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VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS
WITH ACCRETIVE OPERATORS AND

NON-AUTONOMOUS PERTURBATIONS

STEFANO BONACCORSI AND MARCO FANTOZZI

ABSTRACT. This paper is devoted to study a class of
nonlinear scalar Volterra equations in general Banach spaces,
with an m-accretive leading operator and a nonautonomous
perturbation. We shall consider both the case of Lipschitz
perturbations and the case of dissipative perturbations. We
prove the existence of a generalized solution and discuss some
useful estimates for it.

1. Introduction. The type of Volterra equations studied in this
paper is the nonlinear evolution equation
(1.1)⎧⎨⎩

d

dt

(
k0(u(t)−x) +

∫ t

0

k1(t−s)(u(s)−x) ds

)
+ G(u(t)) = F (t, u(t)),

t ∈ (0,∞), u(0+) = x,

in a real Banach space X. Here, k0 ≥ 0 is a constant and k1 is a
real, nonnegative function that satisfy Hypothesis 1a) below, G is an
accretive operator in X, see Hypothesis 1b), and we shall consider the
operator F (t, u) as a nonlinear, nonautonomous perturbation of the
operator G, see Hypothesis 1c) for details.

Since the early 1970s, the case where F (t, u) = f(t) has been under
consideration; this problem has an interest also in our setting, and it
shall be further discussed in Section 2.1. The next step in the literature
was to consider functional perturbations of such a problem, compare
[4, 8].

In this paper, on the contrary, we consider perturbation operators
acting on X, but we can allow such operators to be nonautonomous.
The study of (1.1) with the operator F (t, u) is based on the results for
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the inhomogeneous problem F = f(t) and a fixed point argument; this
should justify the appellative of “perturbation term” given to F (t, u).

In order to state the main result of the paper, we shall introduce
the main assumptions on the coefficients of (1.1). A comprehensive
explanation of the notation employed in the paper will be given in
Section 3.

Hypothesis 1. a)The kernel k(t) = k0 +
∫ t

0
k1(s) ds is a Bernstein

function associated to a kernel a(t)

(1.2) k0a(t) +
∫ t

0

k1(t − s)a(s) ds = 1, t ∈ (0,∞);

b) G(x) is an operator in X, with domain D(G) ⊂ X, and there
exists ω ≥ 0 such that G + ωI is m-accretive in X.

c) The perturbation term F maps R+ × X into X; it is uniformly
continuous on bounded sets of R+ × X and for each t ∈ R+ = [0,∞),
F (t, ·) is m-dissipative on X.

We shall also need the generalized domain D̂(G): this is a suitable
subset of X which contains D(G), defined in terms of Yosida approxi-
mations of G; see Definition 3.1 below.

Our main result provides the existence of a generalized solution for
problem (1.1).

Theorem 1.1. Assume X is a real Banach space, and let Hypoth-
esis 1 be satisfied. Then, for any x ∈ D(G), there exists a unique
generalized solution to the abstract nonlinear Volterra equation (1.1).

The paper is organized as follows. In Section 2, we shall discuss
how the results provided here are related with those already known in
the literature. Our notation, and some preliminary results about the
coefficients of (1.1), are given in Section 3. In particular, in subsection
3.3 we discuss some properties of the linear Volterra operator

Lu(t) =
d

dt

(
k0u(t) +

∫ t

0

k1(t − s)u(s) ds

)
.
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Although there exists a large literature about this subject, we obtain
a representation of the Yosida approximations Lμ = L(I + (1/μ)L)−1

which may deepen the understanding of the relation with the associated
completely monotonic kernel. Finally, the remaining sections are
devoted to the study of (1.1), first in the case F (t, x) = f(t), then
in the case of a Lipschitz nonlinearity, and the last section provides the
proof of Theorem 1.1.

2. Nonlinear equations with accretive operators. The equa-
tion that we consider in this paper is a nonautonomous perturbation
of the inhomogeneous problem
(2.1)⎧⎨⎩

d

dt

(
k0(u(t) − x) +

∫ t

0

k1(t − s)(u(s) − x) ds

)
+ G(u(t)) = f(t),

t ∈ (0,∞), u(0+) = x.

There is a wide literature concerning such equations, motivated also by
their relevance in applications. Actually, Volterra integro-differential
equations of convolution type with completely monotone kernel arise
naturally in several fields, as heat conduction in materials with mem-
ory and in the theory of thermo-viscoelasticity; see for instance the
monograph of Prüss [12] and the references therein.

2.1 The case of a perturbation independent of u. We start by
considering the simpler case where the perturbation on the right-hand
side of (1.1) is independent of u. This case shall provide us with the
estimates that we need in order to study the general case of equation
(1.1), compare also [9]. Therefore, in this section we are concerned
with the equation (2.1).

In order to define a generalized solution to (2.1), we shall consider an
approximate equation, where the operator L is replaced by its Yosida
approximation Lμ = L(I + (1/μ)L)−1, μ > 0. Let uμ be the solution
of the following equation

(2.2) Lμ[uμ(·) − x](t) + G(uμ(t)) = f(t), t ∈ (0,∞).

In the next theorem, we establish the existence of a generalized solution
of (2.1).
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Theorem 2.1. Assume that Hypotheses 1 a) 1 b) are satisfied, and
let x ∈ D(G) and f ∈ C(R+; X). Then, for every μ > 0, equation
(2.2) has a unique solution uμ ∈ C(R+; X).

As μ → ∞, there exists a function u = U(x, f) with u ∈ C(R+; X)
such that uμ → u in L∞

loc(R+; X).

The function u = U(x, f), that exists according to Theorem 2.1, is
said to be the generalized solution for problem (2.1).

Let us discuss briefly our setting as compared to that of Gripenberg
[8]. The results in that paper distinguish the cases k0 = 0 and k0 > 0.
In the latter case, the quoted result fully describes the case ω = 0
(ω is the type of the operator G). In general, however, we may write
G(u) = G̃(u)− ωu, G̃ is an m-accretive operator of negative type, and
ωu is a linear perturbation, so that this case may be as well treated by
means of Theorem 3 of that paper.

In Section 4, we shall discuss the case k0 = 0 in full detail. Here,
actually, the results in [8] do not suffice and a refinement of the
estimates for the solution is necessary. We collect in Theorem 4.7 the
relevant estimates that we obtain in our setting. In case k0 = 0 and G
an m-accretive operator on X, similar results were already proved in
[3], see also formula (4.16) here.

Remark 2.1. Using the estimates in [3], Gripenberg et al. [9] solved
the problem of existence of a strong solution for (2.1). In our setting,
the extension of this result does not seem straightforward, since one
of the relevant estimates couldn’t be proved with our techniques; see
Remark 4.3 for more details. We hope to return to this problem in a
subsequent paper.

2.2 The case of a Lipschitz perturbation. Now we return to
the nonlinear problem (1.1). Before we discuss the case of dissipative
operators, that is the object of Theorem 1.1, we shall consider the case
of a Lipschitz perturbation. We say that u(·) is a generalized solution
of (1.1) if u = U(x, F (·, u)).
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Theorem 2.2. Let the assumptions of Theorem 2.1 be fulfilled, and
assume that the nonlinear term F satisfies

(2.3) t �−→ F (t, ξ) ∈ C(R+; X), for all ξ ∈ X,

and there exists a function η ∈ L∞
loc(R+) such that, for any t ∈ R+

(2.4) ‖F (t, ξ1) − F (t, ξ2)‖ ≤ η(t)‖ξ1 − ξ2‖, for all ξ1, ξ2 ∈ X.

Then there exists a unique generalized solution to equation (1.1){
L[u(·) − x](t) + G(u(t)) = F (t, u(t)),
t ∈ (0,∞), u(0+) = x.

As we mentioned in the previous section, Theorem 3 in [8] is con-
cerned with the existence of a generalized solution to (1.1). As before,
cases k0 = 0 and k0 > 0 are treated separately and, again, the second
case, k0 > 0, is fully described by Gripenberg. Instead, in case k0 = 0,
the Lipschitz perturbation term in Theorem 2.2 is not contained in the
assumption of [8, Theorem 3], that is,

‖F (v1) − F (v2)‖L1(0,t;X) ≤
∫ t

0

η(s)‖v1 − v2‖L1(0,s;X) ds, t ∈ R+.

2.3 The case of a non-autonomous dissipative perturbation.
In the last section we finish the proof of the main result stated in
Theorem 1.1. We are concerned here with the case of a continuous and
m-dissipative operator F (t, u), see Hypothesis 1c). Since this term is
nonautonomous, it is not possible to include it into G and to apply the
previous theorems, also if we suppose that −G + F is m-dissipative.

The techniques applied in this part, although very different from those
employed in the previous sections, are usually applied in the theory of
dissipative systems; in particular, we refer to the proof of [6, Theorem
7.13].

Remark 2.2. In the literature, it is often assumed that G is a multi-
valued accretive operator in X, while in this paper this is not allowed.
Our choice is mainly motivated by the quest for simplicity of notation.
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Actually, it should be noticed that the extension of Theorems 2.1
and 2.2 to cover this setting is straightforward, and, in that case,
they match the results in [8]. On the other hand, the “multi-valued
version” of Theorem 1.1 requires more attention. A sufficient condition
to prove the result is the following assumption: there exists (at least)
one element y ∈ D(G) such that supz∈G(y) ‖z‖ < +∞.

In any case, this problem does not affect much the central substance
of this paper, while it is not relevant in the applications to stochastic
differential equations, see [1].

3. Notation and preliminary results. We shall denote the norm
in the Banach space X by ‖ · ‖.

3.1 Properties of accretive operators. For the sake of complete-
ness, we recall some properties of accretive operators from the book of
Da Prato [5].

An operator G on X is said to be accretive if, for any x, y ∈ D(G)
and for all λ > 0: ‖x − y‖ ≤ ‖x − y + λ(G(x) − G(y))‖; moreover,
an operator F on X is said to be dissipative if −F is accretive. We
denote by Λmc(X) the space of accretive operators G on X such that
Range (I + λG) = X; such operators are called m-accretive.

We also denote by Λ̃mc(X) the space of operators G on X such that
G+ωI belongs to Λmc(X) for a suitable real number ω. If G ∈ Λ̃mc(X)
we set ωG = inf {ω ∈ R : G + ωI ∈ Λmc(X)}; then we say that ωG is
the type of G; if ωG < 0 we say that G is of negative type.

As stated in the introduction, we assume that the operator G belongs
to Λ̃mc(X) and we denote by ω = ωG ≥ 0 the type of G. If G is of
negative type, then we choose ω = 0.

The resolvent operator Jμ, associated with G̃ = G+ωI, is defined by

Jμ =
(

I +
1
μ

G̃)
)−1

, μ > 0.

We have that Jμ satisfies the following properties:

‖Jμ(x) − Jμ(y)‖ ≤ ‖x − y‖, for all x, y ∈ X,
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and
lim

μ→∞Jμ(x) = x, for all x ∈ D(G).

We also introduce the Yosida approximations Gα, α > 0, of G̃ by
setting

Gα(x) = G̃(Jα(x)) = α(x − Jα(x)), x ∈ X.

We remark that Gα(x) is a Lipschitz continuous mapping, and it holds
that ‖Gα(x)‖ ≤ ‖G̃(x)‖ for any x ∈ D(G).

Definition 3.1. We denote the generalized domain D̂(G) the set
{x ∈ X : supα>0 ‖Gα(x)‖ < +∞}.

We have D(G) ⊆ D̂(G) ⊆ D(G). If X is not reflexive, then it is
possible that D(G) � D̂(G).

3.2 Properties of the scalar kernel. A function f : (0,∞) → R
is called completely monotonic if f belongs to C∞(0,∞) and

(−1)n dn

dxn
f(x) ≥ 0, x > 0, n = 0, 1, 2, . . . .

Below we list some properties of completely monotonic functions.

Remark 3.1. Assume that f : (0,∞) → R is completely monotonic;
then

i. if f(x0) = 0 for some x0 > 0 then f is identically zero;

ii. f has an analytic extension to {z ∈ C : �(z) > 0};
iii. if f(0+) = +∞, then (−1)n dn

dxn f(0+) = +∞ for n = 1, 2, . . . ;

iv. (−1)n dn

dxn f(+∞) = 0 for n = 1, 2, . . . .

For an exhaustive introduction to completely monotonic functions,
as well as a proof of these properties, we refer to [10, 12] or the
introduction in [11].

A C∞ function ϕ : R+ → R is called a Bernstein function if ϕ(t) ≥ 0
for t > 0 and ϕ′ is completely monotonic.
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Remark 3.2. The kernel a : (0,∞) → R is completely monotonic,
a ∈ L1

loc(0,∞). Moreover k0 = 0 implies a(0+) = +∞.

We consider in Table 1 some examples of Bernstein functions k and
the corresponding completely monotone functions a.

TABLE 1. α ∈ (0, 1) and E1(x) =
∫∞

x
e−tdt/t.

k(t) a(t)
1 1

1 + t e−t∫ t

0
E1(s) ds

∫∞
0

e−ttρ−1 (dρ/Γ(ρ))∫ t

0
(s−α/Γ(1 − α)) ds tα−1/Γ(α)

Let us consider the family of functions sμ(t), t ≥ 0, μ ∈ R, where sμ

is the solution of the scalar Volterra equation

(3.1) sμ(t) + μ

∫ t

0

sμ(t − ϑ)a(ϑ) dϑ = 1, t > 0.

Under Hypothesis 1a), it follows that sμ(t) is positive and nonincreas-
ing with respect to t > 0, for every μ > 0.

Table 2 contains examples of scalar resolvent functions for various
completely monotonic functions.

TABLE 2. Eα(x) =
∑∞

k=0
((−x)k/Γ(αk + 1)) is known as

Mittag-Leffler’s function; as before, α ∈ (0, 1).

a(t) s(t; μ)
1 e−μt

e−t (1 + μ)−1[1 + μe−(1+μ)t]∫∞
0

e−ttρ−1 dρ/Γ(ρ) 1 − ∫∞
0

μe−μρ[
∫ t

0
e−ττρ−1 dτ ] dρ/Γ(ρ)

tα−1/Γ(α) Eα(μtα)
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Proposition 3.2. For any μ ∈ R:

d

dμ
sμ(t) ≤ 0 for all t > 0.

Proof. For a proof we refer to [12, p. 98], noticing that the case μ < 0
can be treated similarly to the case μ > 0.

Notice that the above proposition not only implies that sμ(t) ≤ 1 for
any μ > 0, but also that sμ(t) ≥ 1 for any μ < 0.

Let us denote by rμ the solution to the integral equation

(3.2) rμ(t) + μ

∫ t

0

rμ(t − s)a(s) ds = μa(t).

By [12, Lemma 4.1], since a is completely monotonic, we know that, for
any μ > 0, rμ belongs to L1(R+)∩C(0,∞), it is completely monotonic,
0 ≤ rμ(t) ≤ μa(t) for all t ∈ R+, and∫ ∞

0

rμ(s) ds = r̂μ(0) =
μâ(0)

1 + μâ(0)
≤ 1.

Moreover, if μ < 0, then rμ belongs to L1
loc(R+) ∩ C(0,∞) and

rμ(t) ≤ μa(t) < 0 for all t ∈ R+, compare also [7].

The relation between sμ and rμ is clarified in the following statement.

Proposition 3.3. It holds that

(3.3) sμ(t) =
(

1 −
∫ t

0

rμ(τ ) dτ

)
, t > 0.

We shall summarize, in the next proposition, some results about the
limit behavior of rμ and sμ as μ → ∞.
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Proposition 3.4. The following relation holds between sμ and the
function k:

(3.4) μsμ(t) = (rμ ∗ k1)(t) + k0rμ(t).

Moreover,

μ

∫ t

0

sμ(τ ) dτ −→ k(t)

for almost every t > 0.

Proof. The proof is given in [8, Lemma 3.1]; let us briefly sketch it in
our notation. Taking the convolution of (3.2) with k1(·) and recalling
that from (1.2) it follows that k0a(t) + (k1 ∗ a)(t) = 1, we obtain

(rμ ∗ k1)(t) + μ
(
(rμ ∗ k1) ∗ a

)
(t) = μ(a ∗ k1)(t) = μ(1 − k0a(t)).

On the other hand, again from (3.2) and (3.1) it follows that

(μsμ − k0rμ)(t) + μ
(
(μsμ − k0rμ) ∗ a

)
(t) = μ(1 − k0a(t)),

and comparing this expression with the previous one, we prove (3.4).

The second part of the proof follows in a straightforward manner by
using Laplace transform methods.

In the following, we discuss a Gronwall-type lemma that will allow
us to prove estimates for the solution of a Volterra equation.

Lemma 3.5 (A generalized Gronwall-type Lemma). Let v be a
continuous, nonnegative function which satisfies the estimate

(3.5) v(t) ≤ sλ(t)x +
1
λ

f(t) +
ω

λ
v(t) + rλ ∗ v(t), t ∈ R+,

where λ > ω, while sλ(t) and rλ(t) are defined in (3.1) and (3.2),
respectively. Then

(3.6) v(t) ≤ d

dt

(
ωλ

ω

(
x +

1
λ

f + a ∗ f

)
∗ s−ωλ

)
(t),
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where s−ωλ
(t) is defined as in (3.1) with ωλ = (λω)/(λ − ω).

Remark 3.3. In case f ≡ 0, we obtain from the above lemma the
following estimate:

(3.7) v(t) ≤ ωλ

ω
x s−ωλ

(t).

If we consider, instead, the case ω = 0, then estimate (3.6) becomes

(3.8) v(t) ≤ x +
1
λ

f(t) + (a ∗ f)(t).

Proof. If we take the convolution with a of both sides of (3.5), we
have

(a ∗ v)(t) ≤ (a ∗ sλ)(t)x +
1
λ

(a ∗ f)(t) +
ω

λ
(a ∗ v)(t) + (a ∗ rλ ∗ v)(t).

Using the very definition of rλ in the above expression, we get

(a∗v)(t) ≤ (a∗sλ)(t)x+
1
λ

(a∗f)(t)+
ω

λ
(a∗v)(t)+(a∗v)(t)− 1

λ
(rλ∗v)(t),

that we read

(3.9) (rλ ∗ v)(t) ≤ λ(a ∗ sλ)(t)x + (a ∗ f)(t) + ω(a ∗ v)(t).

Now we substitute what we have found in (3.5) to get

v(t) ≤ sλ(t)x+
1
λ

f(t)+
ω

λ
v(t)+λ(a ∗ sλ)(t)x+(a ∗ f)(t)+ω(a ∗ v)(t),

and the definition of sλ implies

λ − ω

λ
v(t) ≤ x +

1
λ

f(t) + (a ∗ f)(t) + ω(a ∗ v)(t)

v(t) ≤ λ

λ − ω

(
x +

1
λ

f(t) + (a ∗ f)(t)
)

+ ωλ(a ∗ v)(t).

Now we conclude, since we can apply [10, Lemma 9.8.2], with g(t) =
(λ/λ − ω)(x + (1/λ)f(t) + (a ∗ f)(t)).
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3.3 Volterra operators. In this section we shall discuss some
properties of the linear Volterra operator

(3.10) Lu(t) =
d

dt

[
k0u(t) +

∫ t

0

k1(t − s)u(s) ds

]
, t > 0,

with domain

D(L) =
{
f ∈ L1(R+; X) | k0f + (k1 ∗ f) ∈ W 1,1

0 (R+; X)
}
.

The operator L is m-accretive in L1(R+; X) and densely defined; notice
that by [10, Proposition 3.2], the same holds on Lp(R+; X) for any
1 ≤ p < ∞, but we shall not use this extension.

There is a natural representation of its inverse operator L−1 in terms
of the kernel a.

Lemma 3.6. Given the operator L defined in (3.10), the operator
L−1 is defined by

(3.11) L−1v(t) =
∫ t

0

a(t − s)v(s) ds, t ∈ R+.

Proof. Let us prove one implication, say, that L(a ∗ v)(t) = v(t), the
other being similar. We start from (1.2), taking the convolution of both
sides with v(t), to get

(3.12) k0(a ∗ v)(t) + (k1 ∗ a ∗ v)(t) = (1 ∗ v)(t).

Next, observe that the definition of L implies

L(a ∗ v)(t) =
d

dt
[k0(a ∗ v)(t) + (k1 ∗ (a ∗ v))(t)] ;

if we substitute what we have found in (3.12) and use the identity
(d/dt)(1∗f)(t) = f(t), we obtain (3.11).

We now proceed to analyze the operator Lμ = L(I + (1/μ)L)−1.
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Lemma 3.7. The operator Lμ = L(I + (1/μ)L)−1 is given by

(3.13) Lμv(t) = μ

(
v(t) −

∫ t

0

v(t − s)rμ(s) ds

)
,

where rμ is a solution to (3.2).

Proof. Let y = Lμv; then(
I +

1
μ

L

)
L−1y = v =⇒ L−1y +

1
μ

y = v =⇒ a ∗ y +
1
μ

y = v.

If we take convolution with rμ, recalling (3.2), we get

a ∗ y = rμ ∗ v =⇒ μ(rμ ∗ v) + y = μv.

Remark 3.4. We shall use (3.13) in this equivalent form:

(3.14) Lμv(t) = μ
d

dt
(v ∗ sμ)(t), t ∈ R+.

3.4 Some estimates on convolution operators. Let α be
a positive real number, α ∈ (0, 1), and a a completely monotonic
function on R+ and a ∈ L1

loc(0,∞). We define a measure ρ([0, s]) =
α +

∫ s

0
a(σ) dσ. The following lemmas treat the estimates on the

convolution powers of a and ρ, respectively.

Lemma 3.8. Let a satisfy Hypothesis 1a); then, for each T > 0 and
for any constant C > 0,

Cn‖a∗n‖L1(0,T ) −→ 0.

More precisely, we have

(3.15)
∞∑

n=0

Cn‖a∗n‖L1(0,T ) < ∞.
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Proof. Let C > 0 be fixed, and define the operator A : L1(0, T ) →
L1(0, T ) as

Av(t) = C(a ∗ v)(t), t ∈ (0, T ).

A is a linear bounded operator from L1(0, T ) into itself. We claim that
the spectral radius σ(A) is 0. Then it will follow, from the formula

σ(A) = lim
n→∞ ‖An‖1/n

L(L1(0,T ))

(here ‖ · ‖L(L1(0,T )) is the norm of operators on L1(0, T )), that

C‖a∗n‖1/n
L1(0,T ) ≤ ‖An‖1/n

L(L1(0,T )) −→ 0.

In particular, from the root test for the convergence of series, we have

∞∑
n=0

Cn‖a∗n‖L1(0,T ) < ∞.

It remains to show that σ(A) = f0. From the definition of spectral
radius, it is sufficient to show that, for any α > 0 and any function
u ∈ L1(0, T ), the following problem has a solution v ∈ L1(0, T ):

u(t) = C(a ∗ v)(t) + Cαv(t).

But, since a is a completely monotonic kernel, we have

v(t) =
1

αC

(
u(t) − (r1/α ∗ u)(t)

)
,

and this shows the lemma.

Next, we state a useful generalization of the previous lemma.

Lemma 3.9. Let ρ be a completely positive measure on R, defined
by

ρ([0, t]) = α +
∫ t

0

a(s) ds,
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where α ∈ (0, 1) and a satisfies Hypothesis 1a). Let us define

ρ∗i([0, t]) =
∫ t

0

ρ([0, t − σ]) ρ∗(i−1)(dσ).

Then we have that ∞∑
n=0

ρ∗i([0, t]) < +∞.

Proof. By direct calculations it follows that

ρ∗n([0, t]) =
n∑

k=0

(
n

k

)
αn−k‖a∗k‖L1(0,t),

so we have

∞∑
n=0

ρ∗n([0, t]) =
∞∑

n=0

n∑
k=0

(
n

k

)
αn−k‖a∗k‖L1(0,t)

=
∞∑

k=0

1
k!

‖a∗k‖L1(0,t)

∞∑
n=k

n!
(n − k)!

αn−k.

Now

∞∑
n=k

n!
(n − k)!

αn−k =
∞∑

n=0

(n + k)(n + k − 1) · · · (n + 1)αn.

But

(n + k)(n + k − 1) · · · (n + 1)αn =
dk

dαk
αn+k,

then ∞∑
n=k

n!
(n − k)!

αn−k =
dk

dαk

∞∑
n=0

αn+k =
dk

dαk

αk

1 − α
.

Since
αk

1 − α
=

1
1 − α

− (1 + α + · · · + αk−1),
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we have

∞∑
n=k

n!
(n − k)!

αn−k =
dk

dαk

1
1 − α

=
k!

(1 − α)k+1
.

Hence we have

∞∑
n=0

ρ∗n([0, t]) =
∞∑

k=0

1
k!

‖a∗k‖L1(0,t)
k!

(1 − α)k+1

=
1

1 − α

∞∑
k=0

‖a∗k‖L1(0,t)

(1 − α)k
< ∞,

where the last series converges thanks to estimate (3.15) in Lemma 3.8.

4. Construction of the approximate solution. In this section,
we shall prove the results stated in Theorem 2.1. As explained in
subsection 2.1, we shall only be concerned with the case k0 = 0. We
first consider the approximate equation:

(4.1) Lμ(uμ(·) − x)(t) + G(uμ(t)) = f(t), t > 0.

Applying Jμ to both sides of (4.1), we get that this is equivalent to the
following

(4.2) uμ(t) = Jμ

(
ω

μ
uμ(t) +

1
μ

f(t) + sμ(t)x +
∫ t

0

uμ(t − s)rμ(s) ds

)
.

Lemma 4.1. Let μ > ω; then for each T > 0 there exists a unique
solution uμ to (4.1) in C([0, T ]; X).

Proof. For fixed f ∈ C(R+; X) and x ∈ X, we define the mapping

K(v)(t) = Jμ

(
ω

μ
v(t) +

1
μ

f(t)+ sμ(t)x+
∫ t

0

v(t− s)rμ(s) ds

)
, t > 0.
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It is easy to show that K maps C([0, T ]; X) into itself; moreover, we
can bound the norm of K by

‖K(v2) −K(v1)‖(t) ≤ ω

μ
‖(v2 − v1)(t)‖ + (rμ ∗ ‖v2 − v1‖)(t)

(recall that Jμ is non-expansive). Let us introduce the measure ρ on R
by

ρ([0, t]) =
ω

μ
+
∫ t

0

rμ(s) ds.

Then ρ is a completely positive measure; moreover,

‖Ki(v2) −Ki(v1)‖L∞(0,T ) ≤ ‖v2 − v1‖L∞(0,T )ρ
∗i([0, T ]),

where ρ∗i([0, t]) =
∫ t

0
ρ∗(i−1)([0, t − s]) ρ(ds).

It holds that

ρ∗n([0, t]) =
n∑

k=0

(
n

k

)(
ω

μ

)n−k

‖r∗k
μ ‖L1(0,T ),

and from Lemma 3.9 this goes to zero.

Let us denote U(x, f, μ) the solution to (4.1) constructed in Lemma 4.1.
Before we establish the convergence of U(x, f, μ), we proceed to study
a priori estimates.

Lemma 4.2. Let u1 = U(x1, f1, μ) and u2 = U(x2, f2, μ) be two
solutions to (4.1); then it holds that

‖u2(t)−u1(t)‖ ≤ ωμ

ω
‖x2−x1‖s−ωμ

(t) +
ωμ

ω

d

dt

((
1
μ
‖f2(·)−f1(·)‖

+ (a ∗ ‖f2(·)−f1(·)‖)
)
∗ s−ωμ

)
(t).

Proof. It follows from (4.2) and the fact that Jμ is nonexpansive that

‖u2(t) − u1(t)‖ ≤ sμ(t)‖x2 − x1‖ +
1
μ
‖f2(t) − f1(t)‖

+
ω

μ
‖u2(t) − u1(t)‖ +

(
rμ ∗ ‖u2(·) − u1(·)‖

)
(t),
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so we have from Lemma 3.5 that, for every μ > ω,

‖u2(t)−u1(t)‖ ≤ ωμ

ω
‖x2−x1‖s−ωμ

(t) +
ωμ

ω

d

dt

((
1
μ
‖f2(·)−f1(·)‖

+ (a ∗ ‖f2(·)−f1(·)‖)
)
∗ s−ωμ

)
(t)

where s−ωμ
is defined in (3.1) with ωμ = (μω/μ − ω).

Lemma 4.3. Assume further that

(4.4) f(t) ∈ BVloc(R+; X),

and let the assumptions of Theorem 2.1 be satisfied. Then the solution
uμ belongs to BVloc(R+) and it holds that

(4.5)

var (‖uμ(·) − x‖; [t1, t2])
≤
(
‖x‖ +

1
ω
‖Gμ(x)‖ +

1
ω
‖f(0+)‖

)
(s−ωμ

(t2) − s−ωμ
(t1))

− 1
ω

∫ T

0

r−ωμ
(s) var (f ; [ max {0, t1 − s}, t2 − s]) ds

+
1
μ

var (f ; [t1, t2]).

Proof. For any h > 0, from (4.2) it holds that

uμ(t + h) − uμ(t) = Jμ

(
sμ(t + h)x +

ω

μ
uμ(t + h) +

1
μ

f(t + h)

+
∫ t+h

0

uμ(t + h − τ )rμ(τ ) dτ

)
− Jμ

(
sμ(t)x +

ω

μ
uμ(t) +

1
μ

f(t)

+
∫ t

0

uμ(t − τ )rμ(τ ) dτ

)
.
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Taking the norm, since Jμ is nonexpansive, we get

‖uμ(t + h) − uμ(t)‖ ≤ ω

μ
‖uμ(t + h) − uμ(t)‖ +

1
μ
‖f(t + h) − f(t)‖

+
∫ t

0

‖uμ(t + h − τ ) − uμ(t − τ )‖rμ(τ ) dτ

+
∫ t+h

t

‖uμ(t + h − τ ) − x‖rμ(τ ) dτ.

Thanks to Lemma 3.5 we obtain the estimate

(4.6) ‖uμ(t + h) − uμ(t)‖ ≤ 1
μ

q(μ, h, t) + (q(μ, h, ·) ∗ a)(t),

where we set

q(μ, h, t)

= μ

∫ t+h

t

‖uμ(t + h − τ ) − x‖rμ(τ ) dτ + ‖f(t + h) − f(t)‖

− μ

∫ t

0

(∫ s+h

s

‖uμ(s + h − τ ) − x‖rμ(τ ) dτ

)
r−ωμ

(t − s) ds

−
∫ t

0

‖f(s + h) − f(s)‖r−ωμ
(t − s) ds

= μ

∫ t+h

t

‖uμ(t + h − τ ) − x‖
(

rμ(τ ) −
∫ t

0

rμ(τ − s)r−ωμ
(s) ds

)
dτ

+ ‖f(t + h) − f(t)‖ −
∫ t

0

‖f(s + h) − f(s)‖r−ωμ
(t − s) ds.

Let us consider next the convolution term which appears in (4.6):

(q(μ, h, ·) ∗ a)(t)

=
∫ t

0

dϑ

[
μa(t − ϑ)

∫ h

0

‖uμ(h − τ ) − x‖

×
(

rμ(ϑ + τ ) −
∫ ϑ

0

rμ(ϑ + τ − s)r−ωμ
(s) ds

)
dτ

]

+
∫ t

0

‖f(s + h) − f(s)‖a(t − s) ds
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−
∫ t

0

[∫ ϑ

0

‖f(s + h) − f(s)‖r−ωμ
(ϑ − s) ds

]
a(t − ϑ) dϑ

= μ

∫ t+h

t

dτ

[
‖uμ(t + h − τ ) − x‖

×
∫ t

0

a(ϑ)
(

rμ(τ − ϑ) −
∫ t−ϑ

0

rμ(τ − ϑ − s)r−ωμ
(s) ds

)
dϑ

]
+
∫ t

0

‖f(s + h) − f(s)‖

×
(

a(t − s) −
∫ t−s

0

a(t − s − ϑ)r−ωμ
(ϑ − s) dϑ

)
ds.

Finally, since r−ωμ
≤ 0, we obtain the following bound

‖uμ(t + h) − uμ(t)‖

≤
(

sup
t∈(0,h)

‖uμ(t) − x‖
)∫ t+h

t

dτ

[(
rμ(τ ) + μ

∫ t

0

rμ(τ − ϑ)a(ϑ) dϑ

)

−
(∫ t

0

rμ(τ−s)r−ωμ
(s) ds+μ

∫ t

0

∫ t−ϑ

0

rμ(τ−ϑ−s)r−ωμ
(s) ds a(ϑ) dϑ

)]
+

1
μ

(
‖f(t + h) − f(t)‖ −

∫ t

0

‖f(s + h) − f(s)‖r−ωμ
(t − s) ds

)
− 1

ωμ

∫ t

0

‖f(s + h) − f(s)‖r−ωμ
(t − s) ds

≤
(

sup
t∈(0,h)

‖uμ(t) − x‖
)∫ t+h

t

dτ

[(
rμ(τ ) + μ

∫ t

0

rμ(τ − ϑ)a(ϑ) dϑ

)

−
(∫ t

0

r−ωμ
(s)
(

rμ(τ − s) + μ

∫ t−s

0

rμ(τ − s − ϑ) a(ϑ) dϑ

)
ds

)]
+

1
μ
‖f(t + h) − f(t)‖ − 1

ω

∫ t

0

‖f(s + h) − f(s)‖r−ωμ
(t − s) ds
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Now, we divide the interval [t1, t2] in (N + 1) intervals of length h,
and we compute the variation of U(x, f, μ) along this partition to get

(4.8)
N∑

k=0

‖uμ((k + 1)h) − uμ(kh)‖

≤
(

sup
t∈(0,h)

‖uμ(t)−x‖
)

+
N∑

k=0

∫ (k+1)h

kh

dτ

[(
rμ(τ )+μ

∫ kh

0

rμ(τ−ϑ)a(ϑ) dϑ

)

−
(∫ kh

0

r−ωμ
(s)
(

rμ(τ − s) +μ

∫ kh−s

0

rμ(τ − s − ϑ) a(ϑ) dϑ

)
ds

)]

+
1
μ

N∑
k=0

‖f((k + 1)h) − f(kh)‖

− 1
ω

N∑
k=0

∫ kh

0

‖f((k + 1)h − s) − f(kh − s)‖r−ωμ
(s) ds.

Now we estimate the expression supt∈(0,h) ‖uμ(t) − x‖. Subtracting
to both sides of (4.2) Jμ(x) we have:

uμ(t) − Jμ(x)

= Jμ

(
sμ(t)x +

ω

μ
uμ(t) +

1
μ

f(t) +
∫ t

0

uμ(t − s)rμ(s) ds

)
− Jμ(x),

then

‖uμ(t) − Jμ(x)‖ ≤ ω

μ
‖uμ(t) − x‖

+
ω

μ
‖x‖ +

1
μ
‖f(t)‖ +

∫ t

0

‖uμ(t − s) − x‖rμ(s) ds

and, since Jμ(x) − x = (1/μ)Gμ(x), we have

‖uμ(t) − x‖ ≤ ω

μ
‖uμ(t) − x‖ +

ω

μ
‖x‖ +

1
μ
‖f(t)‖ +

1
μ
‖Gμ(x)‖

+
∫ t

0

‖uμ(t − s) − x‖rμ(s) ds.
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Using Lemma 3.5, we obtain

‖uμ(t) − x‖ ≤ ωμ

ω
(ω‖x‖ + ‖Gμ(x)‖)

[
1
μ

s−ωμ
(t) + (a ∗ s−ωμ

)(t)
]

+
ωμ

ω

d

dt

((
1
μ
‖f(·)‖ + (a ∗ ‖f(·)‖)

)
∗ s−ωμ

)
(t)

=
ωμ

ω
(ω‖x‖ + ‖Gμ(x)‖)

[
1
μ

+
1
ω

(s−ωμ
(t) − 1)

]
+

ωμ

ω

d

dt

((
1
μ
‖f(·)‖ + (a ∗ ‖f(·)‖)

)
∗ s−ωμ

)
(t),

therefore

sup
t∈(0,h)

‖uμ(t) − x‖ ≤ ωμ

ω
(ω‖x‖ + ‖Gμ(x)‖)

[
1
μ

+
1
ω

(s−ωμ
(h) − 1)

]

+
ωμ

ω
sup

t∈(0,h)

‖f(t)‖
(

1
μ

+
∫ h

0

a(s) ds

− 1
μ

∫ h

0

r−ωμ
(s) ds −

∫ h

0

(a ∗ r−ωμ
(s)) ds

)

so

(4.9)

sup
t∈(0,h)

‖uμ(t) − x‖ ≤ ωμ

ω

(
1
μ

+
1
ω

(s−ωμ
(h) − 1)

)
[
ω‖x‖ + ‖Gμ(x)‖ + sup

t∈(0,h)

‖f(t)‖
]
.

In case ω = 0, the above estimate simplifies to

sup
t∈(0,h)

‖uμ(t) − x‖ ≤
(

1
μ

+
∫ h

0

a(s) ds

)[
‖Gμ(x)‖ + sup

t∈(0,h)

‖f(t)‖
]
.
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Letting h → 0, the right-hand side of (4.8) becomes

1
μ − ω

(ω‖x‖ + ‖Gμ(x)‖ + ‖f(0+)‖)

×
∫ t2

t1

dτ

[(
rμ(τ ) + μ

∫ τ

0

rμ(τ − ϑ)a(ϑ) dϑ

)
−
(∫ τ

0

r−ωμ
(s)
(

rμ(τ − s) + μ

∫ τ−s

0

rμ(τ − s − ϑ) a(ϑ) dϑ

)
ds

)]
+

1
μ

var (f ; [t1, t2]) − 1
ω

∫ t2

t1

r−ωμ
(s) var (f ; [ max {0, t1− s}, t2− s]) ds

=
μ

μ − ω
(ω‖x‖ + ‖Gμ(x)‖ + ‖f(0+)‖)

×
∫ t2

t1

dτ

[
a(τ ) −

(∫ τ

0

r−ωμ
(s)a(τ − s) ds

)]
+

1
μ

var(f ; [t1, t2]) − 1
ω

∫ t2

t1

r−ωμ
(s) var(f ; [max{0, t1 − s}, t2 − s]) ds

=
(
‖x‖ +

1
ω
‖Gμ(x)‖ +

1
ω
‖f(0+)‖

)(
−
∫ t2

t1

r−ωμ
(τ ) dτ

)
+

1
μ

var (f ; [t1, t2]) − 1
ω

∫ t2

t1

r−ωμ
(s) var (f ; [ max {0, t1− s}, t2− s]) ds

=
(
‖x‖ +

1
ω
‖Gμ(x)‖ +

1
ω
‖f(0+)‖

)
(s−ωμ

(t2) − s−ωμ
(t1))

+
1
μ

var (f ; [t1, t2])− 1
ω

∫ t2

t1

r−ωμ
(s) var (f ; [ max {0, t1− s}, t2− s]) ds.

Therefore, the thesis follows:

var(‖uμ(·) − x‖; [t1, t2])

≤
(
‖x‖ +

1
ω
‖Gμ(x)‖

)
(s−ωμ

(t2) − s−ωμ
(t1))

+
1
μ

var (f ; [t1, t2]) − 1
ω

∫ T

0

r−ωμ
(s) var (f ; [max {0, t1− s}, t2− s]) ds.
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Corollary 4.4. Let the assumptions of Theorem 2.1 and (4.4) be
satisfied. Then it follows from (4.9) that

(4.10) ‖U(x, f, μ)(0+) − x‖ ≤ 1
μ − ω

(
ω‖x‖ + ‖Gμ(x)‖ + ‖f(0+)‖

)
.

Remark 4.1. We note that, for any x ∈ D(G), the estimate in (4.10)
holds and it converges to 0 as μ ↑ ∞.

In order to prepare the relevant material for the next proof, we recall
the following result that is proved in [8, Lemma 3.4].

Proposition 4.5. Assume that b ∈ L1
loc(R+) and v ∈ BVloc(R+; X).

Then the function t �→ ∫ t

0
b(t−s)v(s) ds is locally absolutely continuous

and differentiable almost everywhere on R+. Moreover,

(4.11)
∫ T

0

∥∥∥∥ d

dt

∫ t

0

b(t − s)v(s) ds

∥∥∥∥ dt

≤
(∫ T

0

|b(t)| dt

)
[‖v(0+)‖ + var (v; [0, T ])].

Lemma 4.6. Under the additional assumptions f ∈ BVloc(R+, X),
x ∈ D̂(G), we have

(4.12) lim
μ→∞U(x, f, μ) def= U(x, f)

exists in L1
loc(R+; X).

Remark 4.2. In the proof of the lemma we shall use the assumption
k0 = 0; for the case k0 > 0 a different proof is given in [8, Lemma 3.6].

Proof. Using (4.1) with λ and μ, we obtain

Lλ(uμ − x)(t) + G(uμ(t)) − f(t) = Lλ(uμ − x)(t) − Lμ(uμ − x)(t).
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Setting

(4.13) p(λ, μ, t) = Lλ(uμ − x)(t) − Lμ(uμ − x)(t),

and using formula (3.13), we get

p(λ, μ, t) = λ[uμ(t) − (uμ ∗ rλ)(t) − sλ(t)x] − f(t) + G(uμ(t));

hence, uμ satisfies the equation

uμ(t) = Jλ

(
sλ(t)x +

1
λ

f(t) +
1
λ

p(λ, μ, t) +
1
λ

ωuμ(t) + (rλ ∗ uμ)(t)
)

.

Since Jλ is nonexpansive, this equation combined with (4.2) implies

‖uλ(t) − uμ(t)‖ ≤ 1
λ
‖p(λ, μ, t)‖

+
1
λ

ω‖uλ(t) − uμ(t)‖ +
(
rλ ∗ ‖uλ(·) − uμ(·)‖)(t).

Using Lemma 3.5 we obtain

‖uλ(t)− uμ(t)‖ ≤ ωλ

ω

d

dt

((
1
λ
‖p(λ, μ, ·)‖+ a ∗ ‖p(λ, μ, ·)‖

)
∗ s−ωλ

)
(t),

that in another form we can write

‖uλ(t)− uμ(t)‖ ≤ 1
λ − ω

‖p(λ, μ, t)‖− λ

ω(λ − ω)
(‖p(λ, μ, ·)‖ ∗ r−ωλ

)(t).

We now proceed to prove that p(λ, μ, ·) converges to 0 as λ, μ → ∞ in
L1

loc(R+; X). Recall that p(λ, μ, ·) is defined by (4.13); then, by (3.14),

p(λ, μ, t) =
d

dt

∫ t

0

(uμ(τ ) − x)(λsλ(t − τ ) − μsμ(t − τ )) dτ.

By formula (4.11), we obtain∫ T

0

‖p(λ, μ, t)‖ dt ≤ var (‖uμ(·) − x‖; [0, T ])
∫ T

0

|λsλ(t) − μsμ(t)| dt.
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Since the variation of ‖uμ(·) − x‖ is bounded by a constant for μ
large enough, compare Remark 4.1, and the integral tends to 0 by
Proposition 3.4, we have the thesis.

We conclude the preparatory material for the proof of Theorem 2.1
with the following theorem, where we collect some useful estimates for
the solution of problem (2.1).

Theorem 4.7. Let xi ∈ D̂(G) and fi ∈ C(R+; X) for i = 1, 2,
and let ui = U(xi, fi) be the generalized solutions of equation defined
in Theorem 2.1. Then we have, for each t > 0 and h > 0,

(4.14) ‖u2(t)−u1(t)‖ ≤ ‖x2−x1‖s−ω(t)− 1
ω

(
r−ω ∗‖f2(·)−f1(·)‖

)
(t);

(4.15) sup
t∈(0,h)

‖u(t) − x‖

≤ (ω(s−ω(h) − 1))
(

ω‖x‖ + sup
μ>0

‖Gμ(x)‖ + sup
t∈(0,h)

‖f(t)‖
)

.

Proof. Notice first that (4.15) was already proved in Lemma 4.3, see
formula (4.9).

For the proof of (4.14), let for i = 1, 2, ui(μ; ·) = U(xi, fi, μ). Now,
observe that

‖u2(t) − u1(t)‖
≤ ‖u2(t) − u2(μ; t)‖ + ‖u1(t) − u1(μ; t)‖ + ‖u2(μ; t) − u1(μ; t)‖.

Since (4.3) holds for any μ > 0, while ui(μ; t) → ui(t) for i = 1, 2 and
for any t > 0, it follows from the previous estimate that

‖u2(t) − u1(t)‖ ≤ lim inf
μ→∞ ‖u2(μ; t) − u1(μ; t)‖.

It remains to evaluate the right-hand side of the previous estimate
where we get, using (4.3):

lim inf
μ→∞ ‖u2(μ; t) − u1(μ; t)‖ ≤ ‖x2 − x1‖s−ω(t)

+
d

dt

((
a ∗ ‖f2(·) − f1(·)‖

) ∗ s−ω

)
(t).
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Now since

d

dt

((
a ∗ ‖f2(·) − f1(·)‖

) ∗ s−ω

)
(t) = − 1

ω

(
r−ω ∗ ‖f2(·) − f1(·)‖

)
(t)

we finally obtain

‖u2(t)− u1(t)‖ ≤ ‖x2 − x1‖s−ω(t)− 1
ω

(
r−ω ∗ ‖f2(·)− f1(·)‖

)
(t).

We are in a position to conclude the proof of Theorem 2.1. Under
the additional assumptions f ∈ BVloc(R+, X), x ∈ D̂(G), we obtain
the convergence of U(x, f, μ) toward U(x, f) in L∞

loc(R+; X) and the
continuity of the limit function via an Ascoli-Arzelà theorem, by in-
voking the equicontinuity of the functions U(x, f, μ) that follows from
Lemma 4.3. Then it follows from Remark 4.1 and Corollary 4.4 that
U(x, f) ∈ BVloc(R+; X) and

U(x, f)(0+) = x.

Now it follows from Theorem 4.7 that U(x, f, μ) converges to U(x, f)
in L∞

loc(R+; X) to a continuous function also in the case that f and x
satisfy the assumptions of Theorem 2.1.

Remark 4.3. From the proof of the Lemma 4.3, compare (4.7), we
obtain, for ω = 0, the estimate

‖u(t + h) − u(t)‖ ≤
∫ t

0

‖f(t + h − s) − f(t − s)‖a(s) ds

+
(

sup
μ>0

‖Gμ(x)‖ + sup
s∈(0,h)

‖f(s)‖
)∫ t+h

t

a(s) ds,

for each t > 0 and h > 0. This is the same formula that is proved in [3].
Using this result, Gripenberg et al. [9] were able to prove the existence
of a strong solution for (2.1).

A similar estimate, up to now, does not seem to hold for ω �= 0; we
hope to return to this problem in a future work.
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5. Lipschitz nonlinearity. In this section, we shall prove the
results stated in Theorem 2.2.

Let us define the mapping H : C(R+; X) → C(R+; X)

(5.1) H(u) = U(x, F (·, u));

then a generalized solution to equation (1.1) is a function u such that

u = H(u).

We can achieve the existence of the solution from a fixed point theorem
if we prove that some iterate of H is contractive. For this purpose we
need the following lemma.

Lemma 5.1. For each T > 0 there exists k ≥ 1 such that the
k-iterate of H is a contraction:

‖Hk(u) −Hk(v)‖L∞(0,T ;X) ≤ ε‖u − v‖L∞(0,T ;X)

for some ε < 1.

Proof. From (4.14) and (2.4) we have

‖H(u)(t) −H(v)(t)‖ ≤ 1
ω

∫ t

0

(−r−ω(t − s))‖F (s, u(s))− F (s, v(s))‖ ds

≤ 1
ω

∫ t

0

(−r−ω(t − s)) η(s)‖u(s)− v(s)‖ ds.

Iterating this procedure we have

‖Hk(u)(t) −Hk(v)(t)‖

≤ 1
ωk

∫ t

0

(−r−ω(t − x1)) η(x1)
∫ x1

0

(−r−ω(x1 − x2)) η(x2) · · ·

· · ·
∫ xk−1

0

(−r−ω(xk−1 − xk)) η(xk)‖u(xk) − v(xk)‖ dxk · · · dx2 dx1.

Then

‖Hk(u) −Hk(v)‖L∞(0,T ;X)

≤ ‖u − v‖L∞(0,T ;X)ω
−k ‖η‖k

L∞(0,T )∫ T

0

∫ x1

0

· · ·
∫ xk−1

0

(−r−ω(T − x1)) · · ·(−r−ω(xk−1 − xk)) dxk · · · dx1,
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but, by a repeated use of Fubini’s theorem, we have

‖Hk(u) −Hk(v)‖L∞(0,T ;X)

≤ ‖u − v‖L∞(0,T ;X)ω
−k‖η‖k

L∞(0,T )‖(−r−ω)∗k‖L1(0,T ).

Finally, by Lemma 3.8, we have that the right-hand side converges to
zero, so for sufficiently large k we have the lemma.

As stated before, this lemma provides the proof of Theorem 2.2. We
insist on the following interpretation.

Remark 5.1. Let u = U(x, F (·, u)) be a generalized solution to (1.1):
then, by definition, this means that there exists a sequence uμ such
that

Lμ(uμ − x)(t) + G(uμ(t)) = F (t, u(t))

and uμ → u in L∞
loc(R+; X).

6. Dissipative nonlinearity. This section is devoted to prove the
results stated in Theorem 1.1, along the lines of the proof of Theorem
7.13 of [6]. Let us introduce, for any α > 0, the approximating equation

(6.1) L(uα − x)(t) + G(uα(t)) = Fα(t, uα(t)),

where Fα(t, ·) are the Yosida approximations of F (t, ·). We denote with
JF,t

α (·) the resolvent operators associated to F (t, ·).
Let us recall that Fα is Lipschitz continuous; moreover, for any

x, y ∈ X and x∗ ∈ ∂‖x‖,
〈Fα(t, x + y), x∗〉 = 〈Fα(t, x + y) − Fα(t, y), x∗〉 + 〈Fα(t, y), x∗〉

≤ 〈Fα(t, y), x∗〉 ≤ ‖F (t, y)‖.

From Theorem 2.2 we know that there exists a generalized solution
uα to equation (6.1). Then, there exist sequences uα,μ and δα,μ

δα,μ = Lμ(uα,μ − x)(t) + G(uα,μ(t)) − Fα(t, uα,μ(t))

such that
uα,μ → uα

δα,μ → 0

}
in L∞

loc(R+; X).



466 S. BONACCORSI AND M. FANTOZZI

Now, let y ∈ D(G), then for some y∗ ∈ ∂‖uα,μ(t) − y‖ we get, from

〈Lμ(uα,μ(t) − y), y∗〉 − 〈Lμ(x − y), y∗〉 + 〈G(uα,μ(t)) − G(y), y∗〉
+ 〈G(y), y∗〉 − 〈Fα(t, uα,μ(t)), y∗〉 = 〈δα,μ, y∗〉

the estimate

μ
(
‖uα,μ(t) − y‖ − (‖uα,μ(·) − y‖ ∗ rμ

)
(t)
)

≤ ω‖uα,μ(t) − y‖ + sμ(t)‖x − y‖ + ‖G(y)‖ + ‖F (t, y)‖ + ‖δα,μ‖.

Lemma 3.5 now implies

‖uα,μ(t) − y‖ ≤ ωμ

ω

d

dt

(
‖x − y‖ +

(
1
μ

[‖G(y)‖ + ‖F (·, y)‖ + ‖δα,μ‖]

+
(
a ∗ [‖G(y)‖ + ‖F (·, y)‖ + ‖δα,μ‖]

)) ∗ s−ωμ

)
(t),

and passing to the limit as μ → ∞, we get

‖uα(t) − y‖ ≤ d

dt

((‖x − y‖ + a ∗ [‖G(y)‖ + ‖F (·, y)‖]) ∗ s−ω

)
(t).

We can simplify this expression. If we consider separately the case
ω = 0, then the estimate (6.2) has the simpler form

‖uα(t) − y‖ ≤ ‖x − y‖ + (a ∗ [‖G(y)‖ + ‖F (·, y)‖]) (t).

In the general case ω �= 0, we get

‖uα(t) − y‖ ≤ s−ω(t) ‖x − y‖ − 1
ω

(r−ω ∗ [‖G(y)‖ + ‖F (·, y)‖]) (t).

This tells us that the sequence {uα(·)} is bounded uniformly on
bounded sets.

To show the convergence of the sequence, we set, for any α, β > 0,

gα,β(t) = uα(t) − uβ(t).
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Let us consider the functions gα,β
μ = uα,μ − uβ,μ, where uα,μ and uβ,μ

are the approximating functions solving

Lμ(uα,μ − x)(t) + G(uα,μ(t)) = Fα(t, uα(t))
Lμ(uβ,μ − x)(t) + G(uβ,μ(t)) = Fβ(t, uβ(t)),

respectively; moreover, we have that

uα,μ −→ uα and uβ,μ −→ uβ

in L∞
loc(R+; X). Then gα,β shall be a generalized solution to the

problem

Lgα,β(t) + G(uα(t)) − G(uβ(t)) = Fα(t, uα(t)) − Fβ(t, uβ(t)).

Now we have, for y∗ ∈ ∂‖gα,β
μ (t)‖,〈

Lμgα,β(t), y∗〉+ 〈G(uα,μ(t)) − G(uβ,μ(t)), y∗〉
= 〈Fα(t, uα(t)) − Fβ(t, uβ(t)), y∗〉,

which becomes, thanks to (3.14):

(6.3) μ
(‖gα,β

μ (t)‖ − (‖gα,β
μ ‖ ∗ rμ)(t)

)− ω‖gα,β
μ (t)‖

≤ 〈Fα(t, uα(t)) − Fβ(t, uβ(t)), y∗〉 .

Let us notice that

〈Fα(t, uα(t))−Fβ(t, uβ(t)), y∗〉 ≤ 〈F (t, uα,μ(t)) − F (t, uβ,μ(t)), y∗〉
+ 〈F (t, JF,t

α (uα(t))) − F (t, uα,μ(t))

+ F (t, uβ,μ(t))−F (t, JF,t
β (uβ(t))), y∗〉

≤ ‖F (t, JF,t
α (uα(t))) − F (t, uα,μ(t))‖

+ ‖F (t, JF,t
β (uβ(t))) − F (t, uβ,μ(t))‖

Now, by (6.2) and recalling that F is uniformly bounded on bounded
subsets of R+ × X, for a fixed T > 0, there exists R > 0 such that

‖uα(t)‖ ≤ R and ‖F (t, uα(t))‖ ≤ 2R for all t ∈ [0, T ],
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for all α. Then we have

‖uα(t) − JF,t
α (uα(t))‖ ≤ 1

α
‖Fα(t, uα(t))‖ ≤ 2

α
R;

and, for μ sufficiently large,

‖uα,μ(t)‖ ≤ R for all t ∈ [0.T ];

so we have

‖uα(t) − uα,μ(t)‖ ≤ 2R, for all t ∈ [0.T ].

Therefore, it follows

‖F (t, JF,t
α (uα(t))) − F (t, uα,μ(t))‖

≤ ‖F (t, JF,t
α (uα(t))) − F (t, uα(t))‖ + ‖F (t, uα(t)) − F (t, uα,μ(t))‖

≤ ρF

(
2
α

R

)
+ ρF (‖uα(t) − uα,μ(t)‖),

where ρF is the modulus of continuity of F (t, ·) restricted to [0, T ] ×
B(0, 2R), i.e., a function such that ρF (s) = sup{‖F (t, x1)− F (t, x2)‖ :
t ∈ [0, T ], x1, x2 ∈ B(0, 2R), ‖x1 − x2‖ ≤ s}.

The above construction, starting from (6.3), leads to

μ
(
‖gα,β

μ (t)‖ − (‖gα,β
μ ‖ ∗ rμ)(t)

)
− ω‖gα,β

μ (t)‖

≤ ρF

(
2
α

R

)
+ ρF

(
2
β

R

)
+ ρF (εα,μ) + ρF (εβ,μ),

where

εα,μ = sup
t∈[0,T ]

‖uα(t) − uα,μ(t)‖ ≤ 2R,

εβ,μ = sup
t∈[0,T ]

‖uβ(t) − uβ,μ(t)‖ ≤ 2R.

Lemma 3.5 now implies

‖gα,β
μ (t)‖ ≤ ωμ

ω

[
ρF

(
2
α

R

)
+ ρF

(
2
β

R

)
+ ρF (εα,μ) + ρF (εβ,μ)

]
(

1
μ

s−ωμ
(t) +

(
a ∗ s−ωμ

)
(t)
)

.
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From the above inequality, as we pass to the limit for μ → ∞, we have

‖gα,β(t)‖ ≤
[
ρF

(
2
α

R

)
+ ρF

(
2
β

R

)](
a ∗ s−ω

)
(t).

This yields the convergence of the sequence uα in L∞
loc(R+; X) to a

function u ∈ C(R+; X), which is easily seen to be a generalized solution
to (1.1). The remainder of the proof now follows as in Da Prato and
Zabczyk [6].
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Dynamic Systems Appl., to appear.

2. Ph. Clément, Lp-Lq coerciveness and applications to nonlinear integrodiffer-
ential equations, in Nonlinear problems in engineering and science Numerical and
analytical approach, Science Press, Beijing, 1992.

3. B. Cockburn, G. Gripenberg and S.-O. Londen, On convergence to entropy so-
lutions of a single conservation law, J. Differential Equations 128 (1996), 206 251.

4. M.G. Crandall and J.A. Nohel, An abstract functional differential equation
and a related nonlinear Volterra equation, Israel J. Math. 29 (1978), 313 328.

5. G. Da Prato, Applications croissantes et équations d’évolution dans les espaces
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