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SINGULARITY EXPANSION FOR
A CLASS OF NEUTRAL EQUATIONS
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ABSTRACT. The main purpose of the paper is to study the
structure of the solutions for a class of singular neutral equa-
tions arising from an aerofoil model problem. We demonstrate
that the solution of the neutral equation may be decomposed
into two parts, with one part being a linear combination of
known singular functions and the other part being a function
with continuous higher order derivatives. The result is then
used to construct a numerical algorithm with optimal order
of convergence.

1. Introduction. In [6, 7] a complete dynamic model for the elastic
motions of a three-degree-of-freedom typical airfoil section, with flap,
in a two-dimensional incompressible flow was formulated. An evolution
equation for the circulation on the airfoil was derived and coupled to
the rigid body dynamics to obtain a functional differential equation
that provided a mathematical model for the composite system. The
finite delay approximation for the mathematical model with delay r,
0 < r < ∞, for the aeroelastic system including a forcing term F (which
could be considered as a control) has the form

(1.1)
d

dt

[
Ay(t) +

∫ 0

−r

A(s)y(t + s) ds

]

= By(t) +
∫ 0

−r

B(s)y(t + s) ds + F (t)

for t > 0, where

y(t) = (h(t), θ(t), β(t), ḣ(t), θ̇(t), β̇(t), Γ(t), Γ̇t)T .
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The functions h, θ, β denote the plunge, pitch angle and flap angle
respectively. The 8× 8 matrix A is singular (each entry in the last row
is zero) and A88(s) has the following form

A88(s) =
[
Us − 2

Us

]1/2

where the constant U denotes the undisturbed stream velocity. The
function Γ represents the total airfoil circulation. The state of the
system includes the past history of Γ̇ which may be observed over the
finite time interval, [−r, 0], as a known initial function ϕ defined on
[−r, 0]. For our study we make use of the special structure of the
system (1.1), see [7], and write this system as

(1.2)

d

dt
D1(y1, y2t) = L1(y1, y2t) + h

d

dt
D2y2t = L2y1.

Here y1 is the first seven components of the state y and y2 is the last
component of y. We also have used yt to denote the shift operator
yt(s) = y(t + s). The corresponding initial conditions are given by

(1.3) y1(0) = γ, y2t = ϕ for − r ≤ t ≤ 0

for some γ in R7 and ϕ a real valued function defined on [−r, 0]. The
linear operators D1, D2, L1, L2 appearing in (1.2) have the following
representation. For (γ, ϕ) ∈ R7 × C([−r, 0]; R)

D1(γ, ϕ) = Iγ +
∫ 0

−r

A12(s)ϕ(s) ds(1.4)

L1(γ, ϕ) = B11γ + B12ϕ(0) +
∫ 0

−r

B12(s)ϕ(s) ds(1.5)

D2ϕ =
∫ 0

−r

k(s)ϕ(s)ds,(1.6)

L2(γ) = B21γ(1.7)

where I is the identity matrix and B11, B12, B21, A12(·), and B12(·)
denote nonzero blocks in the system matrices A, B, A(·) and B(·), with
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the representation,

A =
[

I7×7 0
0 01×1

]
A(·) =

[
07×7 A12(·)

0 k(·)
]

B =
[

B117×7 B12

B21 01×1

]
B(·) =

[
07×7 B12(·)
01×7 01×1

]
.

The functions A12(·), B12(·) are sufficiently smooth functions and the
function k has the representation

(1.8) k(s) =

√
Us − 2

Us

for s in [−r, 0). Systems (1.1) and (1.2) (1.3) have been extensively
studied concerning well-posedness [6, 7, 17], numerical approxima-
tions [11, 13, 17] and parameter identification [11, 12]. In each of
the above-mentioned studies, with the exception of [17], the weakly
singular kernel function k of (1.6) given by (1.8) was replaced by

k̂(s) = (−s)−1/2.

The kernel k can be viewed as k̂ multiplied by a smooth function, that
is,

k(s) = c(s)k̂

where the function c is defined by

c(s) =
(
− s +

2
U

)1/2

.

In summary, the singular part of system (1.2) (1.3) may be character-
ized by the following neutral equation [17]

(1.9)
d

dt
Dyt = ay(t) + f(t), 0 < t < ∞

with initial condition

(1.10) y(s) = ϕ(s), −r ≤ s ≤ 0
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where

Dyt =
∫ 0

−r

(
− s +

2
U

)1/2

(−s)−1/2y(t + s) ds.

Here we have used y to denote the scalar function solution for the
singular integral equation associated with system (1.2) (1.3), that is,
we have decoupled the system and replaced y2 by y and the right-hand
side by ay+f in this study. Since the nonsingular part of (1.2) (1.3) can
be handled by known theory, we note that the study of the singular part
(1.9) (1.10) is essential for the understanding of system (1.2) (1.3).

In this paper we devote our attention to the structure and represen-
tation of the solutions for a class of singular neutral equations that
includes (1.9) (1.10). In particular we consider equations of the form

(1.11)
d

dt
Dyt = Lyt + g(t), 0 < t ≤ T

with initial condition

(1.12) y(s) = ϕ(s), −r ≤ s ≤ 0.

The functionals D and L are defined as follows. For φ ∈ C[−r, 0],

(1.13) Dφ =
∫ 0

−r

[c(s)(−s)−α + p(s)]φ(s) ds

and

(1.14) Lφ = aφ(0) + bφ(−r) +
∫ 0

−r

h(s)φ(s) ds

where c, p ∈ C1[−r, 0], a and b are nonzero constants and h is a
continuous function. In particular, our study will include the kernel
k given by (1.8) when α = 1/2, c(s) = (−s + (2/U))1/2 and p = 0.
We do not restrict our study to α = 1/2; the order of singularity that
appears in the kernel function for the aeroelastic model since α may
indeed represent a parameter that needs to be identified.

Our goal of this paper is to characterize the structure of solutions
for (1.11) (1.12). Our analysis is based on a relationship between
(1.11) (1.12) and a Volterra equation of the second kind. In particular
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we will employ results from the theory of singular Volterra equations
established in [9] to show that solutions of our system can be decom-
posed into two parts, with one part being a linear combination of some
singular functions of the form si+jα, where i, j are integers, and the
other part being a function having continuous higher order derivatives.
The significance of such a decomposition is not only that it helps us
understand the structure of the exact solutions but also that it provides
insight for the development of numerical schemes with high order of ac-
curacy [9]. The representation of the solution of system (1.11) (1.12)
as a singular part plus a “smooth” part can be viewed as a generaliza-
tion for the exact representation for the solution of the system given in
[8] with L = 0, g = 0 and k(s) = (−s)α.

For related results on the characterization and approximation of solu-
tions for Volterra integral equations and Fredholm integral equations,
see references [1, 3 5, 10, 14 16, 18].

The presentation of the paper is organized as follows. In Section 2 we
establish the relationship between problem (1.11) (1.12) and a Volterra
integral equation of second kind. In Section 3 we develop a singular
expansion for the solution of problem (1.11) (1.12) using the theory
of [9]. In Section 4 we construct a hybrid collocation method to find
a numerical solution (1.11) (1.12) with optimal order of convergence.
Finally in Section 5, we discuss the application of the theory obtained
in Sections 3 and 4 to the aeroelastic model problem described earlier
in this section.

2. Conversion of neutral equations to Volterra integral
equations. We will devote our attention to the neutral equation
problem (1.11) (1.12) on [0, r] only. Extending the approximation to
intervals [kr, (k+1)r] with integer k > 0 would require that we complete
the analysis of the representation of the solution based on the new initial
function, now defined on [(k− 1)r, kr]. This analysis would dictate the
basis for our approximation on [kr, (k+1)r]. For the numerics presented
here we limit the approximations to [0,r]. Also, for the simplicity of
presentation, we assume that r = 1. Then (1.11) (1.12) becomes

(2.1)
d

dt
Dyt = Lyt + g(t), 0 < t ≤ 1
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with initial condition

(2.2) y(s) = ϕ(s), −1 ≤ s ≤ 0

where the operators L and D are defined by

Lyt = ay(t) + by(t − 1) +
∫ 0

−1

h(s)y(t + s ) ds,(2.3)

Dyt =
∫ 0

−1

k(s)y(t + s) ds(2.4)

with

(2.5) k(s) = c(s)(−s)−α + p(s).

Here c and p are continuously differentiable functions and 0 < α < 1.

The following theorem converts problem (2.1) (2.2) to an appropriate
Volterra integral equation of the second kind. We let β denote the usual
Beta function.

Theorem 2.1. Assume c(0) �= 0. Then the solution y of (2.1) (2.2)
satisfies the following Volterra integral equation of the second kind

(2.6) y(t) −
∫ t

0

[(t − s)α−1K(s − t) + M(s − t)]y(s) ds = f(t)

for t ∈ [0, 1] where K is defined on [−1, 0] by

(2.7)

K(s) =
1

c(0)β(1 − α, α)

[
− a +

∫ 1

0

(1−u)α−1

{
α

[
p(us) −

∫ 0

us

h(w) dw

]

+ us
[
ṗ(us) + h(us)

]}
du

]

while M is defined on [−1, 0] by

(2.8) M(s) =
1

c(0)β(1 − α, α)

∫ 1

0

(1 − u)α−1u1−αċ(−us) du
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and the right-hand side function f is defined by

(2.9) f(t) =
1

c(0)β(1 − α, α)
d

dt

∫ t

0

(t − s)α−1F (s) ds, t ∈ [0, 1]

where the continuous function F is defined on [0, 1] by

(2.10)

F (t) = Dϕ + b

∫ t

0

ϕ(s − 1) ds +
∫ t

0

g(s) ds

+
∫ t

0

∫ −s

−1

h(u)ϕ(s + u) du ds

−
∫ 1

t

[c(−s)s−α + p(−s)]ϕ(t− s) ds.

Proof. Integrating (2.1) over the interval [0, t] with t < 1, we have
that

(2.11)

∫ t

0

d

ds
Dys ds = Dyt − Dϕ

= a

∫ t

0

y(s) ds + b

∫ t

0

ϕ(s − 1) ds

+
∫ t

0

∫ 0

−1

h(u)y(s + u) du ds +
∫ t

0

g(s) ds.

In order to collect all terms involving y together on the right-hand
side we note that, for 0 ≤ s ≤ t, [−1, 0] = [−1,−s] ∪ [−s, 0],
[0, 1] = [0, t] ∪ [t, 1] and employ (2.1) and (2.4) (2.5) together with
the change of variables s = −τ to obtain

∫ t

0

[c(−τ )τ−α + p(−τ )]y(t − τ ) dτ − a

∫ t

0

y(s) ds

−
∫ t

0

∫ 0

−s

h(u)y(s + u) du ds = F (t)

where F is given by (2.10). For the third term on the left-hand side of
the above identity we first change the outer integration variable from



20 Y. CAO, G. CEREZO, T. HERDMAN AND J. TURI

s to τ , make a change of variables s = τ + u and change the order of
integration (using the Fubini theorem). This, together with a change
of variables s = t − τ in the first term on the left-hand side yields

∫ t

0

[
c(s − t)(t − s)−α + p(s − t) − a −

∫ t

s

h(s − τ ) dτ
]
y(s) ds = F (t).

For the convenience of notation, we define the function H ∈ C1[−1, 0]
by

H(s) =
∫ 0

s

h(u) du

and use τ as the integration variable to obtain

∫ t

0

[c(τ − t)(t − τ )−α + p(τ − t) − a − H(τ − t)]y(τ ) dτ = F (t).

We evaluate the above expression at s, multiply by (t − s)α−1 and
integrate over [0, t] to obtain

∫ t

0

(t−s)α−1

∫ s

0

[c(τ −s)(s−τ )−α+p(τ −s)−a−H(τ−s)]y(τ ) dτ ds

=
∫ t

0

(t − s)α−1F (s) ds

which after a change in the order of integration becomes

∫ t

0

y(τ )
∫ t

τ

(t−s)α−1[c(τ−s)(s−τ )−α+p(τ−s)−a−H(τ−s)] ds dτ

=
∫ t

0

(t − s)α−1F (s) ds.

The inner integral involving the constant a can be evaluated to obtain

−a

α

∫ t

0

y(τ )(t − τ )α dτ +
∫ t

0

y(τ )
∫ t

τ

(t − s)α−1[c(τ − s)(s − τ )−α

+ p(τ − s) − H(τ − s)] ds dτ

=
∫ t

0

(t − s)α−1F (s) ds.
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The change of variables u = (s − τ )/(t − τ ) yields

(2.12)

−a

α

∫ t

0

y(τ )(t − τ )α dτ +
∫ t

0

y(τ )
∫ 1

0

[p(u(τ − t)) − H(u(τ − t))] du dτ

=
∫ t

0

(t − s)α−1F (s) ds.

We define continuous functions q and m on [−1, 0] by

q(s) =
∫ 1

0

(1 − u)α−1[p(us) − H(us)] du − a

α
,

m(s) =
∫ 1

0

(1 − u)α−1u−αc(us) du,

respectively. Note that q̇ and ṁ exist on [−1, 0] and are given by

q̇(s) =
∫ 1

0

(1 − u)α−1[ṗ(us) − Ḣ(us)]u du

ṁ(s) =
∫ 1

0

(1 − u)α−1u1−αċ(us) du.

Equation (2.12) can be simplified as

∫ t

0

y(τ )[(t − τ )αq(τ − t) + m(τ − t)] dτ =
∫ t

0

(t − s)α−1F (s) ds.

Our next step in deriving the desired Volterra equation is to differenti-
ate the above equality with respect to t on [0, 1] which gives

y(t) −
∫ t

0

[(t − τ )α−1K(τ − t) + M(τ − t)] y(τ ) dτ = f(t)

where K and M are defined by (2.7) and (2.8), respectively. The proof
is complete.
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3. Singularity expansion for the neutral equation problem.
In this section we apply the theory developed in [9] to study the
structure of the solution of the neutral equation problem (1.11) (1.12)
as a solution of the Volterra integral equation given in (2.6). First we
quote the following theorem proved in [9].

Theorem 3.1. Assume that f in (2.6) has the following form

(3.1) f(t) = p1(t)tα + p2(t)

where p1, p2 ∈ Cm[0, 1] for some integer m. Also assume that
K, M ∈ Cm([0, 1] × [0, 1]). Then the solution y of equation (2.6) can
be written in the following form.

(3.2) y(t) =
∑

[j+k(1−α)]<m

cjktj+kα + vm(t), 0 < t < 1

where cjk are constants and vm ∈ Cm(I).

To apply Theorem 3.1 to (2.6) we need to show that the right-hand
function f of (2.6) can be written in the form (3.1). The next two
lemmas establish that f has the desired representation.

Lemma 3.2. Assume that c, ϕ ∈ Cm+1[−1, 0], g ∈ Cm[0, 1] for some
positive integer m. Let

(3.3) w0(t) =
∫ 1

t

c(−s)s−αϕ(t − s) ds.

Then w0 can be represented as

(3.4) w0(t) =
m∑

j=1

tj−αgj(t) + vm+1(t), 0 < t ≤ 1

where vm+1 ∈ Cm+1[0, 1], gj ∈ Cm+1[0, 1], j = 1, . . . , m.

Proof. Define the integral operator I : L1[0, 1] → C[0, 1] such that
for v ∈ L1[0, 1],

(Iv)(t) =
∫ t

0

v(s) ds.
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Also denote

wn(t) =
∫ 1

t

c(−s)s−αϕ(n)(t − s) ds n = 0, . . . , m + 1

where ϕ(0) = ϕ and ϕ(n) denotes the n-derivative of ϕ, and let

(3.5) u(t) = c(−t)t−α.

We first prove that w0 can be represented as follows

(3.6)
w0(t) =

n−1∑
j=0

(Ijwj(0))(t) −
n∑

j=1

ϕj−1(0)(Iju)(t) − (Inwn)(t),

n = 1, . . . , m + 1

where I0 = v and Ijv = I(Ij−1)vt. The proof is by induction.
Differentiating w0 we obtain

ẇ0(t) = −ϕ(0)c(−t)t−α −
∫ 1

t

c(−s)s−αϕ̇(t − s) ds

= −ϕ(0)u(t) − w1(t).

Integrating the above equality we have that

w0(t) = w0(0) − ϕ(0)(Iu)(t)− (Iw1)(t).

Therefore, (3.6) is true for n = 1. Assume that (3.6) is true for
n = k ≤ m. Similar to the above argument we have that

(3.7) wk(t) = wk(0) − ϕk(0)(Iu)(t)− (Iwk+1)(t).

Substituting n with k in (3.6) and replacing wk in (3.6) with the right-
hand side of (3.7), we have that

w0(t) =
k−1∑
j=0

(Ijwj(0))(t) −
k∑

j=1

ϕ(j−1)(0)(Iju)(t)

+ (Ikwk(0))(t)− ϕk(0)(Ik+1u)(t) − (Ik+1wk+1)(t)

=
k∑

j=0

(Ijwj(0))(t) −
k+1∑
j=1

ϕ(j−1)(0)(Iju) − (Ik+1wk+1)(t).
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Thus (3.6) holds. To establish (3.3), we consider the three terms on
the right-hand side of (3.6) separately. For the first term, it is easy to
show that

(Ijwj(0))(t) =
wj(0)

j!
tj , j = 1, . . . , m.

That is, the first term is actually a polynomial of degree m. To handle
the second term, we first notice that

(Iu)(t) =
∫ t

0

c(−s)s−α ds

= t1−α

∫ 1

0

c(−τt)τ−α dτ.

Let

g1(t) =
∫ 1

0

c(−τt)τ−α dτ.

Then we have
(Iu)(t) = t1−αg1(t).

Notice that g1 ∈ Cm+1[0, 1] since c ∈ Cm+1[0, 1]. It is easy to show by
induction that

(Iju)(t) = tj−αgj(t)

where gj ∈ Cm+1 are given by

gj(t) =
∫ 1

0

gj−1(tτ )τ j−1−α dτ, j = 1, . . . , m.

Thus we have

m∑
j=1

ϕj−1(0)(Iju)(t) =
m∑

j=1

ϕj−1(0)tj−αgj(t).

For j = 1, . . . , m, let

(3.8) gj(t) = ϕj−1(0)gj(t),

and define vm+1 = Im+1wm+1. Since wm+1 ∈ C[0, 1], it follows that

Im+1wm+1 ∈ Cm+1[0, 1].
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From the above discussions we conclude that (3.4) is true. The proof
is complete.

Lemma 3.3. Assume that g ∈ Cm[0, 1], p, ϕ, h ∈ Cm+1[0, 1]. Then
the right-hand side function f in (2.6) can be represented as

(3.9) f(t) = q1(t) + tαq2(t), 0 < t < 1,

where q1, q2 ∈ Cm+1[0, 1].

Proof. It is easy to see that F (0) = 0 for F given by (2.10). By the
assumption that g ∈ Cm[0, 1] and p, ϕ, h ∈ Cm+1[0, 1], we have that
each of the functions

∫ t

0

ϕ(s − 1) ds,

∫ t

0

g(s) ds,

∫ t

0

∫ −s

−1

h(u)ϕ(s + u) du ds,

∫ 1

t

[c(−ρ)ρ−α + p(−ρ)]ϕ(t − ρ) dρ

belongs to Cm+1[0, 1]. Thus, as a direct consequence of Lemma 3.2 and
equation (2.10), we have that

(3.10) F (t) =
m∑

j=1

tj−αgj(t) + gm+1(t), 0 < t < 1,

where gj ∈ Cm+1[0, 1] j = 1, 2, . . . , m + 1 while gm+1 is given by

(3.11)

gm+1(t) = Dϕ + b

∫ t

0

ϕ(s − 1) ds +
∫ t

0

g(s) ds

+
∫ t

0

∫ −s

−1

h(u)ϕ(u + s) du ds

−
∫ 1

t

p(−s)ϕ(t − s) ds + vm+1(t).
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Note from equation (3.10) that gm+1(0) = F (0) = 0. Substituting for
F (t) in (2.9) the right-hand side of (3.10) yields

(3.12)

f(t) =
1

c(0)β(1 − α, α)
d

dt

∫ t

0

(t − s)α−1F (s) ds

=
1

c(0)β(1 − α, α)
d

dt

∫ t

0

(t − s)α−1

( m∑
j=1

gj(s)sj−α + gm+1(s)
)

ds

=
1

c(0)β(1 − α, α)
d

dt

( ∫ t

0

(t − s)α−1
m∑

j=1

gj(s)sj−α ds

+
∫ t

0

(t − s)α−1gm+1(s) ds

)

=
1

c(0)β(1 − α, α)

[ m∑
j=1

d

dt

∫ t

0

(t − s)α−1gj(s)sj−α ds

+
d

dt

∫ t

0

(t − s)α−1gm+1(s) ds

]
.

For the first term of (3.12) we use the change of variables s = τt to
obtain

(3.13)
m∑

j=1

d

dt

∫ t

0

(t − s)α−1gj(s)sj−α ds

=
m∑

j=1

d

dt
tj

∫ 1

0

(1 − τ )α−1τ j−αgj(τt) dτ.

Integrating by parts we rewrite the second term of (3.12) as

d

dt

∫ t

0

(t − s)α−1gm+1(s) ds

=
d

dt

[
− (t − s)α

α
gm+1(s) |t0 +

∫ t

0

(t − s)α

α
ġm+1(s) ds

]

=
d

dt

∫ t

0

(t − s)α

α
ġm+1(s) ds

=
∫ t

0

(t − s)α−1ġm+1(s) ds.
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Thus we now have the representation

(3.14)

f(t) =
1

c(0)β(α, 1−α)

[ m∑
j=1

d

dt
tj

∫ 1

0

(1−s)α−1sj−αgj(st) ds

+
∫ t

0

(t−s)α−1ġm+1(s) ds

]

=
1

c(0)β(α, 1−α)

[ m∑
j=1

[
jtj−1

∫ 1

0

(1−s)α−1sj−αgj(st) ds

+ tj
∫ 1

0

(1−s)α−1sj−α+1ġj(st) ds

+
∫ t

0

(t−s)α−1ġm+1(s) ds

]
.

For the last term of (3.14) we make the change of variables s = τt and
set s = τ to get

∫ t

0

(t − s)α−1ġm+1(s) ds = tα
∫ 1

0

(1 − s)α−1ġm+1(st) ds.

It follows that

f(t) =
m∑

j=1

tj−1qj(t) + tαq(t)

where

qj(t) =
1

c(0)β(α, 1 − α)
j

∫ 1

0

(1 − s)α−1sj−αgj(st) ds

+ t

∫ 1

0

(1 − s)α−1sj−α+1ġj(st) ds, j = 1, . . . , m

q(t) =
1

c(0)β(α, 1 − α)

∫ 1

0

(1 − s)α−1ġm+1(st) ds

with qj , q ∈ Cm, j = 1, . . . , m and gm+1 is given by (3.11). It is easy to
see that we can write (3.14) in the form of (3.9). The proof is complete.

We conclude this section with a representation of the solution of the
neutral system (2.1) (2.2).
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Theorem 3.4. Assume that the functions c, ϕ and p appearing in
the neutral system (1.11) (1.14) are all in Cm+1. Then the solution y
of (1.11) (1.14) has the following form

y(t) =
∑

[j+k(1−α)]<m

cjktj+kα + vm(t), 0 < t < 1

where cjk are constants and vm ∈ Cm(I).

Proof. It is the direct consequence of Theorems 2.1, 3.1 and Lemmas
3.2 and 3.3.

4. Numerical approximation with the hybrid collocation
method. From (3.2) we see that the solution of equation (1.1)
exhibits, in general, singularities at zero in its derivatives The standard
numerical methods such as the standard collocation method may not
even yield first order accuracy, see, e.g., [5, 9]. In other words, the
use of piecewise polynomials of high order does not produce high order
convergence for these numerical methods. A number of algorithms have
been developed to address this problem, see, e.g., [5, 9]. In this section
we apply the hybrid collocation method constructed in [9] to find a
numerical solution of (1.11) (1.12) with optimal order of convergence.
To this end we let

Vr := span {ti+jα : i, j ∈ N0, i + jα < r}

and assume that dimVr = l. Also we denote by Pr the space of
polynomials of degree ≤ r − 1.

To define the collocation points for the hybrid collocation method,
we first choose i0, for a fixed positive integer N , such that

1
N

≤
(

i0
N

)q

≤ 2
N

where q = r/α. Next we partition the interval I = [0, 1] by ti,
i = 0, · · · , N ′ = N − i0 + 1 such that

t0 = 0, ti =
(

i0 + i + 1
N

)q

.
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Let hi = ti − ti−1, i = 1, . . . , N ′ and assume that the partition
is quasi-uniform, that is, there exist constants C1 and C2 such that
(C1/N) < hi < (C2/N), i = 1, . . . , N ′. Now we define the collocation
points as

(4.1) tij =
{

ti + τjhi, j = 1, . . . , l if i = 0,
ti + νjhi, j = 1, . . . , r if i > 0,

where 0 < τ1 < τ2 < · · · < τl < 1 and 0 < ν1 < ν2 < · · · < νr < 1 and
τi, i = 1, . . . , l and νj , j = 1, . . . , r are independent of hi, i = 1, . . . , N ′.
The hybrid collocation method produces a function yh with yh |[t0,t1]∈
Vr and yh |[ti−1,ti]∈ Pr, i = 2, . . .N ′ such that

(4.2) yh(tij)−
∫ tij

0

[(tij−s)α−1K(s−tij)+M(s−tij)]yh(s) ds = f(tij),

where tij are the collocation points defined by (4.1). The following
result is a direct consequence of Theorem 3.4 and Theorem 4.2 of [9].

Theorem 4.1. Let y be the exact solution of equation (1.1) and
let N be a positive integer. Then, for sufficiently large N , equation
(4.2) has a unique solution yh and there exists a positive constant c
independent of N such that

‖y − yh‖ ≤ cN−r.

5. Application to the aeroelastic model problem. Recall
the singular part of the aeroelastic model problem we introduced in
Section 1: find y ∈ C[0, T ] such that

(5.1)
d

dt

∫ 0

−1

c(τ )(−τ )−αy(t + τ ) dτ = ay(t) + f(t), 0 < t ≤ T

y(s) = ϕ(s), −r ≤ s ≤ 0

where

c(τ ) =
(
− τ +

2
U

)1/2

.
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Clearly (5.1) is a special case of (2.1) (2.2) with c(τ ) = (−τ+(2/U))1/2,
and h = p = g = 0 except that T = 1 and r = 1 in (2.1) (2.2).

The following theorem is a direct consequence of Theorems 2.1 and
3.4.

Theorem 5.1. Assume that ϕ ∈ Cm+1[0, T ]. Then (5.1) is
equivalent to the following Volterra integral equation
(5.2)

y(t) +
∫ t

0

[
a

(2/U)1/2
β(1/2, 1/2)

(t−s)α−1 − M(s−t)
]
y(s) ds = f(t),

where M and f are defined by (2.8) and (2.9), and the solution y can
be represented as follows.

(5.3) y(t) =
m−1∑
j=0

αjt
j+(1/2) + vm(t),

where αj , j = 1, 2, . . .m − 1 are constants and vm ∈ Cm[0, T ].
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FIGURE 1. The graph of the approximate solution.

Next we use the hybrid collocation method (4.2) to find the numerical
solution of (5.1). In our numerical experiment, we choose a = U = 1
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and φ(t) = cos t. We choose N = 40 in (4.2). The graph of the
numerical solution is given in Figure 1. Our numerical computation
demonstrates that the hybrid collocation method uses approximately
30% less computing time than the regular adaptive collocation method.
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