‖−1,ω;S− + ‖f‖1/2,∂S

)
‖v‖1,ω,

the linear form 〈q, v〉0,S− − b−(l−f, v) is a continuous linear functional

on
◦
H1,ω(S−). The statement of the theorem now follows from the

Lax-Milgram lemma applied to the auxiliary problem (4.5) and the
estimates

‖u0‖1,ω � c
(
‖q‖−1,ω;S− + ‖f‖1/2,∂S

)
‖u‖1,ω;S− � ‖u0‖−1,ω;S− + ‖l−f‖1,ω;S−

� c
(
‖q‖−1,ω;S− + ‖f‖1/2,∂S

)
.

The (exterior) Neumann problem is formulated as follows.

(N−)
Find u ∈ C2(S−) ∩ C1(S

−
) ∩ A satisfying (2.2)

and Tu = g on ∂S,

where g is prescribed on ∂S.

In this case (2.3) leads to the following variational formulation.

Find u ∈ H1,ω(S−) such that

(4.6) b−(u, v) = 〈q, v〉0,S− − 〈g, γ−v〉0,∂S for all v ∈ H1,ω(S−).

It is easy to verify that F ⊂ H1,ω(S−) and that, in view of the
properties of rigid displacements,

(4.7) 〈q,F (i)〉0,S− − 〈g, γ−F (i)〉0,∂S = 0
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is a necessary solvability condition for (4.6). In what follows we assume
(4.7) holds.

Theorem 7. Problem (4.6) is solvable for any q ∈
◦
H−1,ω(S−) and

g ∈ H−1/2(∂S). Any two solutions differ by a rigid displacement, and
there is a solution u0 that satisfies the estimate

(4.8) ‖u0‖1,ω;S− � c
(
‖q‖−1,ω + ‖g‖−1/2,∂S

)
.

Proof. We introduce the factor space H1,ω(S−) = H1,ω(S−)/F , the
bilinear form

B−(U, V ) = b−(u, v) on H1,ω(S−) ×H1,ω(S−),

and the linear functional

L(V ) = 〈q, v〉0,S− − 〈g, γ−v〉0,∂S on H1,ω(S−),

where u and v are arbitrary representatives of the classes U, V ∈
H1,ω(S−). We define the norm in H1,ω(S−) by

‖U‖H1,ω(S−) = inf
u∈H1,ω(S−)

u∈U

‖u‖1,ω;S− .

Instead of (4.6) we now consider the new variational problem of
finding U ∈ H1,ω(S−) such that

(4.9) B−(U, V ) = L(V ) for all V ∈ H1,ω(S−).

In view of the definition of B−(U, V ), we see that for any U , V ∈
H1,ω(S−) and any u ∈ U , v ∈ V ,

|B−(U, V )| = |b−(u, v)| � c‖u‖1,ω;S−‖v‖1,ω;S− ,
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therefore

|B−(U, V )| � c inf
u∈H1,ω(S−)

u∈U

‖u‖1,ω;S− inf
v∈H1,ω(S−)

v∈U

‖v‖1,ω;S−

= c‖U‖H1,ω(S−)‖V ‖H1,ω(S−),

which shows that B−(U, V ) is continuous on H1,ω(S−) ×H1,ω(S−).

Next, we can choose
∼

u ∈ U such that 〈γ−�
u, γ−F (i)〉0,∂S = 0. Then,

by (3.3),

B−(U,U) = b−(
∼

u,
∼

u) � c‖∼

u‖2
1,ω;S− � c inf

u∈H1,ω(S−)
u∈U

‖u‖2
1,ω;S−

= k‖U‖2
H1,ω(S−),

so B−(U,U) is coercive on H1,ω(S−).

Finally, since γ− is continuous on H1,ω(S−), for any V ∈ H1,ω(S−),

L(V ) � ‖q‖−1,ω‖v‖1,ω;S− + ‖g‖−1/2,∂S‖γ−v‖1/2,∂S

� c
(
‖q‖−1,ω + ‖g‖−1/2,∂S

)
‖v‖1,ω;S− ,

which shows that L is continuous linear functional on H1,ω(S−).

By the Lax-Milgram lemma, problem (4.9) has a unique solution
U ∈ H1,ω(S−), and this solution satisfies the estimate

‖U‖H1,ω(S−) � c
(
‖q‖−1,ω + ‖g‖−1/2,∂S

)
.

Clearly, any u ∈ U is a solution of (4.6), and u0 ∈ U such that

‖u0‖1,ω;S− = ‖U‖H1,ω(S−)

satisfies (4.8).

5. Poincaré-Steklov operator. Let f ∈ H1/2(∂S), and let
u ∈ H1,ω(S−) be the (unique) solution of the variational problem (D−)
(4.3) (4.4) with q = 0

b−(u, v) = 0 for all v ∈
◦
H1,ω(S−), γ−u = f.
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We consider an arbitrary α ∈ H1/2(∂S) and write w = l−α. Using
the Riesz representation theorem, we can define an operator T − on
H1/2(∂S) by

(5.1) 〈T −f, α〉0;∂S = −b−(u,w).

The definition is consistent, for if
�
w ∈ H1,ω(S−) is another extension of

α, then w− �
w ∈

◦
H1,ω(S−) and b−(w− �

w, u) = 0, for all α ∈ H1/2(∂S).

T − is known as the Poincaré-Steklov operator corresponding to (2.2).

Denoting the space of the rigid displacements on ∂S by Z(∂S), let
H1/2(∂S) be the subspace of H1/2(∂S) of all u such that

〈u, z〉0;∂S = 0 for all z ∈ Z(∂S),

and let H−1/2(∂S) be the subspace of H−1/2(∂S) of all g such that

〈g, z〉0;∂S = 0 for all z ∈ Z(∂S).

Theorem 8. (i) T − is a continuous operator from H1/2(∂S) to
H−1/2(∂S).

(ii) T − is self-adjoint in the sense that

(5.2) 〈T −f, v〉0;∂S = 〈f, T −v〉0;∂S for all f, v ∈ H1/2(∂S).

(iii) The kernel of T − coincides with Z(∂S).

(iv) The range of T − coincides with H−1/2(∂S).

Proof. (i) By the definition of T −, for f, v ∈ H1/2(∂S)

〈T −f, v〉20;∂S = b−(u, l−v)2 ≤ b−(u, u)b−(l−v, l−v).

Since
b−(l−v, l−v) ≤ c‖l−v‖2

1,ω;S− ≤ c‖v‖2
1/2;∂S ,

it follows that

〈T −f, v〉20;∂S ≤ cb−(u, u)‖v‖2
1/2;∂S ;
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therefore, T −f ∈ H−1/2(∂S) and

‖T −f‖2
−1/2;∂S ≤ cb−(u, u) = −c〈T −f, f〉0;∂S

≤ c‖T −f‖−1/2;∂S‖f‖1/2;∂S ,

from which
‖T −f‖−1/2;∂S ≤ c‖f‖1/2;∂S .

(ii) We take l− to be the operator that associates with v ∈ H1/2(∂S)
the solution of corresponding problem (D−), and (5.2) follows from
(5.1).

(iii) If z ∈ Z(∂S), then z is the solution of (D−) and we have

〈T −z, v〉0;∂S = −b−(z, l−v) = 0 for all z ∈ Z(∂S);

hence,
T −z = 0.

Conversely, if T −f = 0, then

〈T −f, f〉0;∂S = −b−(u, u) = 0;

therefore, u ∈ F and f ∈ Z(∂S).

(iv) By (5.2), for any f ∈ H1/2(∂S) and z ∈ Z(∂S)

〈T −f, z〉0;∂S = −b−(u, z) = 0,

so T −f ∈ H−1/2(∂S) for any f ∈ H1/2(∂S). We define operator
�
T −

on the factor space H1/2(∂S)\Z(∂S) by

�
T −F = T −f, F ∈ H1/2(∂S)\Z(∂S).

Clearly,
�
T − is injective and its range coincides with the range of

T −. We now show that inverse operator (
�
T −)−1 is continuous. Let

F ∈ H1/2(∂S)\Z(∂S), let f be representative of F such that

〈f, z〉0;∂S = 0 for all z ∈ Z(∂S),
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and let u be the solution of (D−) with boundary data f . By Theorem 4,
we have

‖F‖2
H1/2(∂S)\Z(∂S) ≤ ‖f‖2

1/2;∂S ≤ c‖u‖2
1,S+

≤ cb−(u, u) = −c〈T −f, f〉0;∂S

≤ c‖T −f‖−1/2;∂S‖f‖1/2;∂S ,

from which it follows that

‖F‖H1/2(∂S)\Z(∂S) ≤ ‖f‖1/2;∂S ≤ c‖T −f‖−1/2;∂S = c‖
�
T −f‖−1/2;∂S .

To prove that the range of T − coincides with H−1/2(∂S), it suffices to
establish that this range is dense in H−1/2(∂S). Suppose that this is
not true. Then we can find nonzero Φ in the dual H1/2(∂S)\Z(∂S) of
H−1/2(∂S) such that

〈T −f, ϕ〉0;∂S = 0 for all f ∈ H1/2(∂S),

where ϕ is any representative of Φ. Taking f = ϕ, we arrive at

〈T −ϕ,ϕ〉0;∂S = 0;

therefore, ϕ ∈ Z(∂S) and Φ = 0. This contradiction completes the
proof.

Let N− be the restriction of T − to H1/2(∂S).

Theorem 9. The operator N− is a homeomorphism from H1/2(∂S)
to H−1/2(∂S).

Proof. The bijectivity and continuity of N− were established in the
previous theorem, while the continuity of the inverse operator (N−)−1

follows from Banach’s theorem.
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6. Boundary equations. We define the modified single and double
layer potentials V−ϕ and W−ψ and their corresponding boundary
operators V0ϕ and W−

0 ψ by

V−ϕ = V ϕ− 〈V0ϕ,
∼

z (i)〉0;∂S
∼

z (i), ϕ ∈ H−1/2(∂S),

V0ϕ = V0ϕ− 〈V0ϕ,
∼

z (i)〉0;∂S
∼

z (i), ϕ ∈ H−1/2(∂S),

W−ψ = Wψ − 〈W−
0 ψ,

∼

z (i)〉0;∂S
∼

z (i), ψ ∈ H1/2(∂S),

W−
0 ψ = W−

0 ψ − 〈W−
0 ψ,

∼

z (i)〉0;∂S
∼

z (i), ψ ∈ H1/2(∂S),

where V ϕ and Wψ are the single and double layer potentials, {∼

z (i)}
is the set obtained from {F (i)} by orthonormalization in L2(∂S), and
V0 and W−

0 are the boundary operators defined by V0ϕ = γ−V ϕ and
W−

0 ψ = γ−Wψ.

Theorem 10. The operator V0, extended by continuity from the
space C0,α(∂S)∩H−1/2(∂S) to H−1/2(∂S), is a homeomorphism from
H−1/2(∂S) to H1/2(∂S).

This theorem can be proved following procedure similar to the proof
of Theorem 3.5 in [2].

Theorem 11. The operator W−
0 , extended by continuity from the

space C1,α(∂S) ∩ H1/2(∂S) to H1/2(∂S), is a homeomorphism from
H−1/2(∂S) to H1/2(∂S).

The proof of this assertion can be obtained following procedure shown
in the proof of the Theorem 3.9 in [2].

We write
G− = N−W−

0 .

Theorem 12. G− is a homeomorphism from H1/2(∂S) to H−1/2(∂S).

Proof. The theorem follows from properties of the operators N− and
W−

0 .
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We start with (D−). As it was shown in [2], we may consider (2.2)
with q = 0 without loss of generality. Thus, we arrive at variational
formulation of (D−) for the homogeneous equilibrium equation of
finding u ∈ H1,ω(S−) such that

b−(u, v) = 0 for all v ∈
◦

H1,ω(S−)
γ−u = f.

We represent the solution of (D−) with q = 0 in the form

(6.1) u = V−ϕ+ z,

where the density ϕ ∈ H−1/2(∂S) and z ∈ F are unknown. Represen-
tation (6.1) leads to the system of boundary equations

(6.2) V0ϕ+ z = f.

Representing the weak solution of (D−) with q = 0 in the form

(6.3) u = W−ψ + z,

where ψ ∈ H1/2(∂S) and z ∈ F are unknown, we obtain the following
system of boundary equations

(6.4) W−
0 ψ + z = f.

Theorem 13. Systems (6.2) and (6.4) have unique solutions

{ϕ, z} ∈ H−1/2(∂S) ×Z(∂S),
{ψ, z} ∈ H1/2(∂S) ×Z(∂S),

respectively, for any f ∈ H1/2(∂S), and

(6.5)
‖ϕ‖−1/2;∂S ≤ c‖f‖1/2;∂S ,

‖ψ‖1/2;∂S ≤ c‖f‖1/2;∂S .
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In this case, (6.1) and (6.3) are the solutions of problem (D−) with
q = 0, and they satisfy the estimate

(6.6) ‖u‖1,ω;S− ≤ c‖f‖1/2;∂S .

Proof. In both cases we choose z ∈ Z(∂S) defined by

z = −〈f,F (i)〉0;∂SF (i).

Then it is obvious that f − z ∈ H1/2(∂S) and

(6.7) ‖f − z‖1/2;∂S ≤ c‖f‖1/2;∂S .

The solvability of systems (6.2), (6.4) and estimates (6.5) now follow
from Theorems 10, 11 and (6.7). To prove uniqueness, let {ϕ1, z1}
and {ψ1, z1} be other solutions of (6.2) and (6.4), respectively. Then,
writing

�
ϕ = ϕ− ϕ1,

�
ψ = ψ − ψ1,

�
z = z − z1,

we see that

V0
�
ϕ+

�
z = 0,

W−
0

�
ψ +

�
z = 0.

Since V0
�
ϕ and

�
z belong to L2-orthogonal subspaces of H1/2(∂S), it

follows that
V0

�
ϕ = 0,

�
z = 0;

therefore, we also have
�
ϕ = 0.

The proof that
�
ψ = 0 and

�
z = 0 in the second case is similar.

Estimate (6.6) follows from (6.7) and Theorem 4.

Instead of (N−) we may consider without loss of generality its version
for the homogeneous equilibrium equations.

In the problem (N−) with q = 0 we seek u ∈ H1,ω(S−) such that

b−(u, v) = −〈g, v〉0;∂S for all v ∈ H1,ω(S−).



90 E. SHMOYLOVA, S. POTAPENKO AND L. ROTHENBURG

We write
K− = N−V0

and represent the solution of problem (N−) with q = 0 in the form

(6.8) u = V−ϕ+ z,

where z ∈ F . Representation (6.8) leads to the systems of boundary
equations

(6.9) K−ϕ = g.

If we represent the solution as

(6.10) u = W−ψ + z,

then we arrive at the system of boundary equations

(6.11) G−ψ = g.

Theorem 14. Systems (6.9) and (6.11) have unique solutions
ϕ ∈ H−1/2(∂S) and ψ ∈ H1/2(∂S) for any g ∈ H−1/2(∂S), and

‖ϕ‖−1/2;∂S ≤ c‖g‖−1/2;∂S ,(6.12)
‖ψ‖1/2;∂S ≤ c‖g‖−1/2;∂S .(6.13)

In this case, (6.8) and (6.10) are the solutions of problem (N−) with
q = 0, and they satisfy the estimate

(6.14) ‖u‖1,ω;S− ≤ c‖f‖−1/2;∂S .

Proof. The unique solvability of (6.9) and (6.12) follows from the
properties of the operators N− and V0 established in Theorems 9 and
10. The unique solvability of (6.11) and (6.13) follows from Theorem
12. Finally, estimate (6.14) is obtained from Theorem 4.
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