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ABSTRACT. Estimates for the measure of noncompactness
of integral operators of vector functions are proved. In par-
ticular, for linear integral operators of vector functions with
nonmeasurable kernels a Mönch type compactness result is
obtained.

1. Introduction. For scalar functions, it is well known that the
Urysohn integral operator

(1) Ax(t):=
∫ 1

0

g(t, s, x(s)) ds, t ∈ [0, 1]

is usually compact. In particular, A is compact in the space C([0, 1])
under mild continuity assumptions on g. This is a consequence of
the Arzelá-Ascoli theorem, because the image of bounded sets has
equicontinuous norm (provided that, e.g., g is continuous).

Moreover, if g is a Carathéodory function, i.e., g( · , · , u) is (strongly)
(Bochner) measurable for each u, and g(t, s, · ) is continuous for almost
all (t, s) ∈ [0, 1]2, then, under some growth assumptions on g, the
operator A maps compactly into the spaces Lp([0, 1]), 1 ≤ p < ∞, or,
more generally, into regular ideal spaces. These are classical results
of Krasnosel’skĭı[9] and Zabrĕıko, see e.g., [9, 10, 28], and it is also
possible to weaken the growth conditions slightly [16, 20].

We are interested in the case that the functions x and g assume values
in Banach (or at least normed) spaces U and V , respectively, where the
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integral is understood in the Lebesgue-Bochner sense. In order to prove
compactness of A, it is natural to assume that g(t, s, · ) is a compact
function. Since we do not assume completeness of the underlying
spaces, let us make precise here that we call a set M in a normed
space precompact if its completion its compact, i.e., if each sequence
in M contains a Cauchy (not necessarily convergent) subsequence. An
operator is called compact if it maps bounded sets into precompact
sets.

Concerning vector functions, the compactness of (1) was mainly
studied in spaces of continuous functions. If g(t, s, · ) is compact,
or at least γ-Lipschitz for some measure γ of noncompactness, then,
under analogous continuity assumptions on g as in the scalar case, the
operator A is compact, respectively γ-Lipschitz, from C([0, 1], U) into
C([0, 1], V ). As one might expect, the proof of this result needs a
vector-valued version of the Arzelá-Ascoli theorem (see, e.g., [1, 6, 17,
25]). However, the proof is only straightforward if, for each ‖u‖ ≤ C,
almost all of the values g(t, s, u) belong to the same precompact set
(i.e., independent of t and s). In general, one needs a deep result
about the behavior of measures of noncompactness under (Bochner)
integration which is essentially due to Mönch [15], see also [3, 7, 11,
14] (we will make use of a special case of this result in the proof of
Theorem 3). A precise formulation and proof of the above-mentioned
compactness result in the space of continuous functions can be found
in [24] (see also [26, 27]).

If one wants to avoid the result of Mönch, one can obtain slightly
better estimates for some measures of noncompactness, but one has to
assume more on the function g, e.g., that g is uniformly continuous or at
least that g is a strict Carathéodory function [21]. The latter means, by
definition, that (t, s) �→ g(t, s, · ) is (strongly Bochner) measurable as
a function from [0, 1]2 into C(U, V ) where C(U, V ) is equipped with
the topology of uniform convergence on bounded sets. Each strict
Carathéodory function is a Carathéodory function, but the converse
holds only if dimU < ∞. More precisely, it is necessary (and for
separable U also sufficient) for the converse that g(t, s, · ) is for almost
all (t, s) ∈ [0, 1]2 contained in a separable subspace of C(U, V ); the
latter space is always nonseparable if dim U = ∞ [21].
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Concerning the compactness in regular ideal spaces (like Lp) much
less is known about (1). There are also analogous compactness results
as in the scalar case, but all these results require in addition that g
is a strict Carathéodory function. Although this condition is usually
satisfied if each of the maps g(t, s, · ) is itself an Urysohn operator
[24], this condition is in general rather restrictive, as we have remarked
above. On the other hand, an analogous form of the Mönch result
holds also for regular ideal spaces [23]. So it is natural to ask whether,
using the Mönch result or some generalization, it is possible to drop
the requirement that g be a strict Carathéodory function.

The following Theorem 1 destroys all hope in this direction: It shows
that such a result is even false in the linear case g(t, s, u) = k(t, s)u
where each k(t, s) is an element of the space L(U, V ) of bounded linear
operators from U into V . Note that such a function g is a Carathéodory
function if and only if k( · , · )u is measurable for each u ∈ U . Moreover,
g is a strict Carathéodory function if and only if k: T × S → L(U, V )
is measurable. We denote the norm in the spaces U , V and L(U, V )
always by | · |.

Theorem 1. Let T and S be measure spaces and V be a nontrivial
normed space. Assume that T contains a set of positive finite measure
without atoms and that S contains a set of positive finite measure.

Then there exists a separable Banach space U and a map k: T ×S →
L(U, V ) with |k(t, s)| ≤ 1 such that k( · , · )u is (strongly Bochner)
measurable on T × S for each u ∈ U and k(T × S)(U) is a one-
dimensional subspace of V , and the linear integral operator

(2) Kx(t):=
∫

S

k(t, s)x(s) ds, t ∈ T

acts boundedly from each Lp(S, U), 1 ≤ p ≤ ∞, into each Lq(T, V ),
1 ≤ q ≤ ∞, but always fails to be compact. If S has finite measure, it
may additionally be arranged that k(t, s) is independent of s.

Proof. As a matter of fact, one can always choose U :=�1. Let
D ⊆ T be a set of positive finite measure without atoms. Divide
D into two sets D1,1 and D1,2 of equal measure, and put E1:=D1,1;
divide D1,1, respectively D1,2, into two sets D2,1 and D2,2, respectively
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D2,3 and D2,4, of equal measure and put E2:=D2,1 ∪D2,3. Proceed by
induction by dividing the sets Dn,k analogously and putting En+1:=∪
{Dn+1,k : k < 2n+1 odd}. Then En are measurable subsets of D with
mes (EnΔEm) = mes D/2, n 
= m.

Let S0 ⊆ S have positive finite measure (if S has finite measure, put
S0:=S). Choose v ∈ V with |v| = 1 and put N(t):={n ∈ N : t ∈ En}
and

k(t, s)(ξ1, ξ2, . . . ):=
{∑

n∈N(t) ξnv if s ∈ S0,
0 if s /∈ S0.

Then |k(t, s)| ≤ 1, and since for each fixed u = (ξn)n ∈ U we have

k(t, s)u =
∞∑

n=1

ξnχEn
(t)χS0(s)v,

it follows that k( · , · )u is measurable and has its support in the set D×
S0 of finite measure. It follows that for each measurable x the function
(t, s) �→ k(t, s)x(s) is measurable (see, e.g., [19, Theorem A.1.1]), and
in view of

|k(t, s)x(s)| ≤ χD(t)χS0(s)|x(s)

and the Fubini-Tonelli theorem, K acts from L1(S, U) into L∞(T, V )
and is bounded. Since D and S0 have finite measure, the Hölder
inequality implies that K acts also from Lp(S, U) into Lq(S, V ) and
is bounded.

If un ∈ �1 denotes the nth canonical unit vector, we have k(t, s)un =
χEn

(t)χS0(s)v. Thus the sequence xn:=unχS0 which is bounded in
each Lp(S, U) is mapped onto the set {(mes S0)χEn

v : n = 1, 2, . . . }
which fails to be precompact in each Lq(T, V ), because its elements
have the pairwise distance of at least (mes S0)(mes D/2)1/q.

In view of Theorem 1, it is impossible to say anything about the
compactness of (1) in regular ideal spaces without assuming more
conditions on the kernel function than just a growth condition (even if
the range of the kernel function is bounded and finite-dimensional, and
if the Banach spaces involved are separable).

Therefore, it comes as a surprise that the situation is different in
the linear case. In fact, it is not accidental that the dual space U∗

in the above proof is not separable. The next theorem implies that
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for separable U∗ an analogous result cannot hold. Actually, it is
not the separability of U∗ which is essential for Theorem 2, but the
measurability of certain functions, as we will explain later.

In order to formulate our results in sufficient generality, we recall
some notions and results from the theory of ideal spaces which can be
found, e.g., in [19] (see also [26, 27]).

For simplicity, we assume that all underlying measure spaces are σ-
finite. Thus, let S be a σ-finite measure space, and let U be a normed
space. A normed space (X, ‖ · ‖) of (classes of) measurable functions
x: S → U is called pre-ideal if for each x ∈ X and each measurable
y: S → U the relation |y(s)| ≤ |x(s)|, for almost all s ∈ S, implies
y ∈ X and ‖y‖ ≤ ‖x‖. If X is also complete, it is called an ideal space.

To each pre-ideal space X and each normed space U0 there cor-
responds a pre-ideal space XU0 consisting of all measurable func-
tions x: S → U0 with the property that there is some y ∈ X with
|x(s)| = |y(s)| a.e.; we put, of course, ‖x‖XU0

:=‖y‖. In particular, for
U0:=R, each pre-ideal space X has a real form XR of real-valued func-
tions (and vice versa). X is an ideal space if and only if its real form
is an ideal space and U is complete.

For a measurable function x and a measurable set E, we denote by
PEx the function PEx(s):=χE(s)x(s). If En are measurable sets with
E1 ⊇ E2 ⊇ · · · , and ∩nEn = ∅, we write En↓∅. The notation En↑E
is defined analogously.

The regular part of a pre-ideal space X consists of all functions
x ∈ X with the property that for each sequence En↓∅ we have
infn ‖PEn

x‖ = 0. The regular part is a closed pre-ideal subspace (and
thus an ideal space if X is an ideal space). If the regular part is all of
X, then X is called regular.

We denote the dual space of a normed space U by U∗. Since S is σ-
finite, the space X has a support supp X, i.e., supp X is the largest
set (determined up to a null set) such that each x ∈ X vanishes
outside supp X. The associate space X ′ of X consists of all measurable
functions y: S → U∗ with supp y ⊆ supp X for which the norm

‖y‖:= sup
‖x‖X≤1

∫
S

|y(s)| |x(s)| ds
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is finite. The associate space is always an ideal space, and we have
(X ′)R = (XR)′. For example, for X = Lp we have X ′ = Lp′ with
1/p+1/p′ = 1 (even in case p = ∞). The space X ′ is in a canonical way
(by identifying y with an integral functional) isometrically embedded
into X∗. If U has finite dimension, then we have for each regular pre-
ideal space X by means of this embedding X ′ = X∗, but if X fails to
be regular or U has infinite dimension, the inclusion can be strict. A
special case of our main result can now be formulated as follows.

Theorem 2. Let U be a separable normed space with a separable U∗,
and let V be a Banach space. Let T and S be σ-finite measure spaces,
X be a pre-ideal space of functions x: S → U and Y be a pre-ideal space
of functions y: T → V . Let k: T × S → L(U, V ) be such that k( · , · )u
is a measurable function for each u ∈ U .

Then the function |k( · , · )| is measurable on T ×S, and for the linear
integral operators

Kx(t):=
∫

S

k(t, s)x(s) ds

and

|K|x(t):=
∫

S

|k(t, s)|x(s) ds

the following holds :

1. If |K| acts from XR into YR, then K acts from X into Y .
Moreover, if |K| is bounded then also K is bounded.

2. Let |K| act compact from XR into YR. In addition, suppose that
there are sequences Rn↑T×S and precompact sets Pn ⊆ V such that for
each x ∈ B and each n there is a measurable function λn,x: S → [0, 2]
satisfying λn,x(s) = 1 whenever |x(s)| ≤ n and

(3)
∫

S

χRn
(t, s)λn,x(s)k(t, s)x(s) ds ∈ Pn

for almost all t ∈ T . If Y and X ′ are regular, then K: X → Y is
compact.
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We point out once more that the crucial point of Theorem 2 is that we
do not require the measurability of k: T × S → L(U, V ), and therefore
none of the classical approaches to prove the compactness of integral
operators in Lp-spaces applies.

If we assume the axiom of choice, the separability of U∗ implies of
course the separability of U . However, unless noted otherwise, we will
only use the countable axiom of dependent choices for which this fact
cannot be proved [12].

Let us now discuss the technical compactness hypothesis (3) for the
values of k(t, s). This condition is satisfied if there is a compact set P
which is independent of t and s such that k(t, s) maps the unit ball of
U into P (put λn,x:=χ{s:|x(s)|<n}, Rn:=T ×Sn where Sn↑S have finite
measure, and Pn:=conv (n mes (Sn)P ∪ {0})).

In addition, the sets Rn can be used to disregard small sets of “bad”
behavior of k, for example, points where |k(t, s)| is large. In particular,
if there is a finite-dimensional subspace P which contains the range of
k(t, s), then (3) holds (put Rn:={(t, s) ∈ T × Sn : |k(t, s)| ≤ n} with
Sn and λn,x as above and Pn:={u ∈ P : |u| ≤ n2}).

The latter shows in particular that Theorem 2 indeed implies that an
operator as in Theorem 1 cannot exist if U∗ is separable.

However, the above remarks can be refined: As a matter of fact,
condition (3) is satisfied even if the compact set P , respectively the
subspace P , depends on s. This follows from the following theorem
which can be considered as a Mönch type compactness result. In this
sense, our results can indeed be considered as the proper application of
the Mönch technique to integral operators in ideal spaces.

Theorem 3. Assume that there is a measurable function z: S →
[0,∞) with z(s) 
= 0 for s ∈ supp X and a sequence R̂n↑T × S such
that

Bn(s):=
⋃
t∈T

(t,s)∈R̂n

|k(t,s)|≤n

{k(t, s)u : |u| ≤ z(s)}

is precompact for almost all s. Then the compactness condition (3)
is satisfied with sequences Rn ⊆ R̂n, where Rn↑T × S, and λn,x:=
χ{s:|x(s)|≤n}.
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Corollary 1. The compactness hypothesis concerning (3) holds if at
least one of the following two conditions is satisfied.

1. There are precompact sets P (s) ⊆ V such that k(t, s) maps the
unit ball of U into P (s) for almost all (t, s).

2. There are finite-dimensional subspaces P (s) ⊆ V such that the
range of k(t, s) is contained in P (s) for almost all (t, s).

Proof of Theorem 3. Since S is σ-finite, there is a sequence Sn↑S
with mes Sn < ∞. Now the sequence

Rn:={(t, s) ∈ R̂n : |k(t, s)| ≤ n, s ∈ Sn,
and either z(s) ≥ 1/n or z(s) = 0}

satisfies Rn↑T × S. Theorem 3 is proved if we can show that the set

Pn:=
{ ∫

S

χRn
(t, s)λn,x(s)k(t, s)x(s) ds | x ∈ L∞(S, U),

‖x‖∞ ≤ n, supp x ⊆ supp z, t ∈ T

}

is precompact. Note that, for each x, the above integrand is (essen-
tially) bounded by n2χSn

and thus integrable for almost all t by the
Fubini-Tonelli theorem in the form [25, Theorem 1.33]; we understand
the definition of Pn in the sense that all those pairs (x, t) are omitted
for which the integrand is not measurable. To see the precompactness
of Pn, put

Cn:={y | y: S → V is measurable with |y(s)| ≤ n2χSn
(s) and

y(s) ∈ n2Bn(s) ∪ {0}}.

Since the functions in Yn are dominated by the integrable function
n2χSn

and since each of the sets n2Bn(s) ∪ {0} is compact, we obtain
from the Mönch type theorem [24, Theorem 11.17] (apply part 3 with
f(s, u) = u, Mn:=M :=U , and r(s) ≡ 0) that{∫

S

y(s) ds : y ∈ Cn

}

is precompact. We show that this set contains Pn.
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Indeed, let some t ∈ T and a measurable function x ∈ L∞(S, U)
with ‖x‖∞ ≤ n and supp x ⊆ supp z be given for which the function
y(s):=χRn

(t, s)λn,x(s)k(t, s)x(s) is measurable. The claim follows if
we can show that y belongs to Cn. For almost all s with y(s) 
= 0,
we have (t, s) ∈ Rn, and |x(s)| ≤ n which implies |y(s)| ≤ n2χSn

(s).
Moreover, for all those s, we have |n−2x(s)| ≤ 1/n ≤ z(s), and so
n−2y(s) ∈ Bn(s). Hence, y ∈ Cn, as required.

2. Proof of the first part of Theorem 2 and auxiliary results.
Let us first explain why the separability of U∗ is assumed for Theorem 2.
The idea of the proof is to consider the associate operator

K ′y(s):=
∫

T

k(t, s)∗y(t) dt

from Y ′ into X ′ where k(t, s)∗ denotes the adjoint operator of k(t, s).
However, since we do not require that k: T×S → L(U, V ) is measurable,
it is not true in general that this operator is well-defined even if |K|
is bounded from XR into YR. In fact, if U∗ is not separable, it
may happen that the function k( · , · )∗f may fail to be measurable
for f ∈ V ∗. In particular, this is the case for k as in the proof of
Theorem 1.

This is actually the only place where the separability of U∗ plays
a role (and therefore, we will also formulate our main compactness
result without the separability of U∗ but by assuming that k( · , · )∗f is
measurable). However, if U∗ is separable, measurability is no problem
as the following result shows.

Proposition 1. Let R be a measure space, U and V be normed
spaces, and let k: R → L(U, V ) be such that k( · )u is measurable for
each u ∈ U . Suppose that U and U∗ are separable.

Then |k( · )| and k( · )∗f are measurable for each f ∈ V ∗. In particular
(t, f) �→ k(t)∗f is a Carathéodory function.

Proof. Let {u1, u2, . . . } be a countable dense subset of the unit ball
of U . Since |k( · )un| is measurable for each n, it follows that also

|k( · )| = sup
n

|k( · )un|
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is measurable. Moreover, for each f ∈ V ∗, each g ∈ U∗, and each n,
the function hn(t):=|f(k(t)un) − g(un)| is measurable. Since

h(t):=|k(t)∗f − g| = sup
n

hn(t),

it follows that also h is measurable. In particular, for each set E ⊆ R
of finite measure and each r > 0 the set {t ∈ E : h(t) < r} belongs to
the Lebesgue extension of R. By the definition of h, we conclude that
for each open ball B ⊆ U∗ the set {t ∈ E : k(t)∗f ∈ B} belongs to
the Lebesgue extension of R. Since U∗ is a separable metric space, its
topology has a countable base consisting of open balls. In particular,
each open set O ⊆ U∗ is the countable union of open balls, and so
{t ∈ E : k(t)∗f ∈ O} belongs to the Lebesgue extension of R. Since
U∗ is separable, [25, Theorem 1.1] implies that k( · )∗f is measurable,
as required.

The proof of the following fact is by standard arguments which
we recall for the reader’s convenience. Only the last statement is
apparently new, although not surprising.

Proposition 2. Let T and S be σ-finite measure spaces, U a normed
space, V a Banach space, and let k: T × S → L(U, V ) be such that
k( · , · )u and k( · , · )∗f are measurable for each u ∈ U and f ∈ V ∗,
respectively. Assume also that |k( · , · )| is measurable.

If |K| acts from XR into YR, then K acts from X into Y . If
additionally |K| ∈ L(XR, YR), then K ∈ L(X, Y ) and K ′ ∈ L(Y ′, X ′)
and also the operator

(4) |K ′|y(s):=
∫

T

|k(t, s)|y(t) dt

acts from Y ′
R into X ′

R and is bounded with

(5) ‖ |K ′| ‖L(Y ′
R

,X′
R

) ≤ ‖ |K| ‖L(XR,YR).

Moreover, in this case, K ′ is the restriction of the adjoint operator
K∗: Y ∗ → X∗ to Y ′ ⊆ Y ∗ (via the canonical identifications).

Proof. Since (t, s, u) �→ k(t, s)u is a Carathéodory function, we have
for each x ∈ X that (t, s) �→ k(t, s)x(s) is measurable. Since |K| |x|(t)
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is finite for almost all t, the Fubini-Tonelli theorem in the form [25,
Theorem 1.33] thus implies that Kx(t) is defined for almost all t and
that Kx is measurable. The obvious estimate |Kx(t)| ≤ |K| |x|(t)
implies that K: X → Y and that K is bounded if |K| is bounded. If
|K| is bounded, we have by Tonelli’s theorem that

sup
‖y‖Y ′≤1

sup
‖x‖X≤1

∫
S

∫
T

|k(t, s)∗| |y(t)| |x(s)| dt ds

= sup
‖y‖Y ′≤1

sup
‖x‖X≤1

∫
T

∫
S

|y(t)| |k(t, s)| |x(s)| ds dt

= sup
‖y‖Y ′≤1

sup
‖x‖X≤1

∫
T

|y(t)| |K| |x| (t) dt ≤ ‖ |K| ‖,

which shows that |K ′| acts boundedly from Y ′
R into X ′

R with (5). Since
(t, s, f) �→ k(t, s)∗f is a Carathéodory function, an analogous argument
as above shows that K ′ acts boundedly from Y ′ to X ′. Moreover, by the
above calculation, we may apply the Fubini-Tonelli theorem to obtain
for each x ∈ X and each y ∈ Y ′ (with a similar calculation as above)
that ∫

T

y(t)Kx(t) dt =
∫

S

K ′y(s)x(s) ds

which means that K ′ is the restriction of K∗.

Remark 1. If |k| = |k( · , · )| fails to be measurable, then Proposition 2
holds anyway, provided we replace |k| in the definition of the operators
|K| and |K ′| by a measurable function which dominates |k|.

For Urysohn operators with strict Carathéodory functions, compact-
ness results have been obtained in [24]. Moreover, even if the kernel
function is too singular to generate a compact operator, it is possible
to give good estimates for the measure of noncompactness of the image
[18]. More precisely, we are interested in estimates for the Hausdorff
measure of noncompactness. Recall that for a subset A of a metric
space Z the Hausdorff measure of noncompactness is defined as

χZ(A):= inf{ε > 0 : A has a finite ε-net in Z}.
We will only need a special case of [18] for linear integral operators.
This case can be formulated as follows.
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Let U be a normed space, V be a Banach space, and let S and T be
σ-finite measure spaces. Let X and Y be pre-ideal spaces of measurable
functions x: S → U and y: S → V , respectively. Let B ⊆ X be
bounded, and k: T × S → L(U, V ) be such that k( · , · )u is measurable
for each u ∈ U . Besides the linear integral operators K and |K| with
kernel functions k and |k|, respectively, we consider also the (nonlinear!)
operator

(6) |K|0x(t):=
∫

T

|k(t, s)x(s)| ds.

We put

γ0
S(k, B):= sup

S⊇Dn↓∅

lim sup
n→∞

sup
x∈B

‖|K|0PDn
x‖YR

,(7)

γ0
T (k, B):= sup

T⊇En↓∅

lim sup
n→∞

sup
x∈B

‖PEn
|K|0x‖YR

.(8)

Theorem 4. Assume in the above situation that |K|χE is almost
everywhere finite for each χE ∈ XR with mes E < ∞. Suppose that
|K|0 sends B into the regular part of YR. Finally, assume that k(t, s)
is compact for almost all (t, s) ∈ T ×S and that k: T × S → L(U, V ) is
measurable (which is automatically the case if dim U < ∞). Then K
sends B into the regular part Y0 of Y , and

(9) χY0(K(B)) ≤ γ0
S(k, B) + γ0

T (k, B).

We need also the following convergence result from [18]. We formu-
late this result only for a special case. In particular, we assume that
the limit operator is linear, namely K, and that the operator domi-
nating the convergence is |K|0. Moreover, we restrict our attention to
Carathéodory functions.

Theorem 5. Consider the situation described before Theorem 4.
Assume that there are sets Rk↑T × S and Carathéodory functions
gn: T × S × U → V such that gn(t, s, u) → k(t, s)u uniformly on each
set of the form Rk × {u ∈ U : |u| < k}. Assume in addition that

|gn(t, s, u) − k(t, s)u| ≤ |k(t, s)u|.
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For each natural number j ≤ n, let Gj,n be an operator on B which
sends x ∈ B into a measurable function Gj,nx: T × S → V such that

{
Gj,nx(t, s) = gn(t, s, x(s)) if |x(s)| < j,
|Gj,nx(t, s) − k(t, s)x(s)| ≤ |k(t, s)x(s)| if |x(s)| ≥ j,

for almost all (t, s). Put

Aj,nx(t):=
∫

S

Gj,nx(t, s) ds, t ∈ T.

Suppose that |K|χD is almost everywhere finite for each χD ∈ X with
mes D < ∞ and that Aj,n: B → Y and K: B → Y . Then there are
sequences j1 < j2 < · · · and p1 < p2 < · · · of natural numbers with
jn ≤ pn and

(10) lim sup
n→∞

sup
x∈B

‖Ajn,pn
x − Kx‖ ≤ γ0

S(k, B) + γ0
T (k, B).

3. Measures of noncompactness and a Schauder type theo-
rem. We need also a slight variation of the Hausdorff measure of non-
compactness, the so-called inner Hausdorff measure of noncompactness
χi. For a set A in a metric space Z, this measure is defined similarly as
the Hausdorff measure of noncompactness but with the difference that
the ε-net must be chosen as a subset of A, i.e.,

χi(A):=χA(A).

Clearly, χZ(A) ≤ χi(A). With this measure, and the Hausdorff
measure of noncompactness, we can prove the following quantitative
version of the Schauder theorem.

Theorem 6. Let X and Y be normed linear spaces, and let K ∈
L(X, Y ). Let B ⊆ X and B∗ ⊆ Y ∗ be bounded, and let M :=B−B and
C:= sup{‖x‖ : x ∈ M}. Let c > 0 and ρ > 0 satisfy

(11) sup
f∈B∗

|f(y)| ≥ c‖y‖Y , y ∈ K(M), ‖y‖Y > ρ.
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Then

χY (K(B)) ≤ χi(K(B)) ≤ max
{

C

c
χX∗(K∗(B∗)), ρ

}
.

If we assume the axiom of choice, then the Hahn-Banach theorem
holds and implies that (11) is true with c = 1 and all ρ > 0 when B∗
is the unit ball of Y ∗. Therefore, a special case of Theorem 6 is the
following quantitative variant of the Schauder theorem (assuming the
axiom of choice):

Corollary 2. Let X and Y be normed linear spaces, and let
K ∈ L(X, Y ). If B(X) and B(Y ∗) denote the corresponding unit balls,
then

χi(K(B(X))) ≤ 2χ(K∗(B(Y ∗))).

In particular, K is compact if K∗ is compact.

Proof of Theorem 6. Given δ > χX∗(K∗(B∗)), we find a finite δ-
net {g1, . . . , gn} ⊆ X∗ for K∗(B∗). Define a bounded linear function
h: X → Kn (K = R or K = C) by

h(x):=(g1(x), . . . , gn(x)).

Endowing Kn with the max-norm, we have that the image h(B) ⊆ Kn

is bounded and thus χi(h(B)) = 0. Hence, we find for each ε > 0, a
finite set N :={x1, . . . , xm} ⊆ B such that h(N) is an ε-net for h(B).
We claim that K(N) is a max{(Cδ + ε)/c, ρ}-net for K(B).

In fact, given x ∈ B, choose k such that ‖h(x) − h(xk)‖ < ε. For
each f ∈ B∗ we have

f(Kx − Kxk) = fK(x − xk) = (K∗f)(x − xk).

Choose some j with ‖K∗f − gj‖X∗ ≤ δ. Then

‖f(Kx − Kxk)‖ = ‖(K∗f)(x − xk)‖
= ‖gj(x − xk) + (K∗f − gj)(x − xk)‖
≤ ‖gj(x) − gj(xk)‖ + ‖K∗f − gj‖ ‖x − xk‖
≤ ‖h(x) − h(xk)‖ + δ · C ≤ Cδ + ε,
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and so (11) implies that either ‖Kx − Kxk‖Y ≤ ρ or ‖Kx − Kxk‖Y ≤
(Cδ + ε)/c, as required.

4. Formulation of the main results. Before we formulate our
main theorem, we need another notion about a pre-ideal space X: X
is called β-almost perfect if XR has the property that the relations
0 ≤ xn(s)↑x(s) a.e. and x ∈ XR imply that ‖x‖ ≤ β supn ‖xn‖. Each
regular pre-ideal space is automatically β-almost perfect with β = 1 by
[19, Corollary 3.3.4].

We point out once more that the measurability assumption for
k( · , · )∗f and |k( · , · )| in the following result are automatically sat-
isfied by Proposition 1 if U and U∗ are separable.

Theorem 7. Let U be a normed space, and let V be a Banach
space. Let T and S be σ-finite measure spaces, X a pre-ideal space of
functions x: S → U and Y a pre-ideal space of functions y: T → V . Let
k: T ×S → L(U, V ) be such that the functions k( · , · )u, k( · , · )∗f , and
|k( · , · )| are measurable for each u ∈ U and each f ∈ V ∗.

Assume that |K| ∈ L(XR, YR) and, consequently, the nonlinear
operator |K|0 from (6) is bounded and K ∈ L(X, Y ). Then also the
operator |K ′| in Proposition 2 is bounded from Y ′

R into X ′
R, and so for

bounded B ⊆ X the numbers

γ0
S(k, B):= sup

S⊇Dn↓∅

lim sup
n→∞

sup
x∈B

‖|K|0PDn
x‖YR

,

γ0
T (k, B):= sup

T⊇En↓∅

lim sup
n→∞

sup
x∈B

‖PEn
|K|0x‖YR

,

γ′
S(k):= sup

S⊇Dn↓∅

lim sup
n→∞

‖PDn
|K ′|‖L(Y ′

R
,X′

R
),

γ′
T (k):= sup

T⊇En↓∅

lim sup
n→∞

‖ |K ′|PEn
‖L(Y ′

R
,X′

R
)

are finite. Let Y be β-almost perfect and assume that |K ′|(Y ′
R) is

contained in the regular part of X ′
R. Moreover, assume that the

compactness assumption (3) for the values of k is satisfied. Then we
have for C:= sup{‖x − y‖ : x, y ∈ B} that

(12) χY (K(B)) ≤ γ0
S(k, B) + γ0

T (k, B) + Cβ(γ′
S(k) + γ′

T (k)).
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If χsupp K(B) ∈ Y ′′
R and if there is a precompact set P ⊆ V such that

Kx(t) ∈ P a.e. for each x ∈ B, then we even have the stronger estimate

(13) χi(K(B)) ≤ Cβ(γ′
S(k) + γ′

T (k)).

For the case that B is the unit ball of X, it is not necessary to
calculate the quantities γ′

S(k) and γ′
T (k). More precisely, we obtain for

the quantities

γS(k):= sup
S⊇Dn↓∅

lim sup
n→∞

‖|K|PDn
‖L(XR,YR),

γT (k):= sup
T⊇En↓∅

lim sup
n→∞

‖PEn
|K|‖L(XR,YR)

the following consequence:

Corollary 3. Let all assumptions of Theorem 7 be satisfied with
B:={x ∈ X : ‖x‖ ≤ 1}. Then the conclusion of Theorem 7 holds with
the estimates

χY (K(B)) ≤ (γ0
S(k, B) + γ0

T (k, B)) + 2β(γS(k) + γT (k))
≤ (1 + 2β)(γS(k) + γT (k))

and
χi(K(B)) ≤ 2β(γS(k) + γT (k)),

respectively.

If we assume in Corollary 3 that X ′ is regular, then we do not have
to consider |K ′| at all, because the assumption that |K ′| sends Y ′ into
the regular part of X ′ is then automatically satisfied by Proposition 2.
We recall once more that each regular pre-ideal space is automatically
β-almost perfect with β = 1.

Corollary 4. Let all assumptions of Theorem 7 be satisfied with
B:={x ∈ X : ‖x‖ ≤ 1} and assume that Y is regular. Then the
following statements are equivalent :

1. |K| is compact.
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2. For each sequence T ⊇ En↓∅ we have ‖PEn
|K|‖L(XR,YR) → 0.

3. For each sequence S ⊇ Dn↓∅ we have ‖|K|PDn
‖L(XR,YR) → 0.

4. For each of the sequences T ⊇ En↓∅ and S ⊇ Dn↓∅, we have
‖PEn

|K|PDn
‖L(XR,YR) → 0.

If one of these statements is true, then K is compact.

Theorem 2 follows from Corollary 4 (and our earlier considerations).

Remark 2. If |k( · , · )| fails to be measurable, then a result analogous
to Theorem 7 and the above corollaries holds true, provided that we
replace |k| in the definition of |K| and |K ′| by a measurable function
which dominates |k|.

Remark 3. In our proof of Theorem 7 (and its corollaries, including
Theorem 2), we make use of the Hahn-Banach extension theorem which
requires the axiom of choice. However, Theorem 7 (and its corollaries)
remains true also if we reject the axiom of choice and assume only the
(countable) axiom of dependent choices [8] under the following minor
restrictions:

1. Since we cannot make use of the Hahn-Banach theorem, we must
require that V has the bidual property

|v| = sup
|f |V ∗≤1

|f(v)|, v ∈ V.

Even if one rejects the (general) axiom of choice, this property can be
proved for a very large class of spaces, including all separable spaces V
[5, p. 183]. If V does not satisfy the bidual property but at least

(14) |v| ≤ α sup
|f |V ∗≤1

|f(v)|, v ∈ V

with some constant α ∈ [1,∞) then Theorem 7 (and its corollaries)
remain true, provided that Y is (β/α)-almost perfect. Note that,
without the axiom of choice, it is consistent to assume that for any
α0 ≥ 1 there are spaces satisfying (14) with α ≥ α0 but not with any
smaller number [4]. In fact, each ideal space which is α-almost perfect
only for α ≥ α0 can be assumed to have this property [19, 22].
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2. For the compactness condition (3) we require not only that for each
n and x a corresponding function λn,x exists, but we assume also that
(n, x) �→ λn,x is a function (in the sense of the underlying set theory).
This is of course automatically the case if we assume the axiom of
choice, and this is also the case if λn,x can be given constructively as
in Theorem 3.

5. Proof of the main results. Let us first show why Theorem 7
implies Corollaries 3 and 4.

Proof of Corollary 3. Applying Proposition 2 to the integral operator
with kernel (t, s) �→ |χE(t)k(t, s)|, we obtain

‖ |K ′|PE‖ ≤ ‖PE |K|‖.

Similarly, we find with the kernel (t, s) �→ |χD(s)k(t, s)| that

‖PD|K ′| ‖ ≤ ‖|K|PD‖.

These estimates show that γ′
S(k) ≤ γS(k) and γ′

T (k) ≤ γT (k), and the
claim follows by Theorem 7.

Proof of Corollary 4. The equivalence of the four statements is a
standard result for scalar linear integral operators, see e.g., [2, 13]. If
these four statements are true, we have in particular γS(k) = γT (k) = 0,
and so the compactness of K follows from Corollary 3.

Proof of Theorem 7. The claim about |K ′| follows from Proposition 2.
We first show (13). Thus, let P ⊆ V be precompact and contain Kx(t)
almost everywhere for each x ∈ B, and suppose that χE ∈ Y ′′

R with
E:=supp K(B). Since V is a Banach space, the set P is compact, and
thus also P0:=P − P is compact.

Let c0 ∈ (0, α−1), with α from (14), c1 ∈ (0, 1), and ρ0 > 0 arbitrary.
By (14), we find for each nonzero point of P0 some f ∈ V ∗ with |f | = 1
such that the relation |f(v)| ≥ c0|v| holds for all v in a neighborhood
of this point. By the compactness of {v ∈ P0 : |v| ≥ ρ0}, we find
(by considering a finite set of corresponding f ’s) a finite-dimensional
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subspace V ′ ⊆ V ∗ such that

(15) sup
f∈V ′
|f |≤1

|f(v)| ≥ c0|v|, v ∈ P0, |v| ≥ ρ0.

If we denote by i: V → (V ′)∗ the canonical (evaluation) embedding,
(15) can be read as

(16) |i(v)| ≥ c0|v|, v ∈ P0, |v| ≥ ρ0.

Let now M :=B − B, and let B∗ denote the subset of all functions of
the unit ball of Y ′ which attain their values in V ′, i.e., B∗ denotes the
unit ball of (Y ′)V ′ . We claim that (16) implies

(17) sup
z∈B∗

∣∣∣∣
∫

T

z(t)y(t) dt

∣∣∣∣ ≥ c0β
−1‖y‖Y − c0ρ0‖χE‖Y ′′

R
, y ∈ K(M).

To see this, let y ∈ K(M) be given. Since y ∈ K(B) − K(B), we
have almost everywhere y(t) ∈ P − P ⊆ P0. From (16), we obtain
|i(y(t))| + c0ρ0 ≥ c0|y(t)|. Since y(t) = 0 for almost all t /∈ E, we have
even |i(y(t))| + c0ρ0χE(t) ≥ c0|y(t)| which implies, since Y ⊆ Y ′′ in a
canonical way,

‖ |i ◦ y| ‖Y ′′
R
≥ c0‖ |y| ‖Y ′′

R
− c0ρ0‖χE‖Y ′′

R
.

Since Y is β-almost perfect, we have by [19, Corollary 3.4.4] the
estimate ‖|y|‖Y ′′

R
≥ β−1‖|y|‖YR

, and so

‖ |i ◦ y| ‖Y ′′
R
≥ c0β

−1‖y‖Y − c0ρ0‖χE‖Y ′′
R

.

Since V ′ has finite dimension, it is reflexive, and so we assume that it
is the dual of W ∼= (V ′)∗. By [19, Theorem 3.4.4], we have

sup
z∈B∗

∣∣∣∣
∫

T

z(t)y(t) dt

∣∣∣∣ = sup
z∈B∗

∣∣∣∣
∫

T

i(y(t))z(t) dt

∣∣∣∣
= ‖i ◦ y‖(Y ′

V ′ )′ = ‖i ◦ y‖(YW )′′ = ‖ |i ◦ y| ‖Y ′′
R

.

Combining our previous formulas, we thus have proved (17).
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Identifying B∗ ⊆ Y ′ with a subset of Y ∗, and putting b:=‖χE‖Y ′′
R

,
we can read (17) as

sup
f∈B∗

|f(y)| ≥ c0β
−1‖y‖Y − c0ρ0b, y ∈ K(M).

For |y| ≥ ρ:=βρ0b/(1 − c1), we have in particular

sup
f∈B∗

|f(y)| ≥ c0c1β
−1‖y‖Y

+ c0(1 − c1)β−1‖y‖Y − c0ρ0b ≥ c0c1β
−1‖y‖Y ,

‖y‖Y ≥ ρ.

Theorem 6 thus implies that

χi(K(B)) ≤ max
{

Cβ

c0c1

χX∗(K∗(B∗)), ρ
}

.

The crucial point is now that the space V ′ is locally compact and
separable (because dim V ′ < ∞). This implies that the Carathéodory
function (t, s, f) �→ k(t, s)∗f is actually a strict Carathéodory function
by [24, Theorem 8.15], i.e., k( · , · )∗ is measurable as a function from
T × S into L(V ′, U∗), and so formula (9) applies for the restriction
K ′: Y ′

V ′ → X ′. Since B∗ ⊆ Y ′
V ′ and K ′ is the restriction of the adjoint

operator (Proposition 2), we thus have

χX∗(K∗(B∗)) ≤ χX′
0
(K ′(B∗)) ≤ γ′

S(k) + γ′
T (k).

Combining our previous formulas, we find

χi(K(B)) ≤ max
{

Cβ

c0c1
(γ′

S(k) + γ′
T (k)),

βρ0b

1 − c1

}
.

Since c0 ∈ (0, α−1), c1 ∈ (0, 1), and ρ0 > 0 were arbitrary, we obtain
(13) (with β replaced by αβ).

In order to prove (12), we assume without loss of generality that
supp Y = T . By [19, Corollary 2.2.7], we find then a sequence of
sets Tn↑T with χTn

∈ YR. Choose Rn, Pn and λn,x corresponding
to assumption (3). Replacing Rn by its intersection with Tn × S if
necessary, we may assume that Rn ⊆ Tn × S.
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We apply Theorem 5 with gn(t, s, u):=PRn
k(t, s)u. Since R1 ⊆ R2 ⊆

· · · , we have gn(t, s, u) → k(t, s)u uniformly on each set Rk × U .
Moreover,

|gn(t, s, u) − k(t, s)u| ≤ |k(t, s)u|.
For natural numbers j ≤ n and x ∈ B, put

Gj,nx(t, s):=λn,x(s)gn(t, s, x(s)) = λn,x(s)PRn
k(t, s)x(s)

and note that, in view of λn,x(s) ∈ [0, 2],

|Gj,nx(t, s) − k(t, s)x(s)| ≤ |k(t, s)x(s)|.

Moreover, if |x(s)| < j ≤ n, then λn,x(s) = 1, and so Gj,nx(t, s) =
gn(t, s, x(s)). By Theorem 5, we thus find for each ε > 0 indices j ≤ n
with

(18) sup
x∈B

‖Aj,nx − Kx‖ ≤ γ0
S(k, B) + γ0

T (k, B) + ε.

Let Kn denote the linear integral operator with kernel kn(t, s)u:=
gn(t, s, u), and put Dnx:=λn2,x. By the linearity of kn(t, s), we have
Aj,nx = KnDnx. Condition (3) implies that for each x ∈ B the
values KnDnx(t) are for almost all t contained in a precompact set.
Moreover, the support of the image (KnDn)(B) is contained in Tn.
Hence, observing that |kn| ≤ |k|, we can apply (13) with the operator
Kn and the set Bn:=DnB and obtain

χi(Aj,n)(B)) = χi(Kn(Bn)) ≤ Cβ(γ′
S(kn) + γ′

T (kn))
≤ Cβ(γ′

S(k) + γ′
T (k)).

In particular, for each ε0 > Cβ(γ′
S(k) + γ′

T (k)), we find a finite ε0-net
for Aj,n(B) which by (18) must be a finite (ε0+γ0

S(k, B)+γ0
T (k, B)+ε)-

net for K(B). Hence, χY (K(B)) ≤ ε0 + γ0
S(k, B) + γ0

T (k, B) + ε, and
(12) follows.
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