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ABSTRACT. This paper provides an analysis of the qualo-
cation method for periodic pseudodifferential operators, with
multiple knot splines used for the trial and test spaces. A re-
cently introduced basis for the multiple knot periodic splines
leads to a relatively easy analysis. Convergence is proved with
the aid of approximation properties of the qualocation projec-
tion and of inverse stability estimates that are characterized
by necessary and sufficient algebraic conditions. The analy-
sis of the variable coefficient case uses a local principle and
recently established commutator properties.

1. Introduction. In this paper we study the qualocation method
for pseudodifferential operators of the form

(1.1) L = L0 + L1,

where

(1.2) L0v(x) :=
∞∑

n=−∞
σ0(x, n) v̂(n)ei2πnx for x ∈ T,

and L1 is a suitable perturbation (see below). Here T := R\Z is the
one-dimensional torus of length 1, and

v̂(n) :=
∫
T

v(x)e−i2πnx dx for n ∈ Z

are the complex Fourier coefficients of a 1-periodic distribution v : T →
R, so that

v(x) =
∞∑

n=−∞
v̂(n)ei2πnx for x ∈ T.
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The ‘symbol’ σ0 has the form

(1.3)
σ0(x, ξ) :=

{
1 if ξ = 0

a+(x)|ξ|β + a−(x)sign (ξ)|ξ|β if 0 �= ξ ∈ R

}
,

x ∈ T,

with coefficients a+ and a− in C∞(T), where β ∈ R is the ‘order’ of
L0, in that for ρ > 0

σ0(x, ρξ) = ρβσ0(x, ξ), x ∈ T, ξ �= 0.

We assume that L is elliptic, i.e., σ0(x, ξ) �= 0 for x ∈ T and |ξ| = 1,
and to have index κ = 0, where

κ :=
1
2π

[
arg

a+(x) + a−(x)
a+(x) − a−(x)

]1

0

is the winding number of the closed curve (a+ + a−)/(a+ − a−) in the
complex plane. It is known that L0 : Hs → Hs−β is then a Fredholm
operator for all s ∈ R, where Hs = Hs(T) is the usual Sobolev space
of 1-periodic distributions f equipped with the norm

(1.4)

‖f‖s :=
( ∞∑

n=−∞
〈n〉2s |f̂(n)|2

)1/2

, with 〈n〉 :=
{

1 if n = 0,
|n| if n �= 0.

It is assumed that L1 maps Hs → Hs−β+δ for some δ > 0 and all s ∈ R
boundedly, and hence that L is also Fredholm with index 0.

We consider the discretization of (1.1) by qualocation using as test
and trial spaces periodic splines with multiple knots on equidistant
meshes. Let r,M,N with 1 ≤ M ≤ r be positive integers. We define
the set of knots

πh := {xj = jh, j = 0, . . . , N − 1} for h ∈ H := {1/N, N ∈ N},

and denote by Sr,M
h the space of periodic splines of order r with M -

fold knots at the points in πh. The splines Sr,M
h form a subspace
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of Cr−M−1 of dimension MN , where Ck = Ck(T) is the space
of 1-periodic k times continuously differentiable functions (with C−1

meaning piecewise continuous functions with jumps only at the knots
in πh).

Qualocation is based on a composite quadrature rule

(1.5) QNf = h

N−1∑
k=0

J∑
j=1

ωjf(xk,j), xk,j := xk + hξj ,

derived by copying onto subintervals of length h the basic quadrature
formula

(1.6) Q1f =
J∑

j=1

ωjf(ξj),

where the quadrature points {ξj} and weights {ωj} satisfy

(1.7)

0 ≤ ξ1 < ξ2 < · · · < ξJ < 1, J ≥M,

J∑
j=1

ωj = 1, ωj > 0.

Associated with the quadrature rule we define an inner product

(1.8) (vh, wh)h := QN (vhwh)

on the linear spaceWh of ‘grid’ functions vh and wh, which are functions
defined on the grid

(1.9) π′
h := {xk,j = xk + hξj , k = 0, . . . , N − 1, j = 1, . . . , J}.

The inner product in (1.8) can be thought of as an approximation to

(1.10) (v, w) :=
∫ 1

0

v(x)w(x) dx for v, w ∈ L2(T).

In [3] we derived conditions ensuring that (·, ·)h is an inner product on
Sr,M

h .
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We choose now splines of order r as trial space and splines of
a possibly different order r′ as test space, with r, r′ ≥ M . The
qualocation method for solving the equation Lu = f approximately
is to find uh ∈ Sr,M

h such that

(1.11) (Luh, zh)h := (f, zh)h for all zh ∈ Sr′,M
h .

This method can be viewed as a discrete version of the Petrov-Galerkin
method. Conditions to make (1.11) well-defined are given in Section 2.

The basic stability result for the solution of qualocation equations
for operators with constant coefficients is proved in Proposition 4.2.
In Theorem 4.4 convergence is derived from stability. An extended
stability result is given in Corollary 4.5. The results in [9, 10] for
smoothest splines and in [4] for the collocation method are included as
special cases.

A feature of past treatments of the qualocation method (for smoothest
splines) is that the freedom in the choice of the quadrature rule Q1 has
been exploited to yield additional orders of convergence beyond the
basic convergence results that we prove here. We defer any considera-
tion of additional orders of convergence to a future paper.

The stability analysis for the variable coefficient operators is based on
a local principle of Prößdorf [5]. Since the qualocation projection lacks
some of the boundedness properties needed in the analysis in [5], a vari-
ant of Prößdorf’s principle with weakened assumptions, in the manner
of [2], is stated in Section 5. As is well known, the analysis of the vari-
able coefficient operators relies on commutator properties. There are
two kinds of such properties, called CP I and CP II in [7]. These were
proved in [3] and are restated here as Theorem 2.14. The main stabil-
ity result for the variable coefficient qualocation method is derived in
Corollary 6.2 and the main convergence result in Theorem 6.3.

An important tool in the whole paper is a new spline basis introduced
in [3]. This basis is also suitable for performing concrete numerical
calculations. The new basis is a consistent extension of the one in
[1] for splines with simple knots, and contrasts with the recursive
characterization of multiple knot splines used in [4]. Some properties
of the spline spaces Sr,M

h as proved in [3] are collected in Section 2.
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2. The multiple knot spline periodic space. For the convenience
of the reader we provide here the definition of our spline basis and
collect some results for the spline spaces Sr,M

h from [3]. Also, some
consequences needed in the sequel are proved.

For the definition of the spline basis we introduce the functions

(2.1) Δ̃k(ξ, y) :=
∑
� �=0


k−1

(y + 
)r
Φ�(ξ) for |y| ≤ 1

2
and ξ ∈ R,

(2.2) Φ�(ξ) := exp(i2π
ξ) for 
 ∈ Z and ξ ∈ R,

(2.3) Δ1(ξ, y) := 1 + yrΔ̃1(ξ, y),

(2.4) Δk(ξ, y) := Δ̃k(ξ, y) for k = 2, . . . ,M,

(2.5)
ψk,μ(x) := Φμ(x)Δk

(
Nx,

μ

N

)
for k = 1, . . . ,M and μ ∈ Λh,

where

(2.6) Λh :=
(
− N

2
,
N

2

]
∩ Z for Nh = 1.

Proposition 2.1 [3, Proposition 2.1]. The set ψk,μ for k = 1, . . . ,M
and μ ∈ Λh is a basis in Sr,M

h .

Lemma 2.2 [3, Corollary 7.3]. For μ, ν ∈ Λh and k, 
 = 1, . . . ,M

(2.7) (ψk,μ, ψ�,ν)h = δμν Q
(
Δk

(
·, μ
N

)
,Δ�

(
·, ν
N

))
,

with

(2.8) Q(v, w) := Q1(vw).
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A central role in the analysis is played by the so called qualocation
projection Rh : Wh → Sr,M

h , defined by

(2.9) (Rhfh, ψ)h = (fh, ψ)h for all ψ ∈ Sr,M
h .

Lemma 2.3 [3, Lemma 3.1]. The positive semi-definite sesquilinear
form (·, ·)h is an inner product on Sr,M

h , and hence Rh is well defined, if
and only if for all μ ∈ Λh the functions {Δk(·, (μ/N)), k = 1, . . . ,M}
are linearly independent on the set of quadrature points {ξj , j =
1, . . . , J}.

A useful relation for the subsequent analysis is the following norm
equivalence.

Proposition 2.4 [3, Proposition 3.3]. Let 1 ≤ M ≤ r and
s < r−M + 1/2. On Sr,M

h the norm ‖ · ‖s is equivalent, uniformly for
h ∈ H, to the norm

(2.10) ‖vh‖s,h :=
( ∑

μ∈Λh

[
〈μ〉2s|c1,μ|2 +N2s

M∑
k=2

|ck,μ|2
])1/2

,

where the coefficients ck,μ are defined by the unique representation

(2.11) vh =
M∑

k=1

∑
μ∈Λh

ck,μψk,μ.

In the special case s = 0, Proposition 2.4 yields

Corollary 2.5 [3, Corollary 3.4]. Let 1 ≤ M ≤ r. There exist
constants 0 < c < C such that for all h ∈ H and vh ∈ Sr,M

h the norm
equivalence

(2.12) c‖vh‖0 ≤
( M∑

k=1

∑
μ∈Λh

|ck,μ|2
)1/2

≤ C‖vh‖0

holds, where vh has the form (2.11).
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A further norm equivalence is given in the next result.

Proposition 2.6 [3, Proposition 3.5]. Let 1 ≤ M ≤ r. The norms
‖·‖0 and ‖·‖h are equivalent on Sr,M

h , uniformly for h ∈ H, if and only
if the functions {Δk(·, y), k = 1, . . . ,M} are for all y ∈ [−1/2, 1/2]
linearly independent on the set of quadrature points {ξj , j = 1, . . . , J}.

As test space we will use the spline space Sr′,M
h of order r′ ≥ M ,

where r′ may be different from r. We denote the corresponding basis
of Sr′,M by ψ′

k,μ, and by Δ̃′
k and Δ′

k the quantities corresponding to
(2.1), (2.3) and (2.4).

Next we cite results on the stability and approximation power of Rh;
analogous results hold also for R′

h. We will frequently use the following
definition.

Definition 2.7. We say that the condition (R) or (R′) is satisfied
if the functions {Δk(·, y), k = 1, . . . ,M} or {Δ′

k(·, y), k = 1, . . . ,M},
respectively, are linearly independent on the set of quadrature points
{ξj} for all |y| ≤ 1/2.

Proposition 2.8 [3, Proposition 3.7]. Let condition (R) be satisfied,
and assume 0 ≤ s < r −M + 1/2, s ≤ t ≤ r and 1/2 < t. Then

(2.13) ‖Rhf − f‖s ≤ Cht−s‖f‖t for f ∈ Ht.

With respect to the norm ‖ · ‖h the qualocation projection Rh has
the same approximation power as with respect to the norm ‖ · ‖0. This
is one part of the following result.

Proposition 2.9 [3, Proposition 3.11]. Let condition (R) be
satisfied, and assume 1/2 < t ≤ r. Then

(2.14) ‖Rhf − f‖h + ‖Phf − f‖h ≤ Cht‖f‖t for f ∈ Ht.
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Here Ph : Ht → Sr,M
h is the projection introduced in [4, p. 428]

through the definition

(2.15) Phf ∈ Sr,M
h , (Phf,Φ)0 = (f,Φ)0 for Φ ∈ S∞,M

h ,

where

S∞,M
h := span {Φμ+�N , μ ∈ Λh, 
 ∈ (−M/2,M/2]}.

It is shown in [4, Theorem 3.4] that for s < r−M + 1/2 and s ≤ t ≤ r

(2.16) ‖Phf − f‖s ≤ Cht−s‖f‖t for f ∈ Ht.

It follows that for s < r −M + 1/2 and f ∈ Hs

(2.17) Phf → f in Hs for (h ∈ H).

In the same way as Lemmas 3.12 and 3.13 in [3] the following two
lemmas can be proved.

Lemma 2.10. Let condition (R′) be satisfied, and assume that
0 ≤ s < r′ −M + 1/2, s + β < r −M + 1/2 and β + M < r. Let
{Zh}H be for all t ∈ R a bounded sequence of mappings in Ht. Then
the following stability estimate holds:

‖R′
hLZhvh‖s + ‖R′

hZhLvh‖s ≤ C‖vh‖s+β

for vh ∈ Sr,M
h and h ∈ H.

Lemma 2.11. Let condition (R′) be satisfied, and assume that
0 ≤ s < r′ −M + 1/2, β + s < r −M + 1/2 and β + M < r. Let
g ∈ C∞(T). Then for vh ∈ Sr,M

h the following convergence relation
holds:

vh −→ v in Hs+β for (h ∈ H)
=⇒ R′

hL(gvh) −→ L(gv) in Hs for (h ∈ H).

We shall also need the following variant of Lemma 2.11.
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Lemma 2.12. Let condition (R′) and β +M < r be satisfied. If the
sequence {vh ∈ Sr,M

h }H is bounded in Hβ, then

(2.18) L1vh −→ f in H0 for (h ∈ H)
=⇒ R′

hL1vh −→ f in H0 for (h ∈ H).

Proof. Choose σ ∈ (1/2, r] such that β+σ < r−M+1/2. Recall that
L1 maps for some δ > 0 the space Hσ+β−δ into Hσ boundedly. We can
assume δ ≤ 1/2. With the aid of Proposition 2.8 (with Rh replaced by
R′

h) and the inverse estimate (see [4, Theorem 3.4]) we obtain (with I
denoting the identity operator)

‖R′
hL1vh − f‖0 ≤ ‖(I −R′

h)L1vh‖0 + ‖L1vh − f‖0

≤ C (hσ‖L1vh‖σ + ‖L1vh − f‖0)
≤ C (hσ‖vh‖σ+β−δ + ‖L1vh − f‖0)
≤ C

(
hδ‖vh‖β + ‖L1vh − f‖0

)
,

which converges to zero for (h ∈ H).

On the space Wh of grid functions on the mesh π′
h the qualocation

projection is bounded with respect to the norm ‖ · ‖h.

Proposition 2.13 [3, Proposition 3.14]. Let condition (R) be satis-
fied. Then

(2.19) ‖Rhfh‖0 ≤ C‖fh‖h for fh ∈Wh and h ∈ H.

Finally, we state the superapproximation and commutator properties.

Theorem 2.14 [3, Corollary 4.2, Theorem 4.4]. Let condition (R)
be satisfied, and let g ∈ Cr(T). If M < r, 0 ≤ s < r −M + 1/2 and
t ≤ r −M , then

(2.20) ‖(I −Rh)gvh‖s ≤ Ch1+t−s‖g′‖r−1,∞‖vh‖t for vh ∈ Sr,M
h .
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If 1/2 < t ≤ r and 0 ≤ s < r −M + 1/2, then

(2.21) ‖Rhg(I −Rh)f‖s ≤ Ch1+t−s‖g′‖r−1,∞‖f‖t for f ∈ Ht.

The same estimates hold with Rh replaced by the projection Ph from
(2.15).

3. Qualocation. Throughout the rest of the paper we assume that
the condition (R′) is satisfied and consequently that (·, ·)h is an inner
product on Sr′,M

h and the qualocation projection R′
h is well-defined.

It is easily seen, from the earlier definitions, that

L0ψk,μ = Φμ(x)
{
σ0(x, μ) Ω1(Nx, (μ/N);x) if k = 1,
NβΩk(Nx, (μ/N);x) if k = 2, . . . ,M ,

where the functions Ωk(ξ, y;x) are given, for ξ ∈ R, |y| ≤ 1/2 and
x ∈ T, by

(3.1) Ω̃k(ξ, y;x) :=
∑
� �=0

σ0(x, y + 
)

k−1

(y + 
)r
Φ�(ξ),

(3.2) Ω1(ξ, y;x) := 1 + (σ0(x, y))−1yr Ω̃1(ξ, y;x) for y �= 0,

(3.3) Ω1(ξ, 0;x) := 1,

(3.4) Ωk(ξ, y;x) := Ω̃k(ξ, y;x) for k = 2, . . . ,M.

We omit the variable x in the notation if σ0 is independent of x. For
Ωk to be well-defined for k = 1, . . . ,M we assume that

(3.5) β +M < r.

It follows from (3.5) that Ω1(ξ, y;x) is continuous at y = 0 with value
equal to 1.
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An essential role is played by the so-called numerical symbol, defined
as the M × M -matrix D = D(y;x) for |y| ≤ 1/2 and x ∈ T with
elements

(3.6) [D(y;x)]k,� := Q
(
Ω�(·, y;x),Δ′

k(·, y)) for k, 
 = 1, . . . ,M.

The numerical symbol D is said to be elliptic if D(y;x) is nonsingular
for x ∈ T and |y| ≤ 1/2.

Clearly, Ωk is equal to Δk for σ0 = 1, i.e., when L = I. If additionally,
r′ = r, the numerical symbol is equal to the matrix B′(y) with elements

(3.7) B′
k,�(y) := Q

(
Δ′

k(·, y),Δ′
�(·, y)

)
for k, 
 = 1, . . . ,M.

The ellipticity is for that case characterized in [3, Lemma 3.1]. In the
special case of collocation, i.e., J = M , we can similarly characterize
the ellipticity for a general operator L.

Lemma 3.1. Assume J = M . The numerical symbol D is elliptic if
and only if each of the two sets of functions {Δ′

k(·, y), k = 1, . . . ,M}
and {Ωk(·, y;x), k = 1, . . . ,M} is for |y| ≤ 1/2 and x ∈ T linearly
independent on the set of quadrature points {ξj}.

Proof. From (3.6), if for an x ∈ T and a y ∈ [−1/2, 1/2] one of the
two sets is not linearly independent, then D is clearly singular, and
hence not elliptic. On the other hand, assume that D is not elliptic,
and hence for some x ∈ T and y ∈ [−1/2, 1/2] singular. Either the
first set of functions is linearly dependent (and we are done) or it is
linearly independent, in which case because D is singular there exists
a nontrivial linear combination of the second set that is Q-orthogonal
to the first one. Since J = M the set {Δ′

k(·, y)} is a basis in the
space of functions on the quadrature points {ξj} and, hence, that linear
combination is equal to zero, i.e., the second set is linearly dependent.

4. Constant symbol case. In this section we derive the main
stability and convergence results for the qualocation method for the
case that the main part L0 of the pseudodifferential operator L has
constant coefficients, i.e., the symbol σ0 is independent of the space
variable x.
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As a preparation we provide the following lemma that corresponds
to Lemma 2.2.

Lemma 4.1. Let σ0 be independent of x. For μ, ν ∈ Λh and

 = 1, . . . ,M ,

(4.1) (L0ψ1,μ, ψ
′
�,ν)h = δμνσ0(μ)Q

(
Ω1

(
·, μ
N

)
,Δ′

�

(
·, ν
N

))
,

(4.2)
(L0ψk,μ, ψ

′
�,ν)h = δμνN

βQ
(
Ωk

(
·, μ
N

)
,Δ′

�

(
·, ν
N

))
for k = 2, . . . ,M.

Proof. With the Fourier series representation of ψk,μ from (2.1) (2.5)
(or see [3, Lemma 7.5]), we obtain with the definition (1.2) of L0, for
k > 1

L0ψk,μ(x) =
∑
� �=0


k−1

(μ/N + 
)r
σ0(μ+ 
N)Φμ+�N (x)

= NβΦμ(x)
∑
� �=0


k−1

(μ/N + 
)r
σ0

(
μ

N
+ 


)
Φ�(Nx)

= NβΦμ(x) Ωk

(
Nx,

μ

N

)
,

and for k = 1,

L0ψ1,μ(x) = Φμ(x)
[
σ0(μ) +Nβ

(
μ

N

)r

Ω̃1

(
Nx,

μ

N

)]
= Φμ(x)σ0(μ) Ω1

(
Nx,

μ

N

)
.

Taking [3, Lemma 7.2] into account, we obtain for 
 = 1, . . . ,M

(L0ψ1,μ, ψ
′
�,ν)h = σ0(μ)QN

(
Φμ−νΩ1

(
N ·, μ

N

)
,Δ′

�

(
N ·, ν

N

))
= δμνσ0(μ)Q

(
Ω1

(
·, μ
N

)
,Δ′

�

(
·, ν
N

))
.
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The proof of (4.2) is similar.

In the present case of an x-independent symbol σ0, we are now going
to set up the linear system relating

vh =
∑

μ∈Λh

M∑
k=1

ck,μψk,μ

and

R′
hL0vh =

∑
μ∈Λh

M∑
k=1

dk,μψ
′
k,μ.(4.3)

By forming the inner product (·, ·)h with ψ′
μ,ν in (4.3) we obtain,

taking the definition of R′
h and Lemmas 2.2 and 4.1 into account, the

block diagonal system

(4.4) D

(
μ

N

)
c̃μ = B′

(
μ

N

)
dμ for μ ∈ Λh,

where the components of the vectors c̃μ ∈ CM for μ ∈ Λh are given by

(4.5) c̃1,μ := σ0(μ)c1,μ and c̃k,μ := Nβck,μ for k = 2, . . . ,M.

Proposition 4.2. Let σ0 be independent of x, let β + M < r, and
let condition (R′) be satisfied. Then the inverse stability estimate

(4.6) ‖vh‖β ≤ C‖R′
hL0vh‖0 for vh ∈ Sr,M

h and h ∈ H

is satisfied if and only if the numerical symbol D is elliptic.

Proof. Assume first thatD is elliptic. Then for each fixed y, |y| ≤ 1/2,
the M × M -matrix D(y) is invertible. Since D(·) is continuous the
inverse is bounded uniformly in y. Since also B′(·) is continuous and
hence bounded it follows from (4.4) that

|c̃μ| ≤ C|dμ| for μ ∈ Λh,
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where |·| denotes a norm on CM . Hence, we obtain with Proposition 2.4
and Corollary 2.5, taking also the estimate |〈μ〉β| ≤ C|σ0(μ)| into
account (recall that L0 is elliptic)

‖vh‖2
β ≤ C

∑
μ∈Λh

(
〈μ〉2β|c1,μ|2 +N2β

M∑
k=2

|ck,μ|2
)

≤ C
∑

μ∈Λh

|c̃μ|2 ≤ C
∑

μ∈Λh

|dμ|2 ≤ C‖R′
hL0vh‖2

0.

For the proof of the converse, choose μ ∈ Λh and apply (4.6) to vh of
the form

vh =
M∑

k=1

ck,μψk,μ

yielding with the tools already used before

(4.7) |c̃μ| ≤ C‖vh‖β ≤ C‖R′
hL0vh‖0 ≤ C|dμ|

for c̃μ and dμ standing in the relation (4.4). The matrix B′(y) is a
special case of D, obtained for r = r′ and L0 = I. Being a Gram
matrix for the linearly independent functions Δ′

k(·, y), k = 1, . . . ,M ,
it is nonsingular. Hence, from the first part of the proof we know that
it has a bounded inverse uniformly in y. Consequently, it follows from
(4.4) and (4.7) that

∣∣∣∣D(
μ

N

)−1∣∣∣∣ ≤ C for μ ∈ Λh and h ∈ H.

By continuity the last bound holds for all |y| ≤ 1/2, proving the
ellipticity of D.

From (4.6) we derive the corresponding inverse stability for the whole
operator L. We point out that in the remainder of this section it is not
assumed that L0 has constant coefficients. By H1 we denote a subset
of H such that H\H1 is finite and by H′ a subsequence of H, both not
necessarily the same at different occurrences.
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Lemma 4.3. Let β + M < r, and let condition (R′) be satisfied.
Then L0 is injective in Hβ and the inverse stability estimate

(4.8) ‖vh‖β ≤ C‖R′
hLvh‖0 for vh ∈ Sr,M

h and h ∈ H1

holds if and only if L is injective in Hβ and

(4.9) ‖vh‖β ≤ C‖R′
hL0vh‖0 for vh ∈ Sr,M

h and h ∈ H1.

Proof. For each h ∈ H choose vh ∈ Sr,M
h , converging to v in Hβ . As a

consequence of Lemma 2.11, the estimate (4.8) implies ‖v‖β ≤ C‖Lv‖0

and thus the injectivity of L. Similarly, (4.9) implies the injectivity of
L0. It remains to show that (4.8) follows from (4.9), and vice versa, if
L0 and L are both injective. Assume that (4.9) holds but that (4.8) is
not satisfied. Then there exist H′

1 and vh ∈ Sr,M
h for h ∈ H′

1 such that
(4.10)

‖vh‖β = 1 for h ∈ H′
1 and ‖R′

hLvh‖0 −→ 0 for (h ∈ H′
1).

Since L1 maps Hβ → Hδ for some δ > 0 boundedly, the compactness
of the imbedding from Hδ → H0 implies the existence of a further
subsequence H′′

1 and an f ∈ H0 such that

L1vh −→ f in H0 for (h ∈ H′′
1 ).

With the aid of Lemma 2.12 and (4.10) we then conclude that

R′
hL0vh = R′

h(L− L1)vh −→ −f in H0 for (h ∈ H′′
1 ).

Let w ∈ Hβ be the solution of L0w = −f . With Ph being the projection
from (2.15), we obtain by virtue of (4.9) and Lemma 2.11,

‖vh − Phw‖β ≤ C‖R′
hL0(vh − Phw)‖0 −→ 0 for (h ∈ H′′

1 ),

i.e., vh → w in Hβ , for h ∈ H′′
1 , and hence ‖w‖β = 1. Another

application of Lemma 2.11, this time to the sequence {R′
hLvh}H′′

1
,

yields with (4.10)
lim

h∈H′′
1

R′
h Lvh = Lw = 0,

in contradiction to the injectivity of L.
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A main result of this section is the following convergence theorem.

Theorem 4.4. Let condition (R′) be satisfied, and let the inverse
stability estimate (4.8) hold. Assume β + M < r, and let s and t be
real numbers satisfying

s < r −M +
1
2
, β +

1
2
< t, β ≤ s ≤ t ≤ r.

Then the qualocation equations (1.11) are uniquely solvable if h is
sufficiently small. Moreover, if u ∈ Ht

(4.11) ‖uh − u‖s ≤ Cht−s‖u‖t for h ∈ H1.

Proof. Let Ph be the projection from (2.15). With the aid of the
inverse inequality, (4.8) and (2.13) (with Rh replaced by R′

h) we derive

hs−β‖uh − Phu‖s ≤ C‖uh − Phu‖β

≤ C‖R′
hL(uh − Phu)‖0 = C‖R′

hL(u− Phu)‖0

≤ C (‖(I −R′
h)L(u− Phu)‖0 + ‖L(u− Phu)‖0)

≤ C (hσ‖L(u− Phu)‖σ + ‖L(u− Phu)‖0)
≤ C (hσ‖u− Phu‖σ+β + ‖u− Phu‖β) ,

where σ ∈ (1/2, 1] is chosen such that σ + β < min{r −M + 1/2, t}.
Uniqueness then follows by setting u = 0, and the assertion is now seen
to hold by invoking (2.16).

For completeness, we prove an extension of the inverse stability result
in Proposition 4.2.

Corollary 4.5. Let condition (R′) be satisfied, and let the inverse
stability estimate (4.8) hold. Assume β + M < r, and let s be a real
number satisfying

β + s < r −M +
1
2

and 0 ≤ s < r′ −M +
1
2
.
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Then the inverse stability estimate

(4.12) ‖vh‖β+s ≤ C‖R′
hLvh‖s for vh ∈ Sr,M

h

holds true for almost all h ∈ H.

Proof. Let vh ∈ Sr,M
h be given. We define u as the solution of

Lu = R′
hLvh (note that it follows from (4.8) and Lemma 2.11 that L

is injective in Hβ and hence L : Ht+β → Ht is surjective for t ≥ 0). In
this situation the qualocation approximate solution uh is equal to vh.
We apply (4.11) with s and t replaced by s+ β and t+ β, respectively,
with t satisfying t = s if s > 1/2 and t ∈ (1/2, 1) if s ≤ 1/2 and obtain

‖vh‖s+β ≤ ‖uh − u‖s+β + ‖u‖s+β

≤ C
(
ht−s‖L−1R′

hLvh‖t+β + ‖L−1R′
hLvh‖s+β

)
≤ C

(
ht−s‖R′

hLvh‖t + ‖R′
hLvh‖s

) ≤ C‖R′
hLvh‖s.

Remark 4.6. Stability estimates and convergence results for projec-
tion methods applied to pseudodifferential operators have been proved
in a quite general setting, e.g., in [6] and [7]. In [7, p. 425] the ex-
pectation is expressed that some of the results in [7] carry over to the
qualocation method because the ‘qualocation projection satisfies the
hypotheses of [7]’. But it is not clear that this argument really works
because the qualocation projection is in a certain range of indices un-
bounded. The latter is also the case for the collocation method studied
in [4]. In [4, p. 438] the methods of [7] are made applicable by the trick
of working with a bounded projection that maps on the same space as
the collocation projection, but there still remains a gap in the range of
indices covered by the proof, see [4, p. 439]. Moreover, it is not evident
how a similar trick can be applied for the qualocation projection. Note
also that the numerical symbol in [6, 7] depends on the index s of the
‖ · ‖s-norm in which the stability is studied.

By the way, readers of [6] may want to be careful in using the formula
[6, (12)] for the numerical symbol in the case k = 0, where the different
homogeneity of the symbol σ for argument zero has to be taken into
account in the calculation.
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5. A local principle. Our analysis of the variable coefficient case
relies on a slightly modified version of Satz 1 in [5]. The modification
concerns the condition ‖Rnf(I −Rn)‖X → 0 as n→ ∞ and ‖Qnf(I −
Qn)‖Y → 0 as n → ∞, i.e., [5, p. 241, condition III.2], which appears
to be not easily applicable to the case of unbounded projections Qn or
an unbounded sequence of projections Qn. A similar observation was
already made in [2] for the case X = Y . In this section we state the
local principle in the form we need it.

The following setting is suitable for our purposes. Let X, Y and
Z be Banach spaces with Z ⊂ Y , and Z continuously imbedded in
Y . Let {Xn}n∈N ⊂ X and {Yn}n∈N ⊂ Y be two sequences of finite
dimensional subspaces. For each n ∈ N let Pn, Rn ∈ L(X,Xn) be
linear projections with range Xn, and let Qn, Sn be linear projections
with range Yn and domains satisfying Z ⊂ D(Qn) = D(Sn) ⊂ Y .
Here L(V,W ) denotes the space of linear bounded operators between
the Banach spaces V and W . Finally, let S ⊂ L(X,Y ) be a linear
subspace.

The following technical conditions are used in Proposition 5.3 below.
By K(X,Z) we denote the space of linear compact operators from
X → Z.

I. ‖Pnx − x‖X → 0 for x ∈ X, and ‖Qnz − z‖Y → 0 for z ∈ Z as
n→ ∞.

II. 1. K(X,Z) ⊂ S.
2. AXn ⊂ Z for A ∈ S.

3. QnAPn ∈ L(X,Y ) and ‖QnAPnx− x‖Y → 0 as n→ ∞ for A ∈ S
and x ∈ X.

III. Let M be a set of multipliers for S, i.e., M ⊂ L(X) ∩ L(Y ) is
an algebra such that Af ∈ S and fA ∈ S for f ∈ M and A ∈ S, such
that MYn ∪MAXn ∪AMXn ⊂ D(Qn) for A ∈ S and

1. supn ‖RnfPn‖X→X <∞ and supn ‖QnfSn‖Y →Y <∞ for f ∈ M,

2. ‖Qnf(I − Qn)APn‖X→Y → 0 as n → ∞ for A ∈ S and f ∈ M,
‖Qnf(I −Qn)gSn‖Y →Y → 0 as n→ ∞ for f, g ∈ M,

3. ‖QnA(I − Rn)fPn‖X→Y → 0 as n → ∞ for A ∈ S and f ∈ M,
‖Rnf(I −Rn)gPn‖X→X → 0 as n→ ∞ for f, g ∈ M.



QUALOCATION FOR BOUNDARY INTEGRAL EQUATIONS 135

IV. For an index set K there exists for each z ∈ K a subset Mz ⊂ M
such that

1. 0 /∈ Mz and for any two elements f [j]
z ∈ Mz, j = 1, 2, there exists

a third element fz ∈ Mz with f [j]
z fz = fz, for j = 1, 2,

2. each set {fz}z∈K of elements fz ∈ Mz contains a finite subset
fz1 , . . . , fzm

such that fz1 + · · · + fzm
is invertible in M.

V. 1. Af − fA ∈ K(X,Z) for A ∈ S, f ∈ Mz and z ∈ K,

2. for all A ∈ S and z ∈ K there exist operators Az ∈ S, such that
for all ε > 0 one can find Tz ∈ K(X,Z), fz ∈ Mz and n0 ≥ 1 satisfying

‖Qn(A−Az)fzPn −QnTzPn‖X→Y < ε for n ∈ N with n ≥ n0.

The following definitions are adapted from [5]. We assume that we
have the setting in which conditions I V are satisfied. Unless stated
otherwise, all symbols in these definitions have the same meaning as in
those conditions.

Definition 5.1. For an operator A ∈ S, the sequence {QnAPn} is
said to be stable if the operators QnA : Xn → Yn are invertible for
n ≥ n0 and

sup
n≥n0

‖(QnA|Xn
)−1‖Yn→Xn

<∞.

Definition 5.2. For an operator A ∈ S the sequence {QnAPn} is
said to be locally stable from the right if for all z ∈ K and n ∈ N with
n ≥ n0 there exist operators Tz ∈ K(X,Z), Dz,n ∈ L(Yn, Xn) and an
element fz ∈ Mz such that

(5.13) ‖Qnfz(Az + Tz)Dz,n −QnfzSn‖Yn→Yn
→ 0 as n→ ∞

and

(5.14) sup
n≥n0

‖Dz,n‖Yn→Xn
<∞.

We are now in a position to state our version of Prößdorf’s Satz 1
from [5]. The proof requires only minor modifications of the original
one.
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Proposition 5.3. Assume that the above conditions I V hold and
that A−1 ∈ L(Y,X) exists. Then the sequence {QnAPn} is stable if
and only if it is locally stable from the right.

6. Variable coefficients. The main aim of this section is to prove
inverse stability if the symbol σ0 is x-dependent.

Theorem 6.1. Assume condition (R′) to be satisfied, and let
β +M < r. The inverse stability estimate

(6.1) ‖vh‖β ≤ C‖R′
hL0vh‖0 for vh ∈ Sr,M

h and h ∈ H1

holds true if and only if L0 : Hβ → H0 is injective and for all z ∈ T
the inverse stability estimate

(6.2) ‖vh‖β ≤ C‖R′
hL0,zvh‖0 for vh ∈ Sr,M

h and h ∈ H1

holds true, where L0,z is the pseudodifferential operator with the symbol
frozen at z, i.e., with the x-independent symbol σ0(z, ξ).

Once this is established, a combination of Proposition 4.2, Theo-
rem 6.1 and Lemma 4.3 delivers the next corollary.

Corollary 6.2. Assume condition (R′) to be satisfied, and let
β +M < r. The inverse stability estimate

(6.3) ‖vh‖β ≤ C‖R′
hLvh‖0 for vh ∈ Sr,M

h and h ∈ H1

holds true if and only if L : Hβ → H0 is injective and the numerical
symbol D is elliptic.

Corollary 3.4 also furnishes the stability estimate (4.12) if (6.1) holds.
Combining Corollary 6.2 with Theorem 4.4 we can state the following
convergence result.

Theorem 6.3. Assume condition (R′) is satisfied. Let the numerical
symbol be elliptic, and let L0 : Hβ → H0 be injective. Assume
β +M < r, and let s and t be real numbers satisfying

s < r −M +
1
2
, β +

1
2
< t, β ≤ s ≤ t ≤ r.
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Then the qualocation equations (1.11) are uniquely solvable if h is
sufficiently small. Moreover, if u ∈ Ht

‖uh − u‖s ≤ Cht−s‖u‖t for h ∈ H1.

The proof of Theorem 6.1 relies on Proposition 5.3. We begin with
verifying the conditions I V in Section 5. First we identify the various
quantities in the general setting of Section 5. The sequence of quantities
is indexed by n ∈ N there, but we keep the indices h ∈ H when dealing
with the qualocation context. We take

(6.4) X = Hβ , Y = H0, Z = Hσ, Xn = Sr,M
h , Yn = Sr′,M

h ,

(6.5) Pn = Ph, Qn = R′
h, Rn = Ph, Sn = P ′

h,

where σ ∈ (1/2, r −M − β + 1/2) and σ ≤ r′, and Ph and P
′
h are the

projections on Sr,M
h and Sr′,M

h , respectively, from (2.15). We identify
the algebra M with C∞(T) and the subspace S ⊂ L(X,Y ) with the
linear hull of K(X,Z) and the space of all operators of the form L0(f ·)
with L0 a variable coefficient pseudodifferential operator with order
β and f ∈ C∞(T). For the index set K we take K = T. With
this identification the requirements of the general setting in Section 5
are met. Recall from [8] that Hσ is continuously embedded in C(T)
such that the qualocation projections are well defined there. Note that
operators in the form fL0 are included in the set S since L0 has variable
coefficients. We now check the conditions I V.

Condition I is known to hold from (2.17) and Proposition 2.8. Condi-
tions II.1 and II.2 are obvious from the definition of S. Condition II.3
is clear for A ∈ K(X,Z) and follows for A = L0(f ·) from Lemma 2.11
and (2.17).

Condition III.1: ‖PhfPhv‖β ≤ ‖v‖β is satisfied for v ∈ Hβ since {Ph}
is bounded in Hβ as is multiplication by a smooth function f . The
estimate ‖R′

hfP
′
hv‖0 ≤ ‖v‖0 for v ∈ H0 is contained in Lemma 2.10 by

choosing L = I and Zh to be the operator of multiplication by f .
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Condition III.2: With the aid of Theorem 2.14 (with Rh and r
replaced by R′

h and r′, respectively) and the inverse inequality we
conclude, with v ∈ Hβ ,

‖R′
hg(1 − R′

h)L0fP
′
hv‖0 ≤ Ch1+σ‖L0fPhv‖σ ≤ Ch1+σ‖Phv‖β+σ

≤ Ch‖Phv‖β ≤ Ch‖v‖β → 0 for (h ∈ H).

The first relation in III.2 is thereby verified, since it also holds for
A ∈ K(X,Z) as is seen from Proposition 2.8. The second part of the
condition is included in the first part if we choose A to be multiplication
by g.

Condition III.3: With the aid of Lemma 2.10 and Theorem 2.14, we
obtain

‖R′
hL0(1 − Ph)fPhg‖0 ≤ C‖(1 − Ph)fPhg‖β

≤ Ch‖Phg‖β ≤ Ch‖g‖β,

showing that the first part of the condition is satisfied since it also holds
for A ∈ K(X,Z). The second part of the condition is included in the
first part if we choose A to be multiplied by f .

Condition IV: This condition is satisfied by choosing

Mz :=
{
fz ∈ C∞

0

(
z − 1

4
, z +

1
4

)
, fz = 1 in a neighborhood of z,

0 ≤ fz(x) ≤ 1, x ∈ T
}
.

Condition V.1: It is proved in [8, Proposition 4.3] that the commu-
tator of a pseudodifferential operator L0 of order β and multiplication
by a smooth function f satisfies

(6.6) ‖(fL0 − L0f)v‖s−β+1 ≤ C‖v‖s for v ∈ Hs and s ∈ R.

Thus L0f−fL0 maps Hβ boundedly into H1, and consequently L0(g·)
satisfies condition V.1. For A ∈ K(X,Z) the condition is obvious.

Condition V.2: For A ∈ K(X,Z) the condition holds with Az = 0
and Tz = Afz, so we consider the case A = L0(g·). In view of the
already verified Condition V.1 we know that

Tz := (L0 − L0,z)gfz − gfz(L0 − L0,z) ∈ K(X,Z),



QUALOCATION FOR BOUNDARY INTEGRAL EQUATIONS 139

and hence it is sufficient to prove for given ε > 0 the existence of
fz ∈ M such that

(6.7) ‖R′
hgfz(L0−L0,z)Phv‖0 ≤ ε‖v‖β for v ∈ Hβ and h ∈ H1.

The symbol of L0 has the form (1.3) with continuous coefficients a+

and a−. We denote by L+
0 and L−

0 the operators with symbol a+ = 1,
a− = 0 and a+ = 0, a− = 1, respectively. With the aid of Propositions
2.13, 2.9 and 2.6 (with Rh and r replaced by R′

h and r′, respectively)
and Lemma 2.10, we obtain for all η > 0, by choosing the support of
fz small enough,

‖R′
hfzg(L0 − L0,z)Phv‖0 ≤ C‖fzg(L0 − L0,z)Phv‖h

≤ Cη
(‖L+

0 Phv‖h + ‖L−
0 Phv‖h

)
≤ Cη

(‖(1 − R′
h)L+

0 Phv‖h + ‖(1 −R′
h)L−

0 Phv‖h

+‖R′
hL

+
0 Phv‖h + ‖R′

hL
−
0 Phv‖h

)
≤ Cη

[
hσ

(‖L+
0 Phv‖σ + ‖L−

0 Phv‖σ

)
+ ‖R′

hL
+
0 Phv‖0 + ‖R′

hL
−
0 Phv‖0

]
≤ Cη (hσ‖Phv‖β+σ + ‖Phv‖β) ≤ Cη‖v‖β .

Thus (6.7) and hence Condition V.2 is seen to hold. Having verified all
conditions I V, we are now in a position to use Proposition 5.3.

Proof of Theorem 6.1. Assume (6.2) holds. By choosing

Qn = R′
h, Pn = Ph, Xn = Sr,M

h , Yn = Sr′,M
h , Tz = 0,

Dz,n = (R′
hL0,z|Sr,M

h
)−1 for h ∈ H

it is seen that the sequence {R′
hL0Ph}H is locally stable from the right.

Since L0 is assumed to be injective, it has a bounded inverse H0 → Hβ .
Then Proposition 5.3 yields (6.1). On the other hand, let (6.1) hold. It
then follows as in the proof of Lemma 4.3 that L0 is injective and
by virtue of Proposition 5.3 {RhL0Ph}H is locally stable from the
right. Since (L0,z)z = L0,z and L0,z is injective, another application of
Proposition 5.3 shows (6.2) holds.



140 R.D. GRIGORIEFF AND I.H. SLOAN

Acknowledgments. The support of the Australian Research Coun-
cil is gratefully acknowledged.

REFERENCES

1. G.A. Chandler and I.H. Sloan, Spline qualocation methods for boundary
integral equations, Numer. Math. 58 (1990), 537 567.

2. R.D. Grigorieff and I.H. Sloan, On qualocation and collocation methods for
singular integral equations with piecewise continuous coefficients, using splines on
nonuniform meshes, Operator Theory Adv. Appl., vol. 119, Birkhäuser, Basel, 2001,
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