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THE p-VERSION OF THE BOUNDARY
ELEMENT METHOD FOR A

THREE-DIMENSIONAL CRACK PROBLEM

ALEXEI BESPALOV AND NORBERT HEUER

ABSTRACT. We study the p-version of the boundary el-
ement method for a crack problem in linear elasticity with
Dirichlet boundary conditions. The unknown jump of the
traction has strong edge singularities and is approximated by
solving an integral equation of the first kind with weakly sin-
gular operator. We prove a quasi-optimal a priori error esti-
mate in the energy norm. For sufficiently smooth given data,
this gives a convergence like cp−1+ε with ε > 0. Here, p
denotes the polynomial degree of the piecewise polynomial
functions used to approximate the unknown.

1. Introduction and formulation of the problem. We analyze
the convergence of the p-version of the boundary element method
(BEM) with weakly singular integral operator for problems in R3. That
is, we study approximation properties of piecewise polynomial functions
on surfaces in a negative order Sobolev space (order −1/2).

The p-version uses piecewise polynomial spaces on fixed meshes and
increases the polynomial degrees, whereas the more conventional h-
version improves approximations by mesh refinement and by using
piecewise polynomials of lower, fixed degrees. It is well known that
an appropriate combination of mesh refinement and polynomial degree
distribution (the hp-version with geometrically graded meshes) may
lead to an exponential rate of convergence, even in the presence of
singularities (for the FEM, see [9, 10] and for the BEM we refer to
[13 15, 17]). The approximation strategy of such hp-methods is to use
polynomial degrees of lowest order where solutions behave singularly
and to use high order polynomials where solutions are smooth. With
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244 A. BESPALOV AND N. HEUER

respect to theory, this strategy has the advantage that it completely
avoids the approximation analysis of singular functions by high order
polynomials. This is different for the p-version which makes its analysis
more involved. Actually, only relatively little is known for problems
in three dimensions. In this paper we fill one of the gaps in theory
by studying for the first time the p-version of the BEM with weakly
singular operators on surfaces. For numerical results studying the h-,
p-, and hp-versions, we refer to [14].

We also note that high order polynomials have much better approx-
imations properties for wave problems in the sense that they reduce
very efficiently the pollution effect of the oscillatory behavior of solu-
tions, see [1, 16]. Therefore, the p-version (combined with mesh refine-
ments but using high degrees everywhere) becomes attractive for wave
problems.

The p-version (and hp-version with quasi-uniform meshes) of the
BEM on curves have been widely studied, see [11, 12, 20, 21]. As
mentioned before, there are very few results in three dimensions, i.e., on
surfaces. The case of hypersingular operators on polyhedral surfaces
(the energy space is H1/2) is analyzed in [18]. There, the optimal
convergence of the p-version has been shown by making use of the H1-
regularity of the solution. In [5] we consider hypersingular operators
on open surfaces, where no H1-regularity can be assumed, and prove
optimal a priori error estimates. The case of weakly singular integral
operators on surfaces has been an open problem so far. Here we study
this situation for the model problem of linear elasticity with a crack Γ
that has a smooth boundary. The solution exhibits in general strong
edge singularities not being L2-regular.

Throughout the paper Γ denotes an open smooth surface in R3 with
smooth boundary curve γ (γ is locally C∞). Let Ht(Γ) and H̃t(Γ)
be the usual Sobolev spaces, see Section 3 for a definition. We will
use these notations for scalar functions as well as for vector functions.
The latter will be denoted by boldface symbols, the norms and inner
products for them are defined componentwise.

Let us formulate the model problem. We consider the Dirichlet
boundary value problem for the displacement field u = (u1, u2, u3)
of a homogeneous, isotropic, elastic material covering the domain
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ΩΓ := R3 \ Γ̄: For given u1, u2 ∈ H1/2(Γ) with u1−u2 ∈ H̃1/2(Γ) find
u satisfying

μΔu + (λ+ μ) grad div u = 0 in ΩΓ,(1.1)
u|Γ1 = u1, u|Γ2 = u2,(1.2)

u(x) = o(1),
∂

∂xj
u(x) = o(|x|−1), j = 1, 2, 3, |x| → ∞.(1.3)

Here, Γi, i = 1, 2, are the two sides of Γ and μ > 0, λ > −2/3μ are the
given Lamé constants. The corresponding Neumann data of the linear
elasticity problem are the tractions

T(u) := λ(divu)n + 2μ
∂u
∂n

+ μn × curlu on Γi, i = 1, 2,

where n is the normal vector on Γ pointing into a specified direction.

The problem (1.1) (1.3) can be formulated as an integral equation
of the first kind, see, e.g., [7, 19]: u ∈ H1

loc(R
3 \ Γ̄) is the solution of

the Dirichlet problem (1.1) (1.3) if and only if the jump of the traction
t := T(u)|Γ1 −T(u)|Γ2 ∈ H̃−1/2(Γ) solves the weakly singular integral
equation

(1.4) Vt(x) :=
∫

Γ

E(y, x)t(y) dsy = g(x), x ∈ Γ

where

g(x) =
1
2

(u1 + u2)(x) +
∫

Γ

TyE(y, x)(u1 − u2)(y) dsy.

Here,

E(y, x) =
λ+ 3μ

8πμ(λ+ 2μ)

(
1

|x− y| I +
λ+ μ

λ+ 3μ
(x− y)(x− y)T

|x− y|3

)

denotes the fundamental solution of (1.1) with the identity matrix I.
The solution t of (1.4) yields the solution to problem (1.1) (1.3) via
the representation or Betti’s formula

u(x) =
∫

Γ

(
E(y, x)t(y) − (TyE(y, x))T (u1(y) − u2(y))

)
dsy, x �∈ Γ.
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In what follows, together with usual space coordinates (x1, x2, x3) =
x ∈ Γ, we will use surface coordinates (s, ρ) in a small neighborhood
of γ on Γ such that s, respectively ρ, varies in tangential, respectively
normal, direction to γ. Thus, the boundary curve γ is described by
the equation ρ = 0, and in a sufficiently small neighborhood of γ one
has s = s(x) and ρ = ρ(x). Throughout the paper, we will specify this
small neighborhood of γ as the boundary strip Γδ of Γ such that, for
small δ > 0,

Γδ = {x ∈ Γ; 0 < ρ(x) < δ}.

Let us cite the following regularity result from [7].

Proposition 1.1. Let |σ| < 1/2 and uj ∈ H3/2+σ(Γ), j = 1, 2, with
u1 −u2 ∈ H̃3/2+σ(Γ). Then the solution t ∈ H̃−1/2(Γ) of the integral
equation (1.4) has the form

(1.5) t = β(s)ρ−1/2χ(ρ) + t0

with vector functions β ∈ H1/2+σ(γ) and t0 ∈ H̃1/2+σ′
(Γ) for any

σ′ < σ. Furthermore, χ ∈ C∞
0 (R) denotes a cutoff function with

0 ≤ χ ≤ 1 and χ = 1 near zero.

In the next section we formulate the p-version of the BEM for the
approximate solution of (1.4) and state the main result which proves
an almost optimal convergence rate, Theorem 2.1. Technical details
and the proof of Theorem 2.1 are given in Section 3.

2. The p-version of the BEM. Below p will always denote a
polynomial degree, and C is a generic positive constant independent
of p.

In order to define finite-dimensional subspaces of H̃−1/2(Γ), we use a
regular parameter representation x = X(u), u ∈ U , U being a compact
region in R2 whose boundary is mapped onto γ. On U we use a fixed
regular mesh T = {Uj ; j = 1, . . . , J} of quadrilaterals and triangles
which are in general curvilinear such that U is completely discretized.
We assume that, for each j = 1, . . . , J , there exists a smooth one-
to-one mapping Mj such that Ūj = Mj(K̄) with K = Q or T (here,
Q = (−1, 1)2 and T = {ξ = (ξ1, ξ2); 0 < ξ1 < 1, 0 < ξ2 < ξ1} denote
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the reference square and triangle, respectively). The Jacobians of Mj

are assumed to be bounded from above and below by positive constants
independent of j.

Using the parameter representation X we have a fixed regular mesh
Δ = {Γj = X(Uj); j = 1, . . . , J} on Γ. The union of the elements of
Δ touching the boundary curve γ will be denoted by Aγ , i.e., Āγ =
∪{Γj ; Γj∩γ �= ∅}. We assume that, close to the boundary γ, the mesh
is fine enough such that Āγ ⊂ (Γδ/2∪γ). We also assume that the cutoff
function χ in (1.5) is chosen such that supp (β(s)ρ−1/2χ(ρ)) ⊂ Āγ .

Now, for given integer p, we define the space Sp(Γ) of piecewise
polynomials on Γ. For K = Q or K = T let Qp(K) be the set of
polynomials of degree ≤ p (in each variable for K = Q and of total
degree ≤ p on T ). Furthermore, for K = I an interval, Qp(I) denotes
the set of polynomials of degree ≤ p on I. We will also use the set
Rp(Γj) of polynomials of degree ≤ p in each variable s and ρ on the
elements Γj ⊂ Aγ ⊂ Γδ/2. Then, using the notation vj = v|Γj

, we
define

Sp(Γ) :=
{
v;vj ∈ [Rp(Γj)]3 if Γj ⊂ Aγ , and (vj ◦X ◦Mj)∈ [Qp(K)]3,

K = Q or T, if Γj ⊂ (Γ\Aγ)
}

(here, we denote by [·]3 the sets of vector functions with corresponding
polynomial components).

One has Sp(Γ) ⊂ H̃−1/2(Γ), and the p-version of the boundary
element Galerkin method is as follows: For given p, find tp ∈ Sp(Γ)
such that

(2.1) 〈Vtp,v〉 = 〈g,v〉 ∀v ∈ Sp(Γ),

where 〈·, ·〉 denotes the duality pairing between H̃−1/2(Γ) and H1/2(Γ).

As it is well known, this method converges quasi-optimally, see [6],
i.e., there exists a constant C > 0 such that for all polynomial degrees
p the following holds

(2.2) ‖t − tp‖H̃−1/2(Γ)
≤ C inf{‖t − v‖

H̃−1/2(Γ)
; v ∈ Sp(Γ)}.

We now present the main result giving an a priori error estimate.
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Theorem 2.1. Let |σ| < 1/2 and uj ∈ H3/2+σ(Γ), j = 1, 2, with
u1 −u2 ∈ H̃3/2+σ(Γ). Then the following a priori error estimate holds

(2.3) ‖t − tp‖H̃−1/2(Γ)
≤ Cp−α, α = 1/2 + σ − ε, ε > 0,

where C > 0 depends on ε but not on p. Here, t is the solution of (1.4)
and tp is the boundary element approximation to t given by (2.1).

This error estimate is quasi-optimal for sufficiently smooth given
data. More precisely, if σ is large enough, then there exists for any
ε > 0 a constant c > 0 such that the p-version converges like cp−1+ε.
A convergence like cp−1 would be optimal, cf. the results in [5, 18].
The sub-optimality of (2.3) is due to Proposition 1.1 which states the
regularity of the term β in the representation of the exact solution
only in standard Sobolev spaces, which are not appropriate to obtain
optimal results. For numerical results (dealing with the scalar version
of the Laplace operator) which underline the a priori error estimate we
refer to [14].

The proof of Theorem 2.1 is given in the next section.

3. Technical details. Before proving Theorem 2.1, we define
Sobolev spaces and collect several auxiliary results.

Let L2(Rn) be the usual Lebesgue space of square integrable func-
tions on Rn, n ≥ 1, equipped with the standard norm ‖ · ‖L2(Rn). For
t ∈ R, we define the Sobolev space Ht(Rn) with norm

‖u‖Ht(Rn) =
∥∥∥(1 + |ξ|2)t/2 û

∥∥∥
L2(Rn)

.

Here û(ξ) = (2π)−n/2
∫
Rn u(x)e−i x·ξ dx denotes the Fourier transform

of the function u ∈ L2(Rn), x = (x1, . . . , xn), ξ = (ξ1, . . . , ξn), and
x · ξ = x1ξ1 + · · · + xnξn.

Then for a Lipschitz domain Ω ⊂ Rn and t > 0 we set

Ht(Ω) = {u = ϕ|Ω; ϕ ∈ Ht(Rn)}

with norm

‖u‖Ht(Ω) = inf
ϕ∈Ht(Rn)

u=ϕ|Ω

‖ϕ‖Ht(Rn)
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and
H̃t(Ω) = {u ∈ Ht(Rn); supp u ⊂ Ω̄}

with norm
‖u‖

H̃t(Ω)
= ‖u‖Ht(Rn).

For t < 0 the spaces Ht(Ω) and H̃t(Ω) are the dual spaces of H̃−t(Ω)
and H−t(Ω), respectively, with L2(Ω) = H0(Ω) = H̃0(Ω) as pivot
space. When Ω is bounded and t > 0 we will also use the space Ht

0(Ω)
being the closure of C∞

0 (Ω) with respect to the norm in Ht(Ω).

Note that Ht(Ω) = H̃t(Ω) = Ht
0(Ω) if 0 ≤ t < 1/2, and H̃t(Ω) =

Ht
0(Ω) if t− 1/2 is not an integer, see [8]. Moreover, in the latter case,

the norms ‖ · ‖
H̃t(Ω)

and ‖ · ‖Ht(Ω) are equivalent.

For an open surface Γ in R3, we define Hs(Γ) via a regular parameter
representation x = X(y), x ∈ Γ, y ∈ Ω ⊂ R2, and by using the
definition for Ω as a subset of R2. On an interval or a smooth curve γ
we define the Sobolev space Hs(γ) similarly (using periodic functions
in the case of closed curves).

The Sobolev spaces satisfy the interpolation property, see [4]: let
t1, t2 ∈ R, t1 < t2, and t = (1 − θ)t1 + θt2 for 0 < θ < 1, then

Ht(Ω) =
(
Ht1(Ω), Ht2(Ω)

)
θ

and H̃t(Ω) =
(
H̃t1(Ω), H̃t2(Ω)

)
θ
.

Here we use the real K-method of interpolation where, for two normed
spaces A0 and A1, the interpolation space (A0, A1)s, 0 < s < 1, is
equipped with the norm

‖a‖(A0,A1)s
:=

( ∫ ∞

0

t−2s inf
a=a0+a1

(‖a0‖2
A0

+ t2 ‖a1‖2
A1

)
dt

t

)1/2

.

Lemma 3.1. Let Ω ⊂ R2 be a Lipschitz domain. If u ∈ H̃t(Ω) with
0 ≤ t ≤ 1, then for i = 1, 2, ∂u/∂xi ∈ H̃t−1(Ω), and

‖∂u/∂xi‖H̃t−1(Ω)
≤ C‖u‖

H̃t(Ω)
,

where C > 0 is independent of u.



250 A. BESPALOV AND N. HEUER

On an interval, this statement is proved in [21, Lemma 3.5]. In two
dimensions the proof is similar and is skipped.

Lemma 3.2. Let Ω, Ω1 be two Lipschitz domains in Rn, n = 1, 2, 3,
and Ω1 ⊂ Ω. Then, for 0 ≤ t < 1/2, the following holds

(3.1) ‖u‖
H̃−t(Ω1)

≤ C‖u‖
H̃−t(Ω)

∀u ∈ H̃−t(Ω),

where the constant C > 0 is independent of u.

Proof. For 0 ≤ t < 1/2, the identity Ht
0(Ω1) = Ht(Ω1) holds, see,

e.g., [8]. Let us consider the function v ∈ Ht(Ω1) = Ht
0(Ω1) and denote

by v the extension of v by zero outside Ω1. Then v ∈ Ht(Ω) = Ht
0(Ω)

and

‖v‖Ht(Ω) ≤ C
(
‖v‖Ht

0(Ω1) + ‖v‖Ht
0(Ω\Ω1)

)
= C‖v‖Ht

0(Ω1) = C‖v‖Ht(Ω1).

The inequality above is due to [22, Lemma 3.2] when defining the
Sobolev spaces by complex interpolation. The proof presented there
works the same way for the real interpolation method, see [2, Theorem
4.1]. Then (3.1) follows by using the duality H̃−t(Ω1) = (Ht(Ω1))′.

Lemma 3.3. Let f ∈ Ht(K) for real t > 0 with K = I ⊂ R,
respectively K = Q or K = T in R2. Then there exists a sequence
fp ∈ Qp(K), p = 0, 1, 2, . . . , such that

‖f − fp‖L2(K) ≤ C p−t ‖f‖Ht(K).

For a proof of Lemma 3.3, we refer to [3].

Lemma 3.4 [22, Lemma 3.3]. Let f(x) ∈ H̃−t1(I1) and g(y) ∈
H̃−t2(I2) with 0 ≤ t1, t2 ≤ 1. Then f(x)g(y) ∈ H̃−t1−t2(I1 × I2) and

‖f(x)g(y)‖
H̃−t1−t2 (I1×I2)

≤ C‖f(x)‖
H̃−t1(I1)

‖g(y)‖
H̃−t2(I2)

.

The constant C is independent of f and g.
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To analyze the approximation of the singular part of t in (1.5) we first
study singularities on an interval. Let us consider the singular function

(3.2) ψ(x) = (1 + x)λ−1χ(x), x ∈ I = (−1, 1),

where λ > 0 is real, χ ∈ C∞(I) is a cutoff function with χ(x) = 1 for
x ∈ (−1,−1 + d] and χ(x) = 0 for x ≥ −1 + 2d, 0 < d ≤ 1/4.

Observe that ψ ∈ H̃t(I) for −1 ≤ t < min {0, λ− 1/2}, in particular,
ψ ∈ H̃−1/2(I).

Theorem 3.1. Let ψ(x) be given by (3.2) with λ > 0. Then
there exists a sequence ψp ∈ Qp(I), p = 1, 2, . . . , such that for
−1 ≤ t < min {0, λ− 1/2},

(3.3) ‖ψ − ψp‖H̃t(Ĩ)
≤ C p−2(λ−1/2−t), Ĩ = (−1, 0).

Proof. Introducing a C∞ cutoff function χ̃(x) such that

(3.4) χ̃(x) = 1 for x ∈ [−1, 0] and χ̃(x) = 0 for x ≥ 1/2,

we define

Ψ(x) := χ̃(x)
∫ x

−1

ψ(ξ)dξ, Ψ̂(x) := (1 − x)−1Ψ(x), x ∈ I = (−1, 1).

Then Ψ(−1) = Ψ̂(−1) = 0, and, due to (3.4), Ψ(x) = Ψ̂(x) = 0 for
x ∈ [1/2, 1]. Moreover, on the interval Ĩ = (−1, 0), one has

(3.5) Ψ′(x) = ψ(x), x ∈ Ĩ .

Further, using integration by parts we obtain

(3.6)

Ψ̂(x) = (1 − x)−1χ̃(x)
∫ x

−1

ψ(ξ) dξ

= (1 − x)−1χ̃(x)
∫ x

−1

(1 + ξ)λ−1χ(ξ) dξ

=
(1 + x)λχ(x)χ̃(x)

λ(1 − x)
−

χ̃(x)
λ(1 − x)

∫ x

−1

(1 + ξ)λχ′(ξ) dξ

=: F (x) −G(x).



252 A. BESPALOV AND N. HEUER

For the polynomial approximation of the function (1+x)λχ(x), we refer
to [5, Theorem 3.1] if 0 < λ ≤ 1/2 and to [18, Theorem 5.1] if λ > 1/2
(actually, we apply here the scaled versions of these theorems). We
also note that the factor (λ−1(1 − x)−1χ̃(x)) ∈ C∞(I) does not alter
the singular behavior of the function (1 + x)λχ(x), and the mentioned
results of [5] and [18] remain valid for the function F (x) in (3.6). Thus
there exists a polynomial Fp ∈ Qp(I) such that Fp(−1) = F (−1) = 0
and

(3.7) ‖F − Fp‖Ht(I) ≤ C p−2(λ+1/2−t), 0 ≤ t < min {1, λ+ 1/2}.

There holds G ∈ C∞
0 (I) because χ′(ξ) = 0 for ξ ∈ (−1,−1 + d) and

χ̃(x) = 0 for x ≥ 1/2. Therefore, for the approximation of G we use the
standard result [3, Lemma 3.2]: there exists a polynomial Gp ∈ Qp(I)
such that Gp(±1) = G(±1) = 0, and for arbitrary τ > 0,

(3.8) ‖G−Gp‖Ht(I) ≤ C p−τ , 0 ≤ t ≤ 1.

Let us define Ψp(x) := (1 − x)(Fp(x) − Gp(x)). Then Ψp ∈ Qp+1(I),
Ψp(±1) = 0 and, for 0 ≤ t < min {1, λ + 1/2}, we deduce from
(3.6) (3.8),

(3.9) ‖Ψ − Ψp‖Ht(I) ≤ C‖Ψ̂ − (Fp −Gp)‖Ht(I) ≤ C p−2(λ+1/2−t).

Hence,

(3.10)
‖Ψ − Ψp‖H̃t(I)

≤ C ‖Ψ − Ψp‖Ht(I) ≤ C p−2(λ+1/2−t),

t ∈ [0,min {1, λ+ 1/2})\{1/2},

because (Ψ − Ψp) ∈ Ht
0(I) = H̃t(I) for these values of t.

Now we define the polynomial ψp as

(3.11) ψp(x) := Ψ′
p(x), x ∈ I.

Then ψp ∈ Qp(I), and recalling (3.5) we have ψ − ψp = (Ψ − Ψp)′

on Ĩ. Therefore, using sequentially the one-dimensional versions of
Lemmas 3.2 and 3.1, and then estimate (3.10), we obtain for any fixed
t′ ∈ (1/2,min {1, λ+ 1/2}),
(3.12)

‖ψ − ψp‖H̃t′−1(Ĩ)
= ‖(Ψ − Ψp)′‖H̃t′−1(Ĩ)

≤ C ‖(Ψ − Ψp)′‖H̃t′−1(I)

≤ C ‖Ψ − Ψp‖H̃t′ (I)
≤ C p−2(λ+1/2−t′).



p-VERSION OF THE BOUNDARY ELEMENT METHOD 253

Thus we have proved (3.3) for t ∈ (−1/2,min {0, λ− 1/2}).
On the other hand, applying Lemma 3.1 and inequality (3.9) with

t = 0, we have

‖ψ − ψp‖H̃−1(Ĩ)
= ‖(Ψ − Ψp)′‖H̃−1(Ĩ)

≤ C ‖Ψ − Ψp‖H0(Ĩ)

≤ C ‖Ψ − Ψp‖H0(I) ≤ C p−2(λ+1/2).

Since −1/2 < t′− 1 < min {0, λ− 1/2} in (3.12), interpolation between
H̃−1(Ĩ) and H̃t′−1(Ĩ) gives (3.3) for any t ∈ [−1,min{0, λ−1/2}).

Remark 3.1. Since Ψp(−1) = 0 in the proof of Theorem 3.1, one has
by (3.11), ∫ x

−1

ψp(ξ) dξ = Ψp(x).

Therefore we can rewrite (3.9) with t = 0 as follows

(3.13)
‖Ψ − Ψp‖L2(I) =

∥∥∥∥χ̃(x)
∫ x

−1

ψ(ξ) dξ −
∫ x

−1

ψp(ξ) dξ
∥∥∥∥

L2(I)

≤ C p−2(λ+1/2),

where ψ(x) is given by (3.2), and ψp(x) is a polynomial approximation
to ψ(x).

Moreover, Ψ(x) ∈ L2(I) (because Ψ(x) ∼ (1+x)λ, λ > 0), and (3.13)
yields

(3.14) ‖Ψp‖L2(I) =
∥∥∥∥

x∫
−1

ψp(ξ) dξ
∥∥∥∥

L2(I)

≤ C.

Now we prove the main result of the paper.

Proof of Theorem 2.1. Due to the regularity result of Proposition 1.1
and the quasi-optimal convergence (2.2) of the BEM, one only needs to
find a piecewise polynomial function that approximates t in (1.5) with
the upper bound stated by (2.3).
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For elements at the boundary γ we need covering rectangles in surface
coordinates. Let Γj ⊂ Aγ be an element touching the boundary γ.
Since Aγ ⊂ (Γδ/2 ∪ γ), there exist two points on γ with coordinates
(s1, 0) and (s2, 0) such that

Γj ⊂ Qj = {(s, ρ) ∈ Γδ/2; s1 < s < s2, 0 < ρ < δ/2}.

First, we define an approximation t0,p to the vector function t0 ∈
H̃α(Γ) ⊂ Hα(Γ) (hereafter, α = 1/2 + σ − ε > 0 with sufficiently
small ε > 0). If Γj ⊂ (Γ\Aγ), we apply Lemma 3.3 componentwise
on the square (or triangle) K such that Γj = X(Mj(K)). However, if
Γj ⊂ Aγ , we apply Lemma 3.3 on Qj ⊃ Γj . Since Γ is smooth, the
function t0 on Γδ ⊃ Aγ has the same Sobolev-regularity in terms of
coordinates (s, ρ) as in terms of space variables x = X(u). Therefore,
recalling the definition of Sp(Γ) and applying Lemma 3.3 as indicated
above, we find t0,p ∈ Sp(Γ) such that

(3.15)
‖t0 − t0,p‖H̃−1/2(Γj)

≤ ‖t0 − t0,p‖L2(Γj) ≤ C p−α‖t0‖Hα(Γj)

≤ C p−α

if Γj ⊂ (Γ\Aγ), and

(3.16)
‖t0 − t0,p‖H̃−1/2(Γj)

≤ ‖t0 − t0,p‖L2(Γj) ≤ ‖t0 − t0,p‖L2(Qj)

≤ C p−α‖t0‖Hα(Qj) ≤ C p−α

if Γj ⊂ Aγ .

Now we consider the singular term β(s)ψ(ρ) = β(s)ρ−1/2χ(ρ) in
(1.5). Let Γj ⊂ Aγ , and Γj ⊂ Qj as above. Then using the
one-dimensional version of Lemma 3.3 we approximate the function
β(s) ∈ H1/2+σ(γ): there exists βp(s) ∈ [Qp(s1, s2)]3 satisfying

(3.17)
‖β − βp‖L2(s1,s2) ≤ C p−(1/2+σ)‖β‖H1/2+σ(s1,s2)

≤ C p−(1/2+σ)‖β‖H1/2+σ(γ).

For the singular function ψ(ρ), we apply Theorem 3.1, scaled to the
interval (0, δ), with λ = 1/2: there exists a polynomial ψp(ρ) ∈ Qp(0, δ)
satisfying

(3.18) ‖ψ − ψp‖H̃−t(0,δ/2)
≤ C p−2t, 0 < t ≤ 1.
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Since ψ(ρ) ∈ H̃−t(0, δ/2) for t ∈ (0, 1], we estimate by (3.18)

(3.19) ‖ψp‖H̃−t(0,δ/2)
≤ C, 0 < t ≤ 1,

with a constant C > 0 depending on t. Furthermore, introducing a C∞

cutoff function χ̃(ρ) such that, cf. (3.4),

χ̃(ρ) = 1 for ρ ∈ [0, δ/2] and χ̃(ρ) = 0 for ρ ≥ 3δ/4

and, arguing as in the proof of Theorem 3.1, we obtain the inequalities
similar to (3.13) and (3.14)

‖Ψ − Ψp‖L2(0,δ) =
∥∥∥∥χ̃(ρ)

∫ ρ

0

ψ(r) dr −
∫ ρ

0

ψp(r) dr
∥∥∥∥

L2(0,δ)

≤ C p−2,

(3.20)

‖Ψp‖L2(0,δ) =
∥∥∥∥

∫ ρ

0

ψp(r) dr
∥∥∥∥

L2(0,δ)

≤ C.

(3.21)

Then, making use of Lemma 3.2 (that remains valid with Ω1 =
Γj ⊂ Qj = Ω), Lemma 3.4, the triangle inequality, and estimates
(3.17) (3.19), we derive for some fixed t′ ∈ (0, 1/2)

(3.22) ‖βψ − βpψp‖H̃−t′(Γj)

≤ ‖βψ − βpψp‖H̃−t′(Qj)

≤ C
(
‖β(ψ − ψp)‖H̃−t′(Qj)

+ ‖(β − βp)ψp‖H̃−t′(Qj)

)
≤ C

(
‖β‖L2(s1,s2)‖ψ−ψp‖H̃−t′(0,δ/2)

+‖β−βp‖L2(s1,s2)‖ψp‖H̃−t′(0,δ/2)

)
≤ C p−min {1/2+σ,2t′}‖β‖H1/2+σ(γ).

On the other hand,

‖βψ − βpψp‖H̃−1(Γj)

=
∥∥∥∥ ∂

∂ρ

(
β(s)χ̃(ρ)

∫ ρ

0

ψ(r) dr − βp(s)
∫ ρ

0

ψp(r) dr
)∥∥∥∥

H̃−1(Γj)

,
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because β(s)χ̃(ρ) = β(s) on Γj . Then applying Lemma 3.1 in terms of
coordinates (s, ρ) ∈ Γj , we have

‖βψ − βpψp‖H̃−1(Γj)

≤ C

∥∥∥∥β(s)χ̃(ρ)
∫ ρ

0

ψ(r) dr − βp(s)
∫ ρ

0

ψp(r) dr
∥∥∥∥

H0(Γj)

≤C ‖β(s)Ψ(ρ)− βp(s)Ψp(ρ)‖H0(Qj),

where Ψ(ρ) = χ̃(ρ)
∫ ρ

0
ψ(r) dr and Ψp(ρ) =

∫ ρ

0
ψp(r) dr as in (3.20).

Hence

‖βψ − βpψp‖H̃−1(Γj)
≤ C

(
‖β‖L2(s1,s2)‖Ψ − Ψp‖L2(0,δ/2)

+‖β − βp‖L2(s1,s2)‖Ψp‖L2(0,δ/2)

)
,

and we estimate by using (3.17), (3.20) and (3.21),

‖βψ − βpψp‖H̃−1(Γj)
≤ C p−min {1/2+σ, 2}‖β‖H1/2+σ(γ)

= C p−(1/2+σ)‖β‖H1/2+σ(γ).

Since |σ| < 1/2, we may take t′ in (3.22) such that 0 < 1/2+σ ≤ 2t′ < 1.
Then, interpolating between H̃−1(Γj) and H̃−t′(Γj), we prove for any
Γj ⊂ Aγ

(3.23) ‖βψ − βpψp‖H̃−1/2(Γj)
≤ C p−(1/2+σ)‖β‖H1/2+σ(γ).

Now let us define the approximating function vp on Γ as follows:

vp|Γj
= βpψp + t0,p|Γj

if Γj ⊂ Aγ ,

vp|Γj
= t0,p|Γj

if Γj ⊂ (Γ\Aγ).

Then vp ∈ Sp(Γ) and, due to (3.15), (3.16) and (3.23), we obtain for
any element Γj ⊂ Γ

(3.24)
‖t − vp‖H̃−1/2(Γj)

= ‖(βψ + t0) − vp‖H̃−1/2(Γj)
≤ C p−α,

α = 1/2 + σ − ε > 0
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(here we also used the assumption that supp (β(s)ψ(ρ)) ⊂ Āγ).

Since

‖t − vp‖H̃−1/2(Γ)
≤ C

J∑
j=1

‖t − vp‖H̃−1/2(Γj)
,

see [22], the desired upper bound in (2.3) follows from (3.24). This
proves the theorem.
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16. F. Ihlenburg and I. Babuška, Finite element solution of the Helmholtz
equation with high wave number, Part II: The h-p version of the FEM, SIAM J.
Numer. Anal. 24 (1997), 315 358.

17. M. Maischak and E.P. Stephan, The hp-version of the boundary element
method in R3. The basic approximation results, Math. Meth. Appl. Sci. 20 (1997),
461 476.

18. C. Schwab and M. Suri, The optimal p-version approximation of singularities
on polyhedra in the boundary element method, SIAM J. Numer. Anal. 33 (1996),
729 759.

19. E.P. Stephan, A boundary integral equation method for three-dimensional
crack problems in elasticity, Math. Methods Appl. Sci. 8 (1986), 609 623.

20. E.P. Stephan and M. Suri, On the convergence of the p-version of the
boundary element Galerkin method, Math. Comp. 52 (1989), 31 48.

21. , The h-p version of the boundary element method on polygonal
domains with quasiuniform meshes, RAIRO Modél. Math. Anal. Numér. 25 (1991),
783 807.

22. T. von Petersdorff, Randwertprobleme der Elastizitätstheorie für Polyeder
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