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LAGRANGE INTERPOLATION AND
BOUNDARY-VALUE PROBLEMS

AHMED I. ZAYED AND CHANG EON SHIN

ABSTRACT. It is known that some boundary-value prob-
lems give rise to Lagrange-type interpolation series that can
be used to reconstruct entire functions from their samples at
the eigenvalues of any such problem. Such boundary-value
problems, of which regular Sturm Liouville boundary-value
problems are prototype, are said to have the Lagrange-type
interpolation property.

It was conjectured that any regular, self-adjoint, eigenvalue
problem associated with nth order linear differential operator
with simple eigenvalues has the Lagrange-type interpolation
property. In 1994, P.L. Butzer and G. Schöttler proved that
conjecture, but a year later Annaby pointed out an error in
their paper and gave an alternative proof which is not only
imprecise, but also deals with a very special case in which the
problem is assumed to be one dimensional.

The aim of this article is to fill the gaps in these papers by
providing an alternative proof.

1. Introduction.

1.1. Sampling theorems and Lagrange interpolation. The Whittaker-
Shannon-Kotel’nikov (WSK) sampling theorem plays an important role
not only in harmonic analysis and approximation theory, but also in
communication engineering. The theorem can be stated as follows:

Theorem 1.1 (Whittaker-Shannon-Kotel’nikov). If a function f is
band-limited to [−σ, σ], i.e., it is representable as

(1.1) f(t) =
∫ σ

−σ

e−ixtg(x) dx t ∈ R,
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for some function g ∈ L2(−σ, σ), then f can be reconstructed from its
samples, f(kπ/σ). The construction formula is

(1.2) f(t) =
∞∑

k=−∞
f

(
kπ

σ

)
sin (σt − kπ)

(σt − kπ)
t ∈ R,

the series being absolutely and uniformly convergent on R. See, e.g.,
[22, p. 16].

The points {tk = kπ/σ} are called the sampling points, and the
functions

Sk(t) =
sin σ(t − tk)

σ(t − tk)
= sinc (σ(t − tk)/π),

where

sinc (z) =
{

sin πz/(πz) z �= 0
1 z = 0,

are called the sampling functions. The series in equation (1.2) can be
put in the form

(1.3) f(t) =
∞∑

k=−∞
f(tk)

G(t)
(t − tk)G′(tk)

,

where tk = kπ/σ and G(t) = sin σt = σt
∏∞

k=1

(
1 − t2/t2k

)
.

Recall from Hadamard’s factorization theorem [18, p. 24] that if f(z)
is an entire function of order ρ, and {zn}∞n=1 is its nonzero zeros, i.e.,
zn �= 0 for all n, and p is the smallest integer for which the series∑∞

n=1 1/|zn|p+1 converges, then

f(z) = zmeP (z)
∞∏

n=1

G

(
z

zn
; p

)
,

where G(u; p) = (1−u) exp
(
u + u2/2 + · · · + up/p

)
, G(u; 0) = (1−u),

m is the multiplicity of the zero at the origin and P (z) is a polynomial
of degree not exceeding ρ.

We shall call the product
∏∞

n=1 G (z/zn; p) the canonical product of
the {zn}∞n=1 . As a special case, we have sin πz = πz

∏∞
n=1

(
1 − z2/n2

)
.
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The fact that formula (1.3) resembles Lagrange interpolation formula
prompts us to call any series of the form

(1.4)
∑

k

f(tk)
G(t)

G′(tk)(t − tk)

a Lagrange-type interpolation series, where G(t) is an entire function
whose zeros are located exactly at the points {tk}. The points {tk} will
be called the sampling points and the functions

(1.5) Gk(t) =
G(t)

G′(tk)(t − tk)
,

will be called the sampling functions. The range of k is usually either
k = 0, 1, 2, . . . , or k = 1, 2, . . . , or k = 0,±1,±2, . . . . The value t0 is
often reserved for t0 = 0.

1.2 Kramer’s sampling theorem and boundary-value problems. One
of the interesting generalizations of the WSK sampling theorem is
Kramer’s sampling theorem, which was introduced by Kramer in 1959
[17]. It provides an important link between sampling theorems and
boundary-value problems.

Theorem 1.2 (Kramer). Let there exist a function K(x, t) contin-
uous in t such that K(x, t) ∈ L2(I) as a function in x for every real
number t. Assume that there exists a sequence of real numbers {tn}n∈Z

such that {K(x, tn)}n∈Z is a complete orthogonal family in L2(I) for
some finite interval I = [a, b]. Then, for any function of the form

(1.6) f(t) =
∫ b

a

F (x)K(x, t) dx = 〈F, K〉,

with F ∈ L2(I), we have

(1.7) f(t) =
∞∑

n=−∞
f(tn)S∗

n(t),

where

(1.8) S∗
n(t) =

∫ b

a
K(x, t)K(x, tn) dx∫ b

a
|K(x, tn)|2 dx

.
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If there exists a nonnegative function g(x) ∈ L1(I) such that |K(x, t)|2 ≤
g(x), for almost all x ∈ I and all t, then the series converges uniformly
on compact subsets of R.

The WSK sampling theorem is a special case of Kramer’s sampling
theorem because, if we take I = [−σ, σ], K(x, t) = eixt, and tn =
(nπ)/σ, it is easy to see that

{
eitnx

}∞
n=−∞ is a complete orthogonal set

in L2(I), and in addition, S∗
n(t) = sinc (σ(t − tn)/π). Hence equations

(1.6) and (1.7) reduce to (1.1) and (1.2).

Kramer [17] noted that the kernel function K(x, t) and the sampling
points {tn}n∈Z may be found from certain boundary-value problems.
More precisely, let the differential operator L be defined by

L = p0(x)
dn

dxn
+ · · · + pn−1(x)

d

dx
+ pn(x), x ∈ I,

where pk(x) is a complex-valued function with n−k continuous deriva-
tives, k = 0, 1, . . . , n, for any x ∈ I = [a, b], and p0(x) �= 0 for any
x ∈ [a, b], with −∞ ≤ a < b ≤ ∞. The adjoint operator L∗ is defined
as

L∗g = (−1)n dn

dxn
(p0g) + (−1)n−1 dn−1

dxn−1
(p1g) + · · · + png.

The operator L is said to be formally self-adjoint if L = L∗. If the
coefficient functions pk, k = 0, 1, . . . , n, are real-valued, then it is easy
to see that if L is self-adjoint, then n is even.

Let Uj(y) = 0, j = 1, . . . , n, be linearly independent homogeneous
boundary conditions of the form

Uj(y) =
n∑

k=1

(
αj,ky(k−1)(a) + βj,ky(k−1)(b)

)
, j = 1, 2, . . . , n.

To any such system of boundary conditions, there exists an associated
system of boundary conditions, known as the adjoint system, and if
the two systems are equivalent, we say that they are self-adjoint [11,
p. 287]. More precise formulation of the problem and its properties will
be given in the next section.
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The boundary-value problem

Ly = −ty, x ∈ I,(1.9)
Uj(y) = 0, j = 1, . . . , n,(1.10)

is said to be self-adjoint if the differential operator and the boundary
conditions are self-adjoint and is said to be regular if L is regular. It is
known that the eigenfunctions of a regular, self-adjoint boundary-value
problem are complete in L2(I), [20, p. 82]. If U1, . . . , Un are linear
forms, A is a nonsingular matrix and [W1, . . . , Wn]T = A [U1, . . . , Un]T ,
then the boundary conditions W1(y) = 0, . . . , Wn(y) = 0 are equivalent
to U1(y) = 0, . . . , Un(y) = 0.

Kramer observed that if the regular, self-adjoint boundary-value
problem (1.9) and (1.10) possesses a function φ(x, t) that generates the
eigenfunctions of the problem {φn(x)} when the eigenvalue parameter
t is replaced by the eigenvalues{tn}, i.e., φ(x, tn) = φn(x), then one can
take the sampling points to be {tn} and the kernel function K(x, t) to
be φ(x, t).

Two points should be noted here:

i) The function φ(x, t) is not unique because one can add to it any
entire function that vanishes at the eigenvalues,

ii) The function K(x, t) does not always arise from boundary-value
problems; one such example was given by Kak [16], who derived the
Walsh sampling theorem as a special case of Kramer’s.

It is customary in the theory of boundary-value problems to denote
the eigenvalue parameter by λ and the eigenvalues by λn; therefore,
from now on we shall denote the sampling points by λn whenever
the sampling expansion is associated with a boundary-value problem.
Kramer’s observation leads us to the following definition.

Definition 1. We say that a boundary-value problem has the
Kramer property if it possesses a function φ(x, λ), entire in λ, that
satisfies Lφ(x, λ) = −λφ(x, λ) and generates the eigenfunctions of the
problem {φn(x)} when the parameter λ is replaced by the eigenvalues
{λn}, i.e., φ(x, λn) = ϕn(x).
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Under what conditions the boundary-value problem (1.9) (1.10) has
the Kramer property is still an open question. Some partial but
important answers have been obtained in recent years and on which we
shall elaborate a little more later. It had been conjectured that regular,
self-adjoint boundary-value problems with simple eigenvalues have the
Kramer property. In [9], Butzer and Schöttler proved that conjecture,
but almost a year later Annaby [1] was the first to point out an error in
[9] and gave an alternative proof which is not only imprecise, but also
deals with a very special case in which he assumes that the problem is
one-dimensional. For the definition of one-dimensional problems, see
Definition 5 below.

The aim of this article is to explain the flaws in the aforementioned
papers, and then provide an alternative proof.

1.3 Boundary-value problems and Lagrange-type interpolation. Al-
though the connection between sampling theorems and boundary-value
problems has been the focus of many research papers in the last few
years [3, 4, 7 9, 12, 13, 19, 21, 25] in this section we shall focus more
on the connection between boundary-value problems and Lagrange-
type interpolation.

The series in (1.7) and (1.8) does not resemble, and in general, is
not a Lagrange-type interpolation series since it cannot always be put
in the form (1.4). Nevertheless, if the sampling points and functions
are obtained from the self-adjoint boundary-value problem (1.9) (1.10),
then (1.7) can be brought closer to the Lagrange-type interpolation
series, provided that the problem has the Kramer property. For, if
φ(x, λ) is a function that generates the eigenfunctions of the problem,
then

Lφ(x, λ) = −λφ(x, λ), and Lφn(x) = −λnφn(x),

and hence,∫ b

a

[
φ(x, λ)Lφn(x) − φn(x)Lφ(x, λ)

]
dx

= (λ − λn)
∫ b

a

φ(x, λ)φn(x) dx.

But on the other hand, by Lagrange’s identity [11, p. 80] for differen-
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tial operators, we have for any two functions u(x) and v(x) in Cn[a, b],

v(x)Lu(x) − u(x)Lv(x) =
d

dx
[u(x) , v(x)] ,

where

[u, v] (x) =
n∑

m=1

∑
j+k=m−1

(−1)ju(k)(x) (pn−m(x)v(x))(j) , j, k ≥ 0.

Therefore,

(1.11) Gk(λ) = (λ−λk)
∫ b

a

φ(x, λ)φk(x) dx = [φk, φ] (b)− [φk, φ] (a).

Since in almost all cases of interest the operator L is real, to simplify
the notation we shall assume from now on that this is indeed the
case. Because φ(x, λ) is an entire function in λ, Gk(λ) is also entire.
Clearly, Gk(λk) = 0, and moreover, Gk(λm) = 0 if k �= m by the
orthogonality of the eigenfunctions {φk(x)}. Hence, Gk(λm) = 0 for
all m. Differentiating Gk(λ) leads to

G′
k(λ) = (λ − λk)

∫ b

a

∂φ(x, λ)
∂λ

φk(x) dx +
∫ b

a

φ(x, λ)φk(x) dx,

and by setting λ = λk we obtain

(1.12) G′
k(λk) = ‖φk‖2.

Hence, by combining (1.11), (1.12) and (1.8), we obtain

S∗
k(λ) =

Gk(λ)
(λ − λk)G′

k(λk)
,

which, in turn, upon its substitution in (1.7), leads to

(1.13) f(λ) =
∑

k

f(λk)
Gk(λ)

(λ − λk)G′
k(λk)

.

Equation (1.13) is similar, but not exactly the same as (1.4) since, in
(1.4) all the functions, Gk(λ), are the same and equal to a function
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G(λ), which, without loss of generality, may be taken as the canonical
product of its zeros.

In fact, all the functions, Gk(λ), which have zeros at {λm}, do not
have to be equal to obtain a form similar to (1.4). If we further assume
that

(1.14) Gk(λ) = akG(λ),

where ak is a constant independent of λ, and

G(λ) =
{∏

j(1 − (λ/(λj))) if zero is not an eigenvalue,
λ
∏

j(1 − (λ/(λj))) if zero is an eigenvalue,

then G′
k(λk) = akG′(λk) and the series (1.13) becomes a Lagrange-type

interpolation series

(1.15) f(λ) =
∑

k

f(λk)
G(λ)

(λ − λk)G′(λk)
.

The infinite products converge absolutely for differential operators
of orders n ≥ 2 because λj = O(jn) for large j. For first order
differential operators, the products may either diverge or converge
but not necessarily absolutely. In either case, we can introduce a
convergence factor as in Hadamard’s theorem to obtain an entire
function G(λ) that vanishes exactly at the eigenvalues and nowhere
else.

The above discussion motivates the following definition.

Definition 2. We say that a boundary-value problem possesses the
Lagrange-type interpolation property if it has the Kramer property and
its associated sampling series is a Lagrange-type interpolation series as
in (1.15).

Recall that the set of all eigenfunctions which belong to the same
eigenvalue is a finite-dimensional vector space of dimension less than
or equal to n (n being the order of the differential operator). The
dimension of this space is called the geometric multiplicity of this
eigenvalue.
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Definition 3. An eigenvalue λ is said to be geometrically simple if it
has exactly one linearly independent eigenfunction. We shall say that
a boundary-value problem is geometrically simple if all its eigenvalues
are geometrically simple.

Let us denote the set of all regular, self-adjoint boundary-value
problems (1.9) (1.10) by B, the set of all those that have the Kramer
property by K, and the set of all those that have the Lagrange-
type interpolation property by L and the set of all those that are
geometrically simple by S. From the definitions, it follows that L ⊂ K.
Theorem 1.3 below shows that L is not empty. Therefore, we have the
following inclusions: L ⊂ K ⊂ S ⊂ B. S is a proper subset of B since
the boundary-value problem:

y′′ = −λy, 0 < x < π,

with periodic boundary conditions y(0) = y(π), y′(0) = y′(π), is regular
self-adjoint, but all its eigenvalues, except for λ = 0, are double. In
fact, the eigenvalues are (2n)2 and the corresponding eigenfunctions are
cos 2nx and sin 2nx. We note that it is possible to obtain some kind
of sampling theorem for this problem, but it is not of the simple form
given by Kramer’s theorem. What kind of boundary-value problem
does belong to L? We shall answer this question in the remaining part
of this article.

The first result on the relationship between boundary-value problems
and Lagrange-type interpolation was obtained by Zayed, Butzer and
Hinsen in [26] (see also [23] for more general results), where it was
shown that the general Sturm-Liouville problem of the type

y′′ − q(x)y = −λy, x ∈ [a, b],(1.16)
cos α y(a) + sin α y′(a) = 0,(1.17)
cos β y(b) + sin β y′(b) = 0,(1.18)

where α, β ∈ R and q ∈ C[a, b] has the Lagrange-type interpolation
property, i.e., regular Sturm-Liouville problems belong to the class L.
More precisely, the following theorem was proved.

Theorem 1.3. Consider the Sturm-Liouville problem (1.16) (1.18).
Let Φ(x, λ) be the solution of (1.16) satisfying the initial condition

(1.19) y(a) = sin α and y′(a) = − cosα.
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Let {λk}k denote the eigenvalues of the problem (1.16) (1.18), where
λ0 is reserved for the eigenvalue zero. Let f be represented in the form

f(λ) =
∫ b

a

g(x)Φ(x, λ) dx, λ ∈ R,

for some g(x) ∈ L2(a, b). Then f is an entire function of exponential
type in t =

√
λ that admits the sampling representation

f(λ) =
∞∑

k=1

f(λk)
G(λ)

G′(λk)(λ − λk)
, if zero is not an eigenvalue,

and

f(λ) =
∞∑

k=0

f(λk)
G(λ)

G′(λk)(λ − λk)
, if zero is an eigenvalue,

where G(λ) is an entire function having zeros only at {λk}, and without
loss of generality, G(λ) can be taken as the canonical product of its
zeros, i.e.,

G(λ) =
{∏

j(1 − (λ/(λj))) if zero is not an eigenvalue,
λ
∏

j(1 − (λ/(λj))) if zero is an eigenvalue.

The series converges uniformly on each compact subset of R.

In the setting of Kramer’s theorem, the kernel function K(x, λ) =
Φ(x, λ) because it is easily seen that Φ(x, λ) generates the eigenfunc-
tions when λ is replaced by λk.

The above theorem has been extended to more general boundary-
value problems. It was conjectured that regular, self-adjoint, boundary-
value problems with algebraically simple eigenvalues have the Lagrange-
type interpolation property. For the definition of an algebraically sim-
ple eigenvalue, see Definition 4 below. This conjecture was erroneously
proved by Butzer and Schöttler in [9]. In [1, 2] Annaby gave an al-
ternative proof which is not only imprecise, but also deals with a very
special case.

The aim of this article is to fill the gaps in the aforementioned papers
by providing an alternative proof. The rest of the article is organized as



LAGRANGE INTERPOLATION 531

follows. In Section 2, we introduce the basic notation and terminology.
To explain the flaw in the argument given in [9], we need to briefly
introduce Butzer and Schöttler’s proof and construction of the kernel
function K(x, λ), and then give a counterexample to their construction
in Section 3. In Section 4, we discuss Annaby’s proof and then provide
an alternative proof. An example is provided in Section 5.

2. Preliminaries. Consider the following nth order eigenvalue
problem consisting of the differential equation
(2.1)

Ly := p0(x)y(n)(x) + p1(x)y(n−1)(x) + · · · + pn(x)y(x) = −λy(x),
−∞ < a ≤ x ≤ b < ∞,

with the boundary conditions

(2.2)
Ui(y) :=

n∑
k=1

{
αik y(k−1)(a) + βik y(k−1)(b)

}
= 0,

i = 1, . . . , n,

where pk ∈ Cn−k([a, b]), k = 0, . . . , n and αik, βik are constants.

We assume that the problem is regular, that is, p0(x) �= 0 for any
x ∈ [a, b], and that the boundary conditions Ui, i = 1, . . . , n, are
linearly independent.

For u, v ∈ Cn([a, b]), Green’s formula [11, p. 86] holds:

(2.3)
∫ b

a

[v̄L(u) − uL∗(v)] dx = [u(x) , v(x)]ba ,

where

(2.4) [u(x) , v(x)] =
n∑

k=1

∑
p+q=k−1

(−1)pu(q)(x)(pn−k(x) v̄(x))(p),

and L∗ is the adjoint differential operator

L∗(y) =
n∑

k=0

(−1)k(p̄n−k y)(k).
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The boundary conditions {Uj}n
j=1 can be completed to a linear indepen-

dent system {Uj}2n
j=1 [11, p. 287] and Green’s formula can be written

as [11, p. 288], [20, p. 9]: For u, v ∈ Cn([a, b])

(2.5)
∫ b

a

[v̄L(u) − uL∗(v)] dx = U1V2n + U2V2n−1 + · · · + U2nV1,

where Vj are linear forms in v(a), . . . , v(n−1)(a), v(b), . . . , v(n−1)(b).
The boundary conditions

Vj(y) = 0, j = 1, . . . , n,

are called the adjoint boundary conditions. The nth order prob-
lem is said to be self-adjoint if and only if L = L∗, and the
boundary conditions are self-adjoint, that is, each system {y(a), . . . ,
y(n−1)(a), y(b), . . . , y(n−1)(b)} satisfying Uj(y) = 0, j = 1, . . . , n, also
fulfills the adjoint boundary conditions Vj(y) = 0, j = 1, . . . , n, and
vice versa.

Let φ(x, λ) and φ(x, λ̃) be solutions of (2.1), i.e., Lφ(x, λ) =
−λφ(x, λ) and Lφ(x, λ̃) = −λ̃φ(x, λ̃). If the differential operator L
is real and the problem (2.1) (2.2) is self-adjoint, then (2.5) will take
the form

(2.6)

(λ − λ̃)
∫ b

a

φ(x, λ)φ(x, λ̃) dx

= U1 (φ(x, λ))V2n

(
φ(x, λ̃)

)
+ U2 (φ(x, λ))V2n−1

(
φ(x, λ̃)

)
+ · · ·

+ U2n (φ(x, λ))V1

(
φ(x, λ̃)

)
.

We denote by yi the solution of (2.1) satisfying

(2.7) y
(k−1)
i (a, λ) =

{
0 if i �= k,
1 if i = k,

(= δik), i, k = 1, . . . , n.

Then the set {y1(x, λ), . . . , yn(x, λ)} forms a fundamental system of
solutions of (2.1) so that for any solution y(x, λ) of (2.1), there exist
constants, α1, . . . , αn, such that

y(x, λ) =
n∑

i=1

αi yi(x, λ).
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Consider the n × n matrix

(2.8) A(λ) = (Ui(yj))i,j ,

and let Δ(λ) be its determinant

(2.9) Δ(λ) = det A(λ),

which is called the characteristic determinant. Then λ̃ is an eigenvalue
of (2.1) and (2.2) if and only if Δ(λ̃) = 0 [20, p. 15]. Let us denote the
set of all eigenvalues of the problem (2.1) and (2.2) by EV = {λm}m.
An eigenvalue λ̃ may be a multiple zero of Δ(λ). Its multiplicity as
a zero is called the algebraic multiplicity of that eigenvalue. Now we
introduce the following definition.

Definition 4. An eigenvalue λ is said to be algebraically simple if it
is a simple zero of Δ(λ). We shall say that a boundary-value problem
is algebraically simple if all its eigenvalues are algebraically simple.

The geometric multiplicity of an eigenvalue cannot exceed its alge-
braic multiplicity ([20, p. 15]). Thus, if λ̃ is a simple zero of Δ(λ), its
geometric multiplicity is one, i.e., an algebraically simple eigenvalue is
also geometrically simple.

For regular, self-adjoint, boundary-value problems, the geometric
multiplicity of an eigenvalue is equal to its algebraic multiplicity. This
can be seen from the following facts: 1) the algebraic multiplicity of
an eigenvalue is equal to its geometric multiplicity plus the number of
associated functions corresponding to that eigenvalue, see [20, Theorem
VI, Section 2.3]); hence, the algebraic multiplicity of an eigenvalue is
equal to its geometric multiplicity if the eigenvalue has no associated
functions, 2) The eigenvalue problem (1.9) (1.10) is equivalent to a
homogeneous Fredholm integral equation whose kernel is the Green’s
function of the problem and such integral equation is known to have
no associated functions in the sense of Naimark because the integral
operator is a self-adjoint, compact operator. Therefore, from now on,
and without loss of generality, by a simple eigenvalue, we mean an
algebraically simple eigenvalue.
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Counter-example. In this section, we introduce Butzer and
Schöttler’s result [10] and outline their proof and then conclude the
section with a counterexample to their construction.

The first main step of their proof is the construction of the kernel
function φ(x, λ). To this end, the authors defined φ(x, λ) by

(3.1) φ(x, λ) =

∣∣∣∣∣∣∣∣
y1(x, λ) · · · yn(x, λ)
U1(y1) · · · U1(yn)

...
...

Un−1(y1) · · · Un−1(yn)

∣∣∣∣∣∣∣∣ .
Since φ(x, λ) is a linear combination of the fundamental solutions

yi(x, λ); i = 1, 2, . . . , n, it is also a solution of the differential equation
(2.1). Moreover, it is an entire function in λ because the yi’s are
entire functions in λ. It is also evident that Ui (φ(x, λ)) = 0 for
i = 1, 2, . . . , n − 1. Moreover, in view of (2.9), Un (φ(x, λ)) = 0
if and only if λ is an eigenvalue. Thus, at an eigenvalue λ = λn,
φ(x, λn) is an eigenfunction, i.e., φ(x, λ) is a function that generates
the eigenfunctions of the problem. Since the ordering of the boundary
conditions is arbitrary, there are essentially n such choices for φ(x, λ).
Butzer and Schöttler’s theorem can be stated as follows.

Theorem 3.1. Consider the regular, self-adjoint eigenvalue problem
of nth order given by (2.1) and (2.2). Assume that all the eigenvalues
are simple and denote the set of eigenvalues by EV . If F is repre-
sentable in the form

F (λ) =
∫ b

a

φ(x, λ)g̃(x) dx, λ ∈ R,

for some g̃ ∈ L2(a, b), then F is an entire function that admits the
sampling representation

(3.2) F (λ) =
∑

λk∈EV

F (λk)
β(λ)G(λ)

β(λk)G′(λk)(λ − λk)
,

where β(λ) is an entire function with no zeros and

G(λ) =

{∏
λk∈EV (1 − (λ/(λk))) if 0 /∈ EV ,

λ
∏

λk∈EV
λk �=0

(1 − (λ/(λk))) if 0 ∈ EV .
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The series converges uniformly on each compact subset of R.

In particular, if we set ϕ(x, λ) = φ(x, λ)/β(λ), then for any function
f of the form

f(λ) =
∫ b

a

ϕ(x, λ)g(x) dx, λ ∈ R,

for some g ∈ L2(a, b), we have the sampling representation

f(λ) =
∑

λk∈EV

f(λk)
G(λ)

G′(λk)(λ − λk)
,

where the series converges uniformly on each compact subset of R.

To derive (3.2), the authors used Green’s formula (2.6) and (1.11) to
write

Gk(λ) = (λ − λk)
∫ b

a

φ(x, λ)φk(x) dx

= U1 (φ(x, λ))V2n (φk(x)) + U2 (φ(x, λ))V2n−1 (φk(x)) + · · ·
+ U2n (φ(x, λ))V1 (φk(x)) .

Because the problem is self-adjoint, φk(x) satisfies all the boundary
conditions V1, . . . , Vn and, in addition, because φ(x, λ) satisfies the
first n − 1 conditions, U1, . . . , Un−1, the last equation reduces to

Gk(λ) = Un (φ(x, λ))Vn+1 (φk(x)) .

The authors then showed that Gk(λ) has no zeros other than the
eigenvalues, and hence they could write it, in view of Hadamard’s
factorization theorem, in the form Gk(λ) = akβ(λ)G(λ) for some
constant ak; see the comments preceding Definition 2.

Before we give a counterexample to the construction given in (3.1), let
us observe that for problems associated with second order differential
operators, there are two choices for φ(x, λ),

φ1(x, λ) =
∣∣∣∣ y1(x, λ) y2(x, λ)

U2(y1) U2(y2)

∣∣∣∣ ,(3.3)
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and

φ2(x, λ) =
∣∣∣∣ y1(x, λ) y2(x, λ)

U1(y1) U1(y2)

∣∣∣∣ .(3.4)

In the following counterexample we show that for a second order,
regular, self-adjoint, boundary-value problem, neither φ1 nor φ2 can
generate the eigenfunctions.

Example 3.1. Consider the regular boundary-value problem:

(3.5) y′′ = −λ y, 0 ≤ x ≤ π,

with

U1(y) =
y(0) − y(π)

π
+ y′(0) = 0(3.6)

and

U2(y) =
2(y(0) + y(π))

π
+ y′(0) + y′(π) = 0.(3.7)

First, we show that the above problem is self-adjoint. Suppose that
a twice continuously differentiable function y satisfies the boundary
conditions (3.6). Then y satisfies

(3.8) y′(0) =
y(π) − y(0)

π

and by (3.7) we have

(3.9) y′(π) =
1
π

(−y(0) − 3y(π)).

Let u, v be twice continuously differentiable functions satisfying the
boundary conditions (3.6). In view of (3.8) and (3.9), it follows that∫ π

0

(u′′(x)v(x) − u(x)v′′(x)) dx = 0.

Hence, the above system is self-adjoint.
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Let yj be the solution of the differential equation (3.5) satisfying

y
(k−1)
j (0) = δjk, j, k = 0, 1,

and s =
√

λ. Then

y1(x, s2) = cos sx and y2(x, s2) =
sin sx

s
.

Let

A(λ) =
(

U1(y1) U1(y2)
U2(y1) U2(y2)

)
.

By simple computations, we have
(3.10)

A(λ) =

⎛⎜⎜⎝
1
π
−
(

cos sπ

π

)
−
(

sin sπ

sπ

)
+ 1

2
π

+
(

2 cos sπ

π

)
− s sin sπ

(
2 sin sπ

sπ

)
+ 1 + cos sπ

⎞⎟⎟⎠ .

Hence,

(3.11) Δ(λ) =
−2πs − 2πs cosπs + (4 + π2s2) sinπs

π2s
,

and it easily follows that the eigenvalues are the solutions of the
equation

cos
πs

2

[
− 2πs cos

πs

2
+ (4 + π2s2) sin

πs

2

]
= 0

or, equivalently, they are the solutions of the equations

cos
πs

2
= 0, and tan

πs

2
=

2πs

4 + π2s2
, s ≥ 0.

There are two sequences of eigenvalues

λ2n = (2n + 1)2, and λ2n+1 = s2
n, n = 0, 1, 2, . . . ,

where sn is a solution of the equation tan((πs)/2) = (2πs)/(4 + π2s2),
s ≥ 0.
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We next show that the eigenvalues are simple. Since Δ(0) = 0 and
limλ→0(Δ(λ/λ)) = (4π)/3, zero is a simple eigenvalue. Let λ∗ > 0 be
an eigenvalue. Suppose that the multiplicity of λ∗ is greater than 1.
Then (∂/∂s)Δ(λ)|λ=λ∗ = 0. Differentiating (3.11), we have

(3.12)

(∂/∂s)Δ(λ)|λ=λ∗ =
πs∗(4 + π2s∗2) cosπs∗ + (−4 + 3π2s∗2) sin πs∗

π2s∗2 ,

where s∗ =
√

λ∗. Since Δ(λ∗) = 0 and (∂/∂s)Δ(λ)|λ=λ∗ = 0, from
(3.11) and (3.12) we have

sin πs∗ =
2πs∗(4 + π2s∗2)

8 + 14π2s∗2 + π4s∗4 and cosπs∗ =
2(4 − 3π2s∗2)

8 + 14π2s∗2 + π4s∗4 .

Therefore, setting πs∗ =
√

x = π
√

λ∗, we have

sin2 √x + cos2
√

x =
4(16 − 8x + 17x2 + x3)

(8 + 14x + x2)2

=
64 − 32x + 68x2 + 4x3

64 + 224x + 212x2 + 28x3 + x4
= 1.

But the only solutions of the equation

64 − 32x + 68x2 + 4x3

64 + 224x + 212x2 + 28x3 + x4
= 1

are x = 0,−4,−4,−16, which is a contradiction since λ∗ > 0. Hence
λ∗ is a simple eigenvalue.

In view of (3.10), we have

A(0) =
(

0 0
4/π 4

)
and A(1) =

(
2/π 1
0 0

)
,

and since Δ(0) = 0 and Δ(1) = 0, 0 and 1 are eigenvalues of the regular,
self-adjoint, eigenvalue value problem (3.5) (3.7). The corresponding
eigenfunctions are

1 − 1
π

x, and cosx − 2
π

sin x,
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respectively. Therefore, by (3.3) and (3.4), we have

φ1(x, λ) =
∣∣∣∣ cos sx (sin sx)/s
2/π + (2 cos sπ)/π − s sin sπ (2 sin sπ)/(sπ) +1+ cos sπ

∣∣∣∣ ,
(3.13)

and

φ2(x, λ) =
∣∣∣∣ cos sx (sin sx)/s
1/π − (cos sπ)/π −(sin sπ)/(sπ) + 1

∣∣∣∣ .
(3.14)

It is now easy to see that φ1(x, 1) and φ2(x, 0) are identically zero,
i.e.,

φ1(x, 1) ≡ 0 and φ2(x, 0) ≡ 0.

Hence, neither φ1(x, λ) nor φ2(x, λ) can be a kernel function producing
all the eigenfunctions of the problem because they vanish identically at
some eigenvalues.

4. A kernel function and the sampling theorem. In this
section we give an alternate proof to Theorem 3.1. First, we give
an alternate construction of the kernel function, and then prove the
sampling theorem.

Consider the nth order, regular, self-adjoint, eigenvalue problem (2.1)
and (2.2). Denote the set of all its eigenvalues, which is a subset of
R, by EV = {λm}m. The index m may run over the integers or a
subset thereof. For each λ ∈ R, denote by yi(x, λ) the solution of (2.1)
satisfying (2.7). It is known [20, p. 14], that for any 1 ≤ i ≤ n, yi is an
entire function in λ. For k = 1, . . . , n, we define the functions

φk(x, λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1(x, λ) · · · yn(x, λ)
U1(y1) · · · U1(yn)

...
...

...
Uk−1(y1) · · · Uk−1(yn)
Uk+1(y1) · · · Uk+1(yn)

...
...

...
Un(y1) · · · Un(yn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Then each φk is a solution of (2.1) and an entire function in λ because
it is a linear combination of the fundamental solutions. We seek a
solution, φ(x, λ), of (2.1) with the following properties:

(1) φ(x, λ) is an entire function in λ,

(2) for each eigenvalue λm, φ(x, λm) is an eigenfunction,

(3) for each λ ∈ R, φ(x, λ) does not vanish identically.

It should be noted that Annaby in [1, Theorem 1] assumes implicitly
that, if a function f(λ) vanishes at, say {αn}, and a function g(λ)
vanishes at, say {βn}, then one can find a constant c such that
f(λ) + cg(λ) does not vanish for any real λ. This, however, is not
true in general as can be seen from the example: f(λ) = (cosλ)eλ and
g(λ) = sin λ.

In the next theorem we construct a kernel function φ(x, λ) that
satisfies (2.1) and conditions (1) (3) above. The proof uses special
properties of the determinants defining φν .

Theorem 4.1. Consider the regular, self-adjoint, eigenvalue problem
(2.1) and (2.2). Assume that all the eigenvalues are simple. Then there
exist β1, . . . , βn in R such that

(4.1) φ(x, λ) =
n∑

i=1

βi φi(x, λ)

satisfies (2.1) and conditions (1) (3) above.

Proof. Let

(4.2) A(λ) =

⎛⎜⎝ U1(y1) · · · U1(yn)
...

...
...

Un(y1) · · · Un(yn)

⎞⎟⎠
and

(4.3) Δ(λ) = |A(λ)|,
where for an n × n matrix B, |B| denotes the determinant of B. Let
Mi,j(λ) be the determinant of the submatrix of A(λ) which remains
after the ith row and jth column are deleted from A(λ).
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Let Ac(λ) be the matrix defined by Ac
i,j(λ) = (−1)i+jMj,i(λ), that

is, Ac(λ) is the transpose of the matrix whose entries are the cofactors
(−1)i+jMi,j of the corresponding entries of A. Recall from [15, p. 353]
that

A(λ)Ac(λ) = |A(λ)|In,

hence, |Ac(λ)| = |A(λ)|n−1, n ≥ 2, where In is the n × n identity
matrix. It follows from the above equation that A(λ) is nonsingular if
and only if Ac(λ) is nonsingular. Since each yi is an entire function in
λ, Δ(λ) is also an entire function in λ. Note that for λ ∈ C

Ul(φk(x, λ)) = 0 for l �= k,(4.4)

and

Uk(φk(x, λ∗)) = 0 for k = 1, . . . , n,(4.5)

if and only if λ∗ is an eigenvalue. Fix m ∈ Z, let α̃1, . . . , α̃n ∈ R, and
define the map

Fm(x) = α̃1φ1(x, λm) + · · · + α̃nφn(x, λm),

for some α̃i, i = 1, 2, . . . , n, to be determined. By setting αi =
(−1)i+1α̃i, i = 1, 2, . . . , n, and expanding φi(x, λm) in terms of the
fundamental solutions, we obtain

Fm(x) =
n∑

i=1

α̃i

[ n∑
j=1

(−1)j+1Mi,j(λm)yj(x, λm)
]

=
n∑

j=1

[ n∑
i=1

(−1)i+jαiMi,j(λm)
]
yj(x, λm)

=
n∑

j=1

[ n∑
i=1

αiA
c
j,i(λm)

]
yj(x, λm).

Suppose that Fm(x) is identically zero, i.e., Fm(x) ≡ 0. Then because
the yi(x)’s are linearly independent, we have for j = 1, . . . , n,

(4.6)
n∑

i=1

αiA
c
j,i(λm) = 0,
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or in a matrix form Ac(λm)α = 0, where α = (α1, . . . , αn)T . Since
A(λm) is singular, so is Ac(λm), and the rank of Ac(λm) is k with
1 ≤ k ≤ n − 1. Hence the solution to equation (4.6) is a vector space
of dimension n − k, which can be imbedded in a hyperplane Sm of
dimension n − 1 in the form

α1,mx1 + α2,mx2 + · · · + αn,mxn = 0.

Here we may identify the vector (x1, . . . , xn) with the point (x1, . . . , xn).

Let S = ∪m∈ZSm. First, we show that Rn is not the union of
countably many hyperplanes of dimensions n − 1 passing through the
origin. Since any such hyperplane is of the form a1x1 + a2x2 + · · · +
anxn = 0 , we can write it in the form a1x1 + a2x2 + · · · + anxn = 0
with

∑n
i=1 a2

i = 1 (just replace ai by ai/
∑n

i=1 a2
i ). Let

{Sm : α1,mx1 + α2,mx2 + · · · + αn,mxn = 0}m∈Z

be such a collection.

For each m ∈ Z, consider the n-tuple (α1,m, α2,m, . . . , αn,m) = Pm.
Because

∑n
i=1 a2

i,m = 1, Pm can be viewed as a point on the unit sphere
in Rn, and since the unit sphere is not countable, we can find a point
P = (α1, α2, . . . , αn) on the unit sphere such that P �= ±Pm for all m.
It suffices to find αi �= ±αi,m for all m and i = 1, 2, . . . , n. Hence, the
hyperplane

α1x1 + α2x2 + · · · + αnxn = 0

is a hyperplane of dimension n − 1 in Rn that does not belong to S.

Since in Rn any hyperplane of dimension k with 1 ≤ k ≤ n − 1 is
nowhere dense in Rn, it follows from the Baire category theorem that
Rn cannot be equal to a countable union of hyperplanes of dimensions
less than or equal to n−1. Similarly, any hyperplane of dimension n−1
cannot be a countable union of hyperplanes of dimensions less than
n − 1.
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We have shown that to every eigenvalue λm, there exists infinitely
many α1,m, . . . , αn,m that make

n∑
i=1

αi,m φi(x, λm) = 0,

but all these αi,m’s lie on a hyperplane of dimension n − 1.

Since Rn is not the union of countably many hyperplanes of dimen-
sions less than or equal to n−1 passing through the origin, we can find
(β1, . . . , βn) ∈ Rn − S, so that for all m ∈ Z,

(4.7) β1φ1(x, λm) + · · · + βnφn(x, λm) �≡ 0.

Now we construct a function φ(x, λ) that satisfies (2.1) and conditions
(1) (3) above. Let

(4.8) φ(x, λ) =
n∑

i=1

βi φi(x, λ).

Then, clearly φ is a solution of (2.1), which is also an entire function
in λ. By (4.5), for each eigenvalue λm

Ul(φ(x, λm)) = 0 for l = 1, . . . , n,

and hence φ(x, λm) is an eigenfunction corresponding to the eigenvalue
λm. Thus, φ(x, λ) satisfies condition (2).

Next we show that for any noneigenvalue λ, φ(x, λ) does not vanish
identically, i.e, it satisfies condition (3).

Let λ∗ be a noneigenvalue. We have

φ(x, λ∗) =
n∑

i=1

βi φi(x, λ∗).

By expanding φi(x, λ∗) in terms of the fundamental solutions, we obtain

φ(x, λ∗) =
n∑

j=1

Cj yj(x, λ∗),
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where

Cj =
n∑

i=1

βi(−1)j+1Mi,j(λ∗).

Let us set βi = (−1)i+1wi to obtain

φ(x, λ∗) =
n∑

j=1

[ n∑
i=1

(−1)i+jwiMi,j(λ∗)
]
yj(x, λ∗).

Assume that φ(x, λ∗) ≡ 0, then we obtain, in view of the linear
independence of the fundamental solutions, that

n∑
i=1

(−1)i+jwiMi,j(λ∗) = 0, j = 1, . . . , n,

which can be written in the form

Ac(λ∗)w = 0,

where w = (w1, . . . , wn)T . But since A is nonsingular at λ∗, it follows
that w = 0, which implies that wi = 0 for i = 1, . . . , n. This in turn
implies that βi = 0 for i = 1, 2, . . . , n, which is a contradiction since
(β1, . . . , βn) /∈ S. Therefore, for every λ which is not an eigenvalue,
φ(x, λ) does not vanish identically.

Definition 5. We say that the BVP (2.1) and (2.2) is one-
dimensional if there exists 1 ≤ k ≤ n such that the rank of the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

U1(y1) · · · U1(yn)
...

...
Uk−1(y1) · · · Uk−1(yn)
Uk+1(y1) · · · Uk+1(yn)

...
...

Un(y1) · · · Un(yn)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
is n − 1 for all eigenvalues λm.
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Clearly, under the assumption that the BVP (2.1) and (2.2) is one-
dimensional, we can take

φ(x, λ) = φk(x, λ)

and Theorem 4.1 holds. This is essentially the case considered by
Butzer and Schöttler and later by Annaby in his proof of the sampling
theorem, see [2, equation (3.5), Theorem 3.6].

In the next theorem, we use the kernel function defined by (4.8)
to derive the sampling theorem and the Lagrange-type interpolation
series associated with problem (2.1) and (2.2). Here it should be
emphasized that, under the stringent assumption that the problem is
one-dimensional, the Lagrange identity, (2.6), which contains 2n terms,
reduces to just one term, hence simplifying the proof significantly. The
proof of the general case is more complicated and requires a special
treatment as can be seen below.

Theorem 4.2. Consider the regular, self-adjoint eigenvalue problem
(2.1) and (2.2). Assume that all the eigenvalues are simple. Then,
there is a kernel function φ(x, λ) such that if f is represented by

(4.9) f(λ) =
∫ b

a

φ(x, λ)g(x) dx, λ ∈ R,

for some g ∈ L2(a, b), then f is an entire function that admits the
sampling representation

(4.10) f(λ) =
∑

λn∈EV

f(λn)
Δ(λ)

Δ′(λ)(λ − λn)
.

The series converges uniformly on each compact subset of R, and
Δ(λ) is the entire function defined by (4.3) whose zeros are exactly
the eigenvalues. Without loss of generality, we may take Δ(λ) to be the
canonical product of its zeros.

Proof. Let φ be the function defined in Theorem 4.1. Let

F (λ) =
∫ b

a

φ(x, λ)g(x) dx
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for some g ∈ L2(a, b). Since φ(x, λ) is an entire function in λ, and the
integral converges uniformly, F is an entire function. For any eigenvalue
λm and λ ∈ R, we have∫ b

a

[φ(x, λ)Lφ(x, λm) − φ(x, λm)Lφ(x, λ)] dx

= (λ − λm)
∫ b

a

φ(x, λ)φ(x, λm) dx := Gm(λ),

so that Gm(λ) is an entire function in λ.

Differentiating (4.12) with respect to λ and taking the limit λ → λm,
we have

(4.13) G′
m(λm) =

∫ b

a

|φ(x, λm)|2 dx, and G′
m(λm) �= 0.

Since φ(·, λ) ∈ L2(a, b), we can expand it as a series of eigenfunctions
[11, p. 199]

(4.14) φ(x, λ) =
∑

λm∈EV

Sm(λ)φ(x, λm),

where the series converges in L2(a, b) and

(4.15) Sm(λ) =

∫ b

a
φ(x, λm)φ(x, λ) dx[ ∫ b

a
|φ(x, λm)|2 dx

] .

In view of (4.12), (4.13) and (4.15), we have

Sm(λ) =
Gm(λ)

G′
m(λm)(λ − λm)

.

By Parseval’s equality, it follows that

(4.16)

f(λ) =
∫ b

a

φ(x, λ)g(x) dx

=
∑

λm∈EV

{∫ b

a

g(x)φ(x, λm) dx

}

×
{∫ b

a

φ(x, λ)φ(x, λm) dx

}
||φ(·, λm)||−2

2

=
∑

λm∈EV

f(λm)Sm(λ) =
∑

λm∈EV

f(λm)
Gm(λ)

G′
m(λm)(λ−λm)

,
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where ||φ(·, λm)||2 = (
∫ b

a
|φ(x, λm)|2 dx)1/2 and the series converges

pointwise.

We next show that Gm(λ∗) = 0 implies that λ∗ is an eigenvalue.
From (4.1) (4.5), it follows that, for λ ∈ R,

(4.17) Ui(φ(x, λ)) = (−1)i+1βiΔ(λ), i = 1, . . . , n,

and for any eigenvalue λl, Gm(λ�) = 0. Let λ∗ be a noneigenvalue and
m ∈ Z. Then

(4.18) Gm(λ∗) = (λ∗ − λm)
∫ b

a

φ(x, λ∗)φ(x, λm) dx.

In view of (2.6), we also have

Gm(λ∗) = (λ∗ − λm)
∫ b

a

φ(x, λ∗)φ(x, λm) dx

= U1(φ(x, λ∗))V2n(φ(x, λm)) + · · ·
+ Un(φ(x, λ∗))Vn+1(φ(x, λm))
+ Un+1(φ(x, λ∗))Vn(φ(x, λm)) + · · ·
+ U2n(φ(x, λ∗))V1(φ(x, λm)),

where V1(y) = 0, . . . , V2n(y) = 0 are the adjoint-boundary conditions
of (2.2).

Because the boundary-value problem (2.1), (2.2) is self-adjoint

Vi(φ(x, λm)) = 0, i = 1, . . . , n.

Therefore, in view of (4.17),

Gm(λ∗) = (λ∗ − λm)
∫ b

a

φ(x, λ∗)φ(x, λm) dx

= U1(φ(x, λ∗))V2n(φ(x, λm)) + · · ·
+ Un(φ(x, λ∗))Vn+1(φ(x, λm))

= Δ(λ∗)wm,

where wm is a constant independent of λ∗, given by the scalar product
wm = β · Ṽm, of the vectors β =

[
β1,−β2, . . . , (−1)n+1βn

]
and

Ṽm = [V2n(φ(x, λm)), . . . , Vn+1(φ(x, λm))].
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Clearly, wm �= 0, otherwise Gm(λ∗) would be identically zero, which
would contradict (4.13). Therefore, Gm(λ∗) and Δ(λ∗) have exactly
the same zeros, and hence the condition Gm(λ∗) = 0 would imply that
λ∗ is an eigenvalue.

Because, for any λ, Gm(λ) = Δ(λ) · wm, equation (4.16) can be
written as

(4.19) f(λ) =
∑

λm∈EV

f(λm)
Δ(λ)

Δ′(λm)(λ − λm)
.

Having proved (4.19), we can now use standard techniques to prove the
uniform convergence, cf. [9].

5. Example. In this section we give an example to show how to
apply Theorem 4.1 to the counterexample given in Section 3, Exam-
ple 3.1.

Example 5.1. In Example 3.1, let s =
√

λ, β1 = 1 and β2 = 2, so
that

φ(x, s2) = (2U1(y2) + U2(y2))y1(x, s2) − (2U1(y1) + U2(y1))y2(x, s2)

= (3 + cosπs) cos sx −
(

4
π
− s sin πs

)
sin sx

s
.

Then for any s, φ(x, s2) does not vanish identically and, when s2 is equal
to an eigenvalue, φ(x, s2) generates the corresponding eigenfunction.
Since φ(x, s2) does not vanish identically, it is a kernel function. Note
that

Δ(s2) =
−2sπ − 2πs cosπs + (4 + π2s2) sin πs

π2s
,

and

φ(x, 0) = 4
(

1 − 1
π

x

)
, and φ(x, 1) = 2

(
cos x − 2

π
sin x

)
,

Let {sn}n∈N be a sequence of nonnegative zeros of the equation
Δ(s2) = 0. If f(s2) =

∫ π

0
φ(x, s2)g(x) dx for some g ∈ L2(0, π), then f

admits the following sampling representation

f(s2) =
∑
n∈N

f(sn)
Δ(s2)

Δ′(s2
n)(s2 − s2

n)
,
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where Δ′(s2
n) = (d/ds2)Δ(s2)|s=sn

and the series converges uniformly
on each compact subsets of R.
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