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EXACT SOLUTION OF SOME INTEGRAL
EQUATIONS OVER A CIRCULAR DISC

P.A. MARTIN

ABSTRACT. Two-dimensional integral equations of the
first kind over a circular disc are considered. The kernels
involve the distance between two points on the disc raised
to an arbitrary power. A review is given, comparing several
published exact solutions for weakly-singular equations: these
solutions are complicated, but three of them are shown to be
equivalent. Some extensions to hypersingular equations are
discussed.

1. Introduction. This paper is concerned with integral equations
of the form

(1)
∫

D

w(x, y)
R2α

dx dy = p(x0, y0), (x0, y0) ∈ D.

Here, D = {(x, y) : x2 +y2 < a2} is a circular disc of radius a, centered
at the origin in the xy-plane, p is a given function and w is to be found.
R is the distance between two points in the disc,

R = {(x − x0)2 + (y − y0)2}1/2,

and α is a positive parameter. The kernel R−2α is weakly singular
for 0 < α < 1, and it is hypersingular for α ≥ 1. (We shall define
“hypersingular” later. Note that α = 1 does not lead to a “singular”
integral equation, as the principal-value integral of R−2 does not exist.)

The case α = 1/2 is classical: it arises in the problem of the
electrified disc [6, 24, 27]. This problem requires the determination
of a harmonic function in three-dimensional space, V (x, y, z), with the
Dirichlet condition, V = 1, on the disc and the condition V → 0 at
infinity.

More generally, the weakly-singular case (0 < α < 1) has been studied
by several authors. Complicated formulas for the exact solution of (1)

Received by the editors on May 15, 2005.

Copyright c©2006 Rocky Mountain Mathematics Consortium

39



40 P.A. MARTIN

are available: one purpose of this paper is to review these formulas,
and to confirm that some of them are correct.

The hypersingular case (α ≥ 1) has received less attention, with one
exception: α = 3/2. This exceptional case occurs when the Neumann
problem for Laplace’s equation exterior to a disc is to be solved. The
resulting equation can be written in several equivalent forms:

(2) ∇2
0

∫
D

w(x, y)
R

dx dy = p(x0, y0), (x0, y0) ∈ D;

(3)
− −

∫
D

{
∂w

∂x

∂

∂x

(
1
R

)
+

∂w

∂y

∂

∂y

(
1
R

)}
dx dy = p(x0, y0),

(x0, y0) ∈ D;

(4) ×
∫

D

w(x, y)
R3

dx dy = p(x0, y0), (x0, y0) ∈ D;

here,

(5) ∇2
0 =

∂2

∂x2
0

+
∂2

∂y2
0

is the two-dimensional Laplacian. Usually, these equations are to be
solved for w subject to

(6) w(x, y) = 0 for (x, y) ∈ ∂D,

where ∂D is the boundary of D (the edge of the disc).

Equation (2) can be found in Bueckner’s article [7, p. 287], where
it is credited to Panasyuk [23, eqn. (VI.21)], who in turn refers to
a Russian paper by M.Ya. Leonov published in 1940. Equation (3)
was derived by Kossecka [18], Bui [8] and Guidera and Lardner [15].
It involves Cauchy principal-value integrals over D. Equation (4)
is a hypersingular integral equation for w; it was first derived by
Ioakimidis [16]. Further references are given in [21, 22]. Notice that
the equivalence of (2) and (4) can be taken as defining the hypersingular
integral in (4).
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When considering the integral equation (1), it is natural to introduce
polar coordinates, r and θ, defined by x = r cos θ and y = r sin θ, so
that

D = {(r, θ) : 0 ≤ r < a, −π ≤ θ < π}.
Then, putting w(r cos θ, r sin θ) = u(r, θ) and p(r0 cos θ0, r0 sin θ0) =
f(r0, θ0), (1) becomes

(7)
∫ π

−π

∫ a

0

u(r, θ)
R2α

r dr dθ = f(r0, θ0), 0 ≤ r0 < a, −π ≤ θ0 < π,

where R = {r2 + r2
0 − 2rr0 cos (θ − θ0)}1/2. We shall describe various

solutions of this integral equation.

We begin in Section 2 by giving the solution of (7) when f ≡ 1 and
0 < α < 1. These results are useful for checking published solutions
(supposedly valid when f is more general), they are obtained using
methods that generalize, and they reveal the typical behavior near the
edge of the disc. Then, three formulas for the exact solution when
0 < α < 1 are presented in Section 3. These formulas are complicated,
and it is not evident that they are equivalent. In fact, they are: this
is shown in Section 4 using a Fourier decomposition for f . (Several
erroneous formulas are also mentioned.) Finally, some comments on
hypersingular equations with 1 < α < 2 are given in Section 5.

2. The simplest axisymmetric weakly-singular problem. We
consider the axisymmetric problem with 0 < α < 1 and f constant; we
choose f = 1. Thus, as u does not depend on θ, (7) becomes

(8)
∫ a

0

u(r) W (r, r0; α) r dr = 1, 0 ≤ r0 < a,

where
W (r, r0; α) =

∫ π

−π

dθ

R2α
.

To solve (8), we can use an integral representation for W ; we describe
two choices.

2.1 Use of a Copson-type representation. It is known that

W (r, r0; α) = 4 sin πα

∫ min(r,r0)

0

t2α−1 dt

(r2 − t2)α(r2
0 − t2)α

,
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for 0 < α < 1, r > 0 and r0 > 0; for a proof, see [17, Lemma 1.1] or
[9, eqn. (1.1.3)]. Substituting for W in (8) and changing the order of
integration gives

(9) 4 sin πα

∫ r0

0

t2α−1

(r2
0 − t2)α

∫ a

t

u(r) r dr

(r2 − t2)α
dt = 1, 0 ≤ r0 < a.

This equation can be solved by inverting the Abel-like operators.
However, it is simpler to guess: we try

(10) u(r) = U(a2 − r2)α−1,

where the constant U is to be found. With this guess and the
substitution r2 = (a2 − t2)x + t2, the inner integral in (9) becomes

U

2

∫ 1

0

x−α(1 − x)α−1 dx =
Uπ

2 sin πα
,

which does not depend on t. Then, using the substitution t2 = r2
0τ , (9)

becomes

Uπ

∫ 1

0

τα−1(1 − τ )−α dτ = 1, 0 ≤ r0 < a,

so that

(11) U = π−2 sin πα.

Hence, the (unique) solution of (7) when f ≡ 1 is given by

(12) u(r) =
sin πα

π2(a2 − r2)1−α
.

In particular, we note that u(r) is unbounded at r = a.

2.2 Use of a Bessel-function representation. Fahmy et al. [13]
proved that

W (r, r0; α) =
πΓ(1 − α)
22α−2Γ(α)

∫ ∞

0

J0(tr) J0(tr0) t2α−1 dt, 0 < α < 1.
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Substituting for W in (8) and changing the order of integration gives

(13)

πΓ(1 − α)
22α−2Γ(α)

∫ ∞

0

t2α−1J0(tr0)
∫ a

0

u(r) J0(tr) r dr dt = 1, 0 ≤ r0 < a.

Making use of the guess (10), the inner integral becomes

Ua2α

∫ 1

0

J0(atx) (1 − x2)α−1 x dx = 2α−1Uaαt−αΓ(α) Jα(at),

using [14, (6.567.1)]. Thus, (13) becomes

(14)
πaα

2α−1
U Γ(1 − α)

∫ ∞

0

tα−1J0(tr0) Jα(ta) dt = 1, 0 ≤ r0 < a.

The remaining integral is of Weber-Schafheitlin type; from [14,
(6.574.1)], its value is 2α−1a−αΓ(α), since the hypergeometric function
satisfies F (α, 0; 1; r2

0/a2) = 1. Hence, we recover (11) and (12).

3. The general weakly-singular integral equation. Consider
the weakly-singular version of (7). We state three formulas for its
solution (and mention some erroneous formulas).

3.1 Fabrikant’s solution. This solution is given in several papers.
It can be written as
(15)

u(r0, θ0) =
sin πα

π2

{
Φ(a, r0, θ0)
(a2−r2

0)1−α
−

∫ a

r0

∂

∂r
Φ(r, r0, θ0)

dr

(r2−r2
0)1−α

}
,

where
(16)

Φ(r, r0, θ0) = f(0, θ0)

+ r2−2α

∫ r

0

∂

∂ρ

{[
P

(ρr0

r2

)
f
]
(ρ, θ0)

} dρ

(r2−ρ2)1−α
,

(17) [P (k)f ](ρ, φ) =
∫ π

−π

P(k, φ − φ0) f(ρ, φ0) dφ0
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and

(18) P(k, θ) =
1 − k2

2π(1 + k2 − 2k cos θ)
=

1
2π

∞∑
n=−∞

k|n| einθ,

the series converging for |k| < 1. P is called the Poisson operator.
The formula (15) can be obtained from [12], correcting earlier work
by Fabrikant [11, 26]. The formal derivation of (15) was examined
carefully in [20].

The authorship of [11, 12, 26] (and two other papers) was the
subject of an investigation [4]. It was concluded that Fabrikant was
the sole author of these papers, as they “are, in substance, extensive
duplications both of an earlier published work of Fabrikant [published
in 1971, in Russian; see MR#0285875] which is unreferenced, and of
each other, without mutual references” [4, Appendix D]. Thus, we are
justified in referring to (15) as “Fabrikant’s solution.”

As P (k)1 = 1, we obtain Φ = 1 when f ≡ 1, and then (15) reduces
to the known solution (12) for this special choice of f .

In his subsequent books, Fabrikant obtained (15) but with Φ re-
placed by

(19)

Φ1(r, r0, θ0) = r−2α

∫ r

0

∂

∂ρ

{
ρ2−2α

[
P

(ρr0

r2

)
f
]
(ρ, θ0)

} ρ2α dρ

(r2−ρ2)1−α
;

see [9, eqn. (2.3.10)] or [10, eqn. (2.1.7)]. However, when f ≡ 1, this
gives Φ1 = (1 − α)/α, so that (19) only gives the correct result when
α = 1/2; notice that this was the only case checked in [25].

3.2 Kahane’s solution. Kahane [17] proved that (7) is uniquely
solvable when f is twice continuously differentiable on the closed disc,
f ∈ C2(D). (In an earlier unpublished technical report, Ahner and
Kahane [3] proved similar results for α = 1/2.) Kahane’s solution is
scaled so that a = 1; after removing this scaling, his solution is

(20) u(r0, θ0) =
sin πα

π2

{ A(r0, θ0)
(a2 − r2

0)1−α
− B(r0, θ0)

}
,
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where
(21)

A(r0, θ0)

= f(0, θ0) + a2−2α

∫ a

0

∫ π

−π

P
(rr0

a2
, θ0 − θ

) ∂f

∂r
(r, θ)

dθ dr

(a2−r2)1−α

− a2−2α

∫ a

0

∫ π

−π

1
r
Q

(rr0

a2
, θ0 − θ

) ∂2f

∂θ2
(r, θ)

dθ dr

(a2−r2)1−α
,

(22)

B(r0, θ0) =
1

a2α

∫ a

r0

∫ a

0

∫ π

−π

P
(

ξr0

at
, θ0 − θ

)

× (∇2f
)∣∣

r=ξt/a

ξt dθ dξ dt

{(a2−ξ2)(t2−r2
0)}1−α

=
∫ a

r0

∫ t

0

∫ π

−π

P
(rr0

t2
, θ0 − θ

)
∇2f

t1−2α r dθ dr dt

{(t2−r2)(t2−r2
0)}1−α

,

(∇2f)(r, θ) =
∂2f

∂r2
+

1
r

∂f

∂r
+

1
r2

∂2f

∂θ2
,

P is defined by (18) and, for |k| < 1,

Q(k, θ) = − 1
2π

log
∣∣1 + k2 − 2k cos θ

∣∣ =
1
π

∞∑
n=1

kn

n
cos nθ.

When f ≡ 1, (20) immediately gives the known solution (12) for this
special choice of f .

3.3 Li and Rong’s solution. In their Theorem 1, Li and Rong [19]
obtained

(23) u(r0, θ0) = − (1 − α)2

π2

∫
D

Kα(r, r0, θ − θ0) f(r, θ) r dr dθ

with

(24)
Kα(r, r0, θ − θ0)

= − 4 sin πα

∫ a

max (r,r0)

P
(rr0

s2
, θ−θ0

) s3−2α ds

{(s2−r2)(s2−r2
0)}2−α

.



46 P.A. MARTIN

As 0 < α < 1, we see that the integral in (24) is divergent; it is to be
interpreted as a finite-part integral. In their Lemma 1, Li and Rong
[19] also obtained the (finite-part) integral representation

(25)

1
R4−2α

= − 4 sin πα

×
∫ ∞

max (r,r0)

P
(rr0

s2
, θ − θ0

) s3−2α ds

{(s2−r2)(s2−r2
0)}2−α

,

which differs from (24) by the value of the upper limit of integration.
Hence, Kα and R2α−4 differ by the value of an ordinary improper
integral, giving

(26) u(r0, θ0) = v(r0, θ0) + w(r0, θ0),

where

(27)
v(r0, θ0) = − (1 − α)2

π2

∫
D

f(r, θ)
R4−2α

r dr dθ,

w(r0, θ0) = − (1 − α)2

π2

∫
D

K∞
α (r, r0, θ − θ0) f(r, θ) r dr dθ,

with

K∞
α (r, r0, θ) = 4 sin πα

∫ ∞

a

P
(rr0

s2
, θ

) s3−2α ds

{(s2 − r2)(s2 − r2
0)}2−α

.

Now, as

(28) ∇2Rβ = β2Rβ−2, for any β,

it is natural to use this fact with β = 2α − 2 in order to define the
hypersingular double integral in (27). Thus, we obtain

(29) v(r0, θ0) = − 1
4π2

∇2
0

∫
D

f(r, θ)
R2−2α

r dr dθ,

where ∇2
0 is defined by (5). The integral in (29) is weakly singular. As

(25) is also valid with α replaced by α + 1, we obtain

(30) v(r0, θ0) = − sin πα

π2
∇2

0

×
∫ a

0

∫ ∞

max (r,r0)

[
P

(rr0

s2

)
f
]
(r, θ0)

s1−2α r ds dr

{(s2−r2)(s2−r2
0)}1−α

,
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after using (17). Similarly,

(31) w(r0, θ0) = − 4
π2

(1 − α)2 sin πα

×
∫ a

0

∫ ∞

a

[
P

(rr0

s2

)
f
]
(r, θ0)

s3−2α r ds dr

{(s2−r2)(s2−r2
0)}2−α

.

Li and Rong’s solution, (23), is given as a certain hypersingular
integral operator applied to f . Superficially, at least, this is attractive:
we can regard the operator in (7) as a pseudodifferential operator of
order 2α − 2, and so the inverse should be of order 2 − 2α. (These
statements can be made more precise, but we choose not to do so.)
However, as (23) does not involve any explicit derivatives of f , it does
not simplify much when f ≡ 1; nevertheless, it does yield the correct
solution for this very special case, as shown directly in Appendix A.

4. Fourier decomposition of f(r, θ). In order to compare the
three solutions described in Section 3, it is convenient to assume that
f(r, θ) = fm(r) eimθ, with integer m. Without loss of generality, assume
that m ≥ 0. Let

(32) Fm(r) =
1
r

d

dr
(rmfm(r)) ;

assuming that f is in C2(D), Fm(0) exists.

4.1 Fabrikant’s solution. As [P (k)f ](r, θ) = kmfm(r) eimθ, (16)
reduces to

Φ(r, r0, θ0) = f0(0)δ0m + r2−2m−2α rm
0 eimθ0 Ψm(r)

where δij is the Kronecker delta and

(33) Ψm(r) =
∫ r

0

ρ Fm(ρ) dρ

(r2 − ρ2)1−α
.

According to (15), we need

(34)
∂

∂r
Φ(r, r0, θ0)

= rm
0 eimθ0 r1−2m−2α {2(1 − m − α)Ψm(r) + rΨ′

m(r)} .
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For Ψ′
m, we first integrate by parts to give

(35) Ψm(r) =
r2α

2α
Fm(0) +

1
2α

∫ r

0

(r2 − ρ2)α F ′
m(ρ) dρ.

We can then differentiate, giving

Ψ′
m(r) = r2α−1Fm(0) + r

∫ r

0

F ′
m(ρ) dρ

(r2 − ρ2)1−α
.

Writing r = r−1(r2 − ρ2 + ρ2), we obtain

Ψ′
m(r) = r2α−1Fm(0) +

1
r

∫ r

0

(r2−ρ2)α F ′
m(ρ) dρ +

1
r

∫ r

0

ρ2 F ′
m(ρ) dρ

(r2−ρ2)1−α
.

But the first integral also appears in the expression for Ψm, (35),
whence

(36) rΨ′
m(r) = 2αΨm(r) +

∫ r

0

ρ2 F ′
m(ρ) dρ

(r2 − ρ2)1−α
.

Substituting in (34) gives

∂

∂r
Φ(r, r0, θ0) = rm

0 eimθ0 r1−2m−2α

×
∫ r

0

{ρ2F ′
m(ρ) + (2 − 2m) ρFm(ρ)} dρ

(r2 − ρ2)1−α

= rm
0 eimθ0 r1−2m−2α

∫ r

0

ρm+1 Δm(ρ)
(r2 − ρ2)1−α

dρ,

where we have used (33) and put

Δm(r) = f ′′
m(r) + r−1f ′

m(r) − (m/r)2fm(r).

Thus, we find that Fabrikant’s solution (15) reduces to

(37) u(r0, θ0) =
sin πα

π2
rm
0 eimθ0

{
Am

(a2 − r2
0)1−α

− Bm(r0)
}
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where

(38)
Am = f0(0)δ0m + a2−2m−2α

×
∫ a

0

{f ′
m(ρ) + (m/ρ)fm(ρ)} ρm dρ

(a2 − ρ2)1−α
,

(39) B(r0) =
∫ a

r0

r1−2m−2α

(r2 − r2
0)1−α

∫ r

0

ρm+1 Δm(ρ)
(r2 − ρ2)1−α

dρ dr.

In particular, when m = 0, we have an axisymmetric problem. For
this case, we obtain

(40) u(r0) =
sin πα

π2

{
A

(a2 − r2
0)1−α

− B(r0)
}

where

A = f0(0) + a2−2α

∫ a

0

f ′
0(ρ) dρ

(a2 − ρ2)1−α
,

B(r0) =
∫ a

r0

r1−2α

(r2 − r2
0)1−α

∫ r

0

ρ f ′′
0 (ρ) + f ′

0(ρ)
(r2 − ρ2)1−α

dρ dr.

This reduces to (12) when f0 ≡ 1.

Fahmy et al. [13] have obtained formulas that are reminiscent of (15)
with f = fm(r) cos mθ; see [13, eqn. (5.8)] or [1, eqn. (3.12)]. However,
these papers contain many misprints and, moreover, their formulas do
not yield the correct result when f ≡ 1.

4.2 Kahane’s solution. For Kahane’s solution, (20), we have∫ π

−π

P(k, θ0 − θ) eimθ dθ = km eimθ0 ,

∫ π

−π

Q(k, θ0 − θ) eimθ dθ =

{
(km/m) eimθ0 , m > 0,

0, m = 0,

and ∇2f = Δm(r) eimθ. Thus, (21) and (22) give A(r0, θ0) =
Amrm

0 eimθ0 and B(r0, θ0) = Bm(r0) rm
0 eimθ0 , respectively, in agreement

with Fabrikant’s solution, (37).
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4.3 Li and Rong’s solution. Li and Rong’s solution is given by
(26), (30) and (31). When f = fm(r) eimθ, we obtain

v(r0, θ0) = − sin πα

π2
∇2

0

(41)

×
{

rm
0 eimθ0

∫ a

0

∫ ∞

max (r,r0)

fm(r)
rm+1s1−2m−2α ds dr

{(s2−r2)(s2−r2
0)}1−α

}

= −π−2 sin (πα)∇2
0

{
rm
0 eimθ0 [I1(r0) + I2(r0)]

}
,

(42) w(r0, θ0) = −π−2 sin (πα) rm
0 eimθ0 W (r0),

where

I1(r0) =
∫ a

r0

Φ1(s) s ds

(s2 − r2
0)1−α

(43)

=
(a2 − r2

0)α

2α
Φ1(a) −

∫ a

r0

(s2 − r2
0)α

2α
Φ′

1(s) ds,

I2(r0) =
∫ ∞

a

Φ2(s) s ds

(s2 − r2
0)1−α

,

(44) W (r0) = 2(α − 1)
∫ ∞

a

Φ3(s) s3 ds

(s2 − r2
0)2−α

,

(45)

Φ1(s) =
1

s2m+2α

∫ s

0

rm+1fm(r)
(s2 − r2)1−α

dr, s < a,

Φ2(s) =
1

s2m+2α

∫ a

0

rm+1fm(r)
(s2 − r2)1−α

dr, s > a,

Φ3(s) =
2(α − 1)
s2m+2α

∫ a

0

rm+1fm(r)
(s2 − r2)2−α

dr, s > a.

We have
(46)

∇2
0

{
rm
0 eimθ0 Ij(r0)

}
= rm

0 eimθ0{I ′′j (r0) + (2m + 1)r−1
0 I ′j(r0)}

= rm
0 eimθ0

{
r0[r−1

0 I ′j(r0)]′ + 2(m + 1)r−1
0 I ′j(r0)

}
.
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From (43), we have

r−1
0 I ′1(r0) =

∫ a

r0

Φ′
1(s) ds

(s2 − r2
0)1−α

− Φ1(a)
(a2 − r2

0)1−α
.

Similarly,

r−1
0

[
r−1
0 I ′1(r0)

]′
=

∫ a

r0

X ′
1(s) ds

(s2 − r2
0)1−α

− X1(a)
(a2 − r2

0)1−α
+

2(α − 1)Φ1(a)
(a2 − r2

0)2−α
,

where X1(s) = s−1Φ′
1(s). Hence, multiplication by r2

0 = s2 − (s2 − r2
0)

followed by another integration by parts gives

r0

[
r−1
0 I ′1(r0)

]′
=

∫ a

r0

{sX ′
1(s) + 2αX1(s)} s ds

(s2 − r2
0)1−α

− a2X1(a)
(a2 − r2

0)1−α
+ 2r2

0

(α − 1)Φ1(a)
(a2 − r2

0)2−α
.

For I2, the integration limits are constant, so that

r−1
0 I ′2(r0) = − 2(α − 1)

∫ ∞

a

Φ2(s) s ds

(s2 − r2
0)2−α

(47)

=
∫ ∞

a

Φ′
2(s) ds

(s2 − r2
0)1−α

+
Φ2(a)

(a2 − r2
0)1−α

,

r−1
0

[
r−1
0 I ′2(r0)

]′
= − 2(α − 1)

∫ ∞

a

X2(s) s ds

(s2 − r2
0)2−α

− 2(α − 1)Φ2(a)
(a2 − r2

0)2−α
,

where X2(s) = s−1Φ′
2(s). (Note that X2(a) does not exist.) Hence,

r0

[
r−1
0 I ′2(r0)

]′
= − 2(α − 1)

∫ ∞

a

X2(s) s3 ds

(s2 − r2
0)2−α

+ 2(α − 1)

×
∫ ∞

a

X2(s) s ds

(s2 − r2
0)1−α

− 2r2
0

(α − 1)Φ2(a)
(a2 − r2

0)2−α
.

Let I ≡ I1 + I2. Noting that Φ1(a) = Φ2(a), we obtain

r−1
0 I ′(r0) =

∫ a

r0

X1(s) s ds

(s2 − r2
0)1−α

+
∫ ∞

a

X2(s) s ds

(s2 − r2
0)1−α
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and

r0

[
r−1
0 I ′(r0)

]′
=

∫ a

r0

{sX ′
1(s) + 2αX1(s)} s ds

(s2 − r2
0)1−α

− a2X1(a)
(a2−r2

0)1−α

− 2(α − 1)
∫ ∞

a

X2(s) s3 ds

(s2 − r2
0)2−α

+ 2(α − 1)
∫ ∞

a

X2(s) s ds

(s2 − r2
0)1−α

.

Hence, if we write

v(r0, θ0) = −π−2 sin (πα) rm
0 eimθ0 V (r0),

(41) and (46) give

V (r0) =
∫ a

r0

{sX ′
1(s)+2(m+α+1)X1(s)} s ds

(s2 − r2
0)1−α

− a2X1(a)
(a2−r2

0)1−α

(48)

− 2(α − 1)
∫ ∞

a

X2(s) s3 ds

(s2 − r2
0)2−α

+ 2(m + α)
∫ ∞

a

X2(s) s ds

(s2 − r2
0)1−α

.

Next, consider W (r0) in (42), defined by (44). We have

s2m+2α+1Φ3(s) =
[
s2m+2αΦ2(s)

]′
so that

Φ3(s) = X2(s) + 2(m + α)s−2Φ2(s).

Hence, using (47), we obtain

W (r0) = 2(α − 1)
∫ ∞

a

X2(s) s3 ds

(s2 − r2
0)2−α

− 2(m + α)
∫ ∞

a

X2(s) s ds

(s2 − r2
0)1−α

− 2(m + α)Φ2(a)
(a2 − r2

0)1−α
.

When this is combined with (48), we obtain

(49) V + W =
∫ a

r0

s1−2m−2α

(s2 − r2
0)1−α

Y (s) ds − Am

(a2 − r2
0)1−α

,
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where
Y (s) = s2m+2α{sX ′

1(s) + 2(m + α + 1)X1(s)}
and

(50) Am = a2X1(a) + 2(m + α)Φ1(a).

Now, from (45), we obtain

(51) s2m+2α
{
X1(s) + 2(m + α)s−2Φ1(s)

}
= s2α−2f0(0)δ0m +Ψm(s),

where Ψm(r) is defined by (33). Hence, (50) agrees with (38). Also

Y (s) = s−1
[
s2m+2α+2X1(s)

]′
= s−1

[
s2αf0(0)δ0m + s2Ψm(s) − 2(m + α)s2m+2αΦ1(s)

]′
= − 2(m + α)s2m+2α

{
X1(s) + 2(m + α)s−2Φ1(s)

}
+ 2αs2α−2f0(0)δ0m + 2Ψm(s) + sΨm′(s).

Then, making use of (51) and (36), we obtain

Y (s) = 2(1 − m)Ψm(s) +
∫ s

0

ρ2 F ′
m(ρ) dρ

(s2 − ρ2)1−α
.

It follows that the integral term in (49) is equal to B(r0), defined
by (39), and so we have complete agreement with Fabrikant’s solu-
tion, (37).

5. Hypersingular equations. Hypersingular versions of (7), with
1 < α < 2, have been considered by Li and Rong [19]. Making use of
(28), we can write (7) as

(52)
∇2

0

∫ π

−π

∫ a

0

u(r, θ)
R2α−2

r dr dθ = 4(α − 1)2f(r0, θ0),

0 ≤ r0 < a, −π ≤ θ0 < π,

where 1 < α < 2. Let us write this equation concisely as

(53) ∇2
0Lα−1u = 4(α − 1)2f on D,
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where Lα−1 is the weakly-singular integral operator on the left-hand
side of (52); explicit formulas for L−1

μ , with 0 < μ < 1, were given in
Section 3.

Now, (52) says that Lα−1u solves the two-dimensional Poisson equa-
tion on D, whence

Lα−1u = fh + fp,

where
∇2fh = 0 ∇2fp = 4(α − 1)2f on D.

Thus, fp is a particular solution of the given Poisson equation and fh

is a solution of Laplace’s equation on D. Once fh and fp have been
specified, we deduce that

u = L−1
α−1fh + L−1

α−1fp = uh + up,

say. At this point, we notice two facts. First, the solution for u cannot
be unique: we must impose side conditions on u. This fact was already
known, of course, from the special case with α = 3/2: there, the physics
of the problem usually dictates that u = 0 around the edge of the disc,
r = a; see (6). Second, the presence of ∇2fh and ∇2fp means that
Kahane’s formula for L−1

μ is attractive. In particular, ∇2fh = 0 implies
that the corresponding B = 0, see (22), and then (20) shows that

uh(r, θ) = −π−2 sin (πα)A(r, θ) (a2 − r2)α−2;

here, A is defined by (21) in which f and α are replaced by fh and
α− 1, respectively. Thus, in general, uh is unbounded at r = a. Li and
Rong [19] gave an expression for up in their Theorem 2 but did not
comment on the inherent non-uniqueness of (52).
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Appendix

A. Li and Rong’s solution for f ≡ 1. Suppose that f ≡ 1 in (30) and
(31); we obtain

v(r0, θ0) = − sin πα

π2
∇2

0

{∫ a

r0

s1−2α

(s2−r2
0)1−α

∫ s

0

r dr

(s2−r2)1−α
ds

(A1)

+
∫ ∞

a

s1−2α

(s2−r2
0)1−α

∫ a

0

r dr

(s2−r2)1−α
ds

}

= − sin πα

2απ2
∇2

0

{∫ a

r0

s ds

(s2−r2
0)1−α

+
∫ ∞

a

1−(1−a2/s2)α

(s2 − r2
0)1−α

s ds

}

= − sin πα

2απ2
∇2

0

{
(a2−r2

0)α

2α
+

a2α

2

∫ 1

0

x−α−1 {1−(1−x)α}
(1 − ζx)1−α

dx

}
,

w(r0, θ0) = − 4(1 − α)2
sin πα

π2

∫ ∞

a

s3−2α

(s2 − r2
0)2−α

∫ a

0

r dr

(s2 − r2)2−α
ds

= 2(1 − α)
sin πα

π2

∫ ∞

a

1 − (1 − a2/s2)α−1

(s2 − r2
0)2−α

s ds

=
sin πα

π2

{
(a2−r2

0)
α−1+(α−1)a2α−2

∫ 1

0

x−α(1−x)α−1

(1 − ζx)2−α
dx

}
,

where ζ = r2
0/a2 and we used the substitution x = a2/s2.

Now, the hypergeometric function, F , satisfies [2, 15.3.1]

(A2)
∫ 1

0

xb−1(1 − x)c−b−1

(1 − ζx)a
dx =

Γ(b) Γ(c − b)
Γ(c)

F (a, b; c; ζ),

for c > b > 0. Hence,

(A3) w(r0, θ0) =
sin πα

π2
(a2−r2

0)
α−1+

α−1
π

a2α−2 F (2−α, 1−α; 1; ζ).

For v, we have

∇2
0

{
(a2 − r2

0)
α
}

= − 4α
{
(a2 − r2

0)
α−1 + (1 − α)r2

0(a
2 − r2

0)
α−2

}
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and

∇2
0F (r0) =

4
a2

∂

∂ζ

(
ζ
∂F

∂ζ

)
.

Hence (A1) becomes

v(r0, θ0) =
sin πα

απ2
a2α−2

{
(1 − ζ)α−1 + (1 − α) ζ(1 − ζ)α−2

(A4)

+ (α−1)
∂

∂ζ

[
ζ

∫ 1

0

x−α {1−(1−x)α}
(1 − ζx)2−α

dx

]}
.

The remaining integral can be split into two integrals (notice that we
could not have done this with (A1)), the first of which is∫ 1

0

x−α

(1 − ζx)2−α
dx =

(1 − ζ)α−1

1 − α
.

When this is substituted in (A4), it is seen to give a contribution that
cancels with the first two terms in (A4). Hence,

v(r0, θ0) =
sin πα

π2

(1 − α)
α

a2α−2 ∂

∂ζ

[
ζ

∫ 1

0

x−α(1 − x)α

(1 − ζx)2−α
dx

]

=
1 − α

π
a2α−2 ∂

∂ζ
[ζ F (2 − α, 1 − α; 2; ζ)]

=
1 − α

π
a2α−2 F (2 − α, 1 − α; 1; ζ),

using (A2) and [2, 15.2.4]. When this result is combined with (26) and
(A3), we recover (12).
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