
JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 16, Number 3, Fall 2004

ADSORPTION INTEGRAL EQUATION

GEORGI V. SMIRNOV

ABSTRACT. The relationship between the measured ad-
sorption isotherm and unknown energy distribution function
is described by so-called adsorption integral equation, a lin-
ear Fredholm integral equation of the first kind. We show
that under rather general assumptions the equation can be
solved in an analytical form. We also develop some methods
to construct approximate solutions.

1. Introduction. The relationship between the measured adsorp-
tion isotherm and unknown energy distribution function is described
by so-called adsorption integral equation, a linear Fredholm integral
equation of the first kind

(1) θ(p) =
∫ ∞

0

θ(p,E)N(E) dE,

where p is a pressure, E is an energy, θ(p,E) is a local adsorption
isotherm, θ(p) is a global adsorption isotherm, and N(E) is a relative
number of adsorbing centers with the energy E, see [13]. The function
N is defined for nonnegative values of E, takes nonnegative values, and
satisfies the condition

(2)
∫ ∞

0

N(E) dE = 1.

Without proof but giving several examples, Rudzinski and Everett [13]
showed that the detailed form of any theoretical isotherm is determined
by the form of function ξ (θ, T ) satisfying

(3) ln(pK0) = −E/KBT + ln ξ(θ, T )

where E is the adsorption energy, T is the temperature, KB is the
Bolzmann constant, and K0 is a function of the temperature. This
statement has been proved in [12]. Equation 3 means that, provided
that the inverse function of ξ exists, the local isotherm θ(p,E) has the
form

θ(p,E) = Θ(K(E)p),
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where K(E) = K0 exp(E/KBT ). In the sequel we assume that K0 is a
constant. Introducing the variable K = K(E), we obtain the integral
equation

(4) θ(p) =
∫ ∞

0

Θ(Kp)N (K) dK,

where

N (K) =
{

0 K ∈ [0,K0],
KBTN(E(K))/K K ∈ (K0,+∞).

Integral equation (4) can be solved applying the Mellin transform or
after some change of variables it can be reduced to a convolution form
and solved using the Fourier transform. However all these general meth-
ods work only under rather restrictive assumptions on the functions θ
and Θ that are not satisfied in the problems arising in the adsorption
theory. Therefore some special methods are needed.

We show that, under some natural assumptions, the local isotherm
has the form

Θ(Kp) =
∞∑

j=1

Qj

(
Kp

1 +Kp

)j

, Re: (Kp) > −sa

2
, sa > 0,

where K = K(E) = K0 exp(E/KBT ), T is a temperature, KB is the
Bolzmann constant and K0 is a constant. If Q1 = 1 and Qj = 0, j > 1,
then we get the Langmuir local isotherm (Langmuir kernel)

Θ(Kp) =
Kp

1 +Kp
.

It is well known that in this case equation (1) can be reduced to the
Stieltjes integral equation [14, 15]. In order to reduce the general
integral equation to the Langmuir equation we consider the case when
the kernel is a polynomial of Langmuir’s kernel:

Θ(Kp) =
J∑

j=1

Qj

(
Kp

1 +Kp

)j

.

We show that the function

G(p) =
∫ ∞

0

K

1 +Kp
N (K) dK
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is a unique solution to the Euler differential equation

θ(p)
p

=
J−1∑
j=0

(−1)jQj+1

j!
p jG(j)(p)

satisfying the boundary conditions

lim
p→0

pG(p) = 0 and lim
p→∞ pG(p) = 1.

This solution to the Euler equation can be easily found. Passing to the
limit when the degree J of the polynomial tends to infinity, we get the
solution in the general case and therefore find the function

L(N )(p) =
∫ ∞

0

Kp

1 +Kp
N (K) dK, p > 0.

Thus the general case can be reduced to the Langmuir integral equation.

We develop also some methods to construct an approximate solution
to the adsorption integral equation. In chemical experiments the global
isotherm θ is known only at some points pl > 0, l = 1, 2, . . . , L.
We show that if L → ∞, this information is enough to reconstruct
the function θ(p), p > 0. Solving the Euler equation one can find
the function L(N )(p), p > 0. Then it remains to solve the Stieltjes
equation in order to find the distribution function N . We reduce the
reconstruction of θ(p) and the solution of the Stieltjes equation to a
problem of complex analytic continuation with prescribed bound. This
problem was largely studied, see [1, 2, 5, 6, 8, 10, 11, 16], for
example. The method presented in this paper is closed in spirit to
the mentioned works. The main feature of our approach is the use
of condition (2) to derive the bounds for the Taylor coefficient of the
analytic function to be found. These bounds guarantee the method’s
stability with respect to small perturbations of the data. The numerical
algorithms constructed on the base of this approach allow to reduce
the problem under consideration to a linear-quadratic programming
problem. In [3] the method has been compared with the Tikhonov
regularization method in the case of the Langmuir kernel. The results
of numerical experiments show that if the distribution has a relatively
small L2-norm, the both methods give close results. On the other hand,
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if the distribution’s L2-norm is big, the Tikhonov regularization does
not work while the algorithm based on the complex approximation with
constraints gives acceptable reconstruction. This may be of importance
if the distribution is composed of one or several narrow ‘peaks’ and has
a big L2-norm. Numerical experiments in the case of the kernel of
general form can be found in [4].

The paper is organized as follows. In the second section we introduce
the class of kernels used in the sequel and establish some properties
of local and global isotherms. The third section contains the main
inversion result for the adsorption integral equation. The fourth section
is devoted to approximate methods and to the problem of complex
analytic continuation.

2. Properties of local and global isotherms. In this section
we describe the class of kernels considered in the sequel and study
some properties of local and global isotherms. We consider the local
isotherms with the following structure. They depend on the product
K(E)p:

(5) θ(p,E) = Θ(K(E)p),

where K(E) = K0 exp(E/KBT ), T is a temperature, KB is the
Bolzmann constant and K0 is a constant. Introducing the variable
K = K(E), from (1) and (2) we get

(6) θ(p) =
∫ ∞

0

Θ(Kp)N (K) dK

and

(7)
∫ ∞

0

N (K) dK = 1,

respectively, where

(8) N (K) =
{

0 K ∈ [0,K0],
KBTN(E(K))/K K ∈ (K0,+∞).

We assume that the function Θ = Θ(s) satisfies the following condi-
tions:
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1. The function Θ is monotone non-decreasing in the real positive
ray: Θ′(s) ≥ 0, whenever s ≥ 0.

2. Θ(0) = 0 and lims→+∞ Θ(s) = 1.

3. The function Θ is analytic in the half-plane Re: z > −sa/2, sa > 0.

The function Θ satisfies the first two conditions because of physical
reasons [13 15]. Condition 3 is essential for the approach presented
below.

Without loss of generality sa = 1. (The case sa �= 1 can be reduced
to this one by a change of variables.)

Consider the Möbius transformation q = s/(1+s). It maps the semi-
plane Re: s > −1/2 onto the unit disk D = {q | |q| < 1}. The function
Q(q) = Θ(s(q)) is analytic in D and we have

(9) Q(q) = Q1q +Q2q
2 + · · · +Qnq

n + · · · , |q| < 1.

From this we obtain

(10) Θ(Kp) =
∞∑

j=1

Qj

(
Kp

1 +Kp

)j

, Re(Kp) > −1
2
.

Under some additional assumptions on the coefficients Qj , j =
1, 2, . . . , one can obtain boundedness conditions for the function Θ.

Proposition 1. Assume that Condition 3 is satisfied.

1. If
∑∞

j=1 |Qj | < ∞, then the function Θ is bounded in the half-
plane Re: z ≥ 0:

sup
{s|Re : s≥0}

|Θ(s)| ≤M.

2. If
∑∞

j=1 j|Qj | < ∞, then the function Θ′(s)s is bounded in the
half-plane Re: z ≥ 0:

sup
{s|Re : s≥0}

|Θ′(s)s| ≤M.

Proof. 1. Observe that∣∣∣∣ ρeiλ

1 + ρeiλ

∣∣∣∣ =
ρ√

1 + 2ρ cosλ+ ρ2
.
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Suppose that
∑∞

j=1 |Qj | <∞. Then we have

∣∣Θ (ρeiλ
)∣∣ ≤ ∞∑

j=1

|Qj |
(

ρ√
1 + 2ρ cosλ+ ρ2

)j

<
∞∑

j=1

|Qj |,

whenever λ ∈ [−π/2, π/2].

2. Now suppose that
∑∞

j=1 j|Qj | <∞. Then we get

∣∣Θ′ (ρeiλ
)
ρeiλ

∣∣
≤

∞∑
j=1

j|Qj |
(

ρ√
1 + 2ρ cosλ+ ρ2

)j( 1√
1 + 2ρ cosλ+ ρ2

)

<
∞∑

j=1

j|Qj |,

whenever λ ∈ [−π/2, π/2].

The main properties of the global isotherm θ(p) are contained in the
following proposition.

Proposition 2. The function θ has the following properties:

1. θ(p1) ≤ θ(p2), whenever 0 ≤ p1 ≤ p2;

2. limp→0+ θ(p) = 0 and limp→+∞ θ(p) = 1;

3. If the function Θ is bounded in the half-plane Re: z ≥ 0, then
sup{p|Re : p≥0} |θ(p)| ≤M ;

4. If the function Θ′(s)s is bounded in the half-plane Re: z ≥ 0, then
θ is analytic in the half-plane Re: p > 0.

Proof. 1. Let 0 ≤ p1 ≤ p2. Since Θ is monotone, we obtain

θ(p1) =
∫ ∞

0

Θ(Kp1)N (K) dK ≤
∫ ∞

0

Θ(Kp2)N (K) dK = θ(p2).
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2. Let ε > 0 and let Kε be such that
∫∞

Kε
N (K) dK < ε. Then we get

θ(p) =
∫ ∞

0

Θ(Kp)N (K) dK

=
∫ Kε

0

Θ(Kp)N (K) dK +
∫ ∞

Kε

Θ(Kp)N (K) dK

≤
∫ Kε

0

Θ(Kεp)N (K) dK +
∫ ∞

Kε

N (K) dK

< Θ(Kεp) + ε < 2ε,

whenever p > 0 is sufficiently small. Hence limp→0+ θ(p) = 0.

Let ε > 0 and let p > 0. Then from (8) we obtain

1 ≥
∫ ∞

0

Θ(Kp)N (K) dK =
∫ ∞

K0

Θ(Kp)N (K) dK

≥
∫ ∞

K0

Θ(K0p)N (K) dK

= Θ(K0p) ≥ 1 − ε,

whenever p > 0 is big enough. Thus limp→+∞ θ(p) = 1.

3. Let Re: p ≥ 0. Then we have

|θ(p)| ≤
∫ ∞

0

|Θ(Kp)|N (K) dK ≤M

∫ ∞

0

N (K) dK = M.

4. Let Re: p0 > 0. Then we have |Θ′(Kp0)Kp0| ≤M , for all K > 0.
Therefore the integral

I(p) =
∫ ∞

0

Θ′(Kp)KpN (K) dK

converges uniformly in {p | |p − p0| < Re: p0/2} and θ′(p) = I(p)/p.
Thus θ is analytic in the half-plane Re: p > 0.

3. General solution to the adsorption equation. In this section
we derive a formula for the solution to the adsorption equation. First
we consider the Langmuir kernel and the case when the kernel is a
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polynomial of Langmuir’s kernel. Then passing to the limit when the
degree of the polynomial tends to infinity, we get the solution in the
general case.

3.1 Langmuir’s kernel and the Stieltjes integral equation. If
Q1 = 1 and Qj = 0, j > 1, then we get the Langmuir local isotherm

Θ(Kp) =
Kp

1 +Kp
.

In this case equation (6) can be reduced to the Stieltjes integral
equation. Indeed, put t = K, ξ = 1/p, φ(t) = tN (t), and Φ(ξ) =
θ(1/ξ). Then from (6) we have

(11) Φ(ξ) =
∫ ∞

0

φ(t)dt
t+ ξ

,

where Φ(ξ), ξ ≥ 1, is a known function and the problem is to find
φ(t) ≥ 0, t ∈ [0,∞). Moreover φ satisfies

(12)
∫ ∞

0

φ(t)dt
t

= 1.

For the sake of simplicity we shall consider this problem in the class
of continuous functions φ. From (11) it follows that Φ(ξ) is analytic in
the complex plane cut along the ray L = {ξ | Re: ξ ≤ 0, Im: ξ = 0}
and

(13) φ(x) = lim
y↓0

Φ(−x− iy) − Φ(−x+ iy)
2πi

, x > 0,

see [17]. This solution to (11) was obtained by Stieltjes. To find the
energy distribution function this relation was first used by Sips [14,
15].

3.2 Polynomial kernel. Now consider the case when the function
Q(q) is a polynomial:

Q(q) =
J∑

j=1

Qjq
j .
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Then the kernel has the form

Θ(Kp) =
J∑

j=1

Qj

(
Kp

1 +Kp

)j

.

Put

(14) L(N )(p) =
∫ ∞

0

Kp

1 +Kp
N (K) dK.

By Proposition 2 the function L(N )(p) satisfies the following conditions

(15) lim
p→0

L(N )(p) = 0 and lim
p→∞L(N )(p) = 1.

Since lims→∞ Θ(s) = 1, we have

J∑
j=1

Qj = 1.

Adsorption integral equation (6) takes the form

(16) θ(p) =
J∑

j=1

Qj

∫ ∞

0

(
Kp

1 +Kp

)j

N (K) dK.

Set

P(α) =
J−1∑
j=0

(−1)jQj+1

j!
α(α− 1) · · · (α− j + 1).

Let αl, l = 1, L, be different roots of the polynomial P(α) with multi-
plicities nl, l = 1, L, respectively. Observe that P(−1) =

∑J−1
j=0 Qj+1 =

1. Therefore, α = −1 is not a root of P.

Theorem 1. The function L(N )(p) can be represented in the form

(17) L(N )(p) =
L∑

l=1

nl∑
k=1

p(clkIk(αl, p) + blkSk(αl, p)),
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where

clk =
1

(nl−k)!
dnl−k

dαnl−k

(
(α−αl)nl

P(α)

)
α=αl

, k = 1, nl, l = 1, L,

Ik(α, p) =
1

(k−1)!

∫ p

1

(
ln
p

r

)k−1 (p
r

)α θ(r)dr
r2

,

Sk(α, p) = (ln p)k−1pα,

and the constants blk, k = 1, nl, l = 1, L, are uniquely determined by
condition (15). If Re: αl �= −1, l = 1, L, then

(18) blm = (−1)k−m+1
nl∑

k=m

clk
(k−1)!

(
k − 1
m− 1

)

×
∫ ∞

1

(ln r)k−m θ(r)dr
rαl+2

, Re: α > −1

(19) blm = (−1)k−m
nl∑

k=m

clk
(k−1)!

(
k − 1
m− 1

)

×
∫ 1

0

(ln r)k−m θ(r)dr
rαl+2

, Re: α < −1.

and the following representation holds

(20) L(N )(p) =
θ(∞)−θ(0)

2

+
1

2πi
P.V.

∫ +∞

−∞

1
γP(−1+iγ)

∫ +∞

0

(p
r

)iγ

dθ(r) dγ,

where P.V. means an integral is in the sense of principal value.

Remark. By zα we mean the branch, single-valued in the plane cut
along the negative real ray.

Proof. Consider the function

(21) G(p) =
1
p
L(N )(p).
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Since
∂jG(p)
∂pj

= (−1)jj!
∫ ∞

0

(
K

1 +Kp

)j+1

N (K) dK,

from (16) we see that the function G satisfies the Euler equation

(22)
θ(p)
p

=
J−1∑
j=0

(−1)jQj+1

j!
p jG(j)(p), p > 0

and the boundary conditions

(23) lim
p→0

pG(p) = 0 and lim
p→∞ pG(p) = 1,

see (15). The substitution t = ln p transforms the Euler equation
into a linear differential equation with constant coefficients. A general
solution to (22) is given by

G(p) =
L∑

l=1

nl∑
k=1

(clkIk(αl, p) + blkSk(αl, p))

where blk, k = 1, nl, l = 1, L, are arbitrary constants. From this we
obtain (17).

We need two technical lemmas.

Lemma 1. Let g be a solution to the homogeneous Euler equation

(24) 0 =
J−1∑
j=0

(−1)jQj+1

j!
p jg(j)(p), p > 0.

1. If limp→0 pg(p) = limp→∞ pg(p) = 0, then g ≡ 0.

2. If Re: αl �= −1, l = 1, L, and |pg(p)| ≤ b, p ≥ 0, then g ≡ 0.

Proof. The proof is elementary and follows from the formula

g(p) =
L∑

l=1

nl∑
k=1

blk(ln p)k−1pαl .
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Lemma 2. Assume that G(p) is a solution to (22) and the function
pG(p), p ≥ 0, is bounded. If Re: αl �= −1, l = 1, L, then

G(p) =
L∑

l=1

nl∑
k=1

(clkIk(αl, p) + blkSk(αl, p)),

where the constants blk, k = 1, nl, l = 1, L, are given by (18) and (19).

Proof. Since Re: αl �= −1, l = 1, L, the constants blk, k = 1, nl,
l = 1, L, can be easily found. Indeed, observe that

(25) G(p) =
L∑

l=1

nl∑
m=1

[
nl∑

k=m

clk
(k − 1)!

(
k − 1
m− 1

)

×
∫ p

1

(− ln r)k−m θ(r)dr
rαl+2

+ blm

]
(ln p)m−1pαl .

Since the integrals

∫ ∞

1

(ln r)β θ(r)dr
rα+2

, Re: α > −1

and ∫ 1

0

(ln r)β θ(r)dr
rα+2

, Re: α < −1

exist, from the boundedness of the function pG(p) and (25) we get (18)
and (19).

End of the proof of Theorem 1. The uniqueness follows from Lemma
1. If Re : αl �= −1, l = 1, L, then from Lemma 2 we obtain (18) and
(19).

It remains to prove (20). Suppose that all roots of the characteristic
polynomial are simple. Then substituting (18) and (19) for blk in (17),
we obtain

L(N )(p) =
∑

l∈J−

pαl+1

P ′(αl)

∫ p

0

θ(r)dr
rαl+2

−
∑

l∈J+

pαl+1

P ′(αl)

∫ ∞

p

θ(r)dr
rαl+2

,
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where J − = {l | Re: αl < −1} and J + = {l | Re: αl > −1}.
Integrating by parts, we get

L(N )(p) =
∑
l∈J−

1
P ′(αl)(αl + 1)

[
−θ(p) +

∫ p

0

(p
r

)αl+1

dθ(r)
]

−
∑
l∈J+

1
P ′(αl)(αl + 1)

[
θ(p) +

∫ ∞

p

(p
r

)αl+1

dθ(r)
]

=
∑
l∈J−

resα=αl

δ−p (α)
P(α)

−
∑
l∈J+

resα=αl

δ+p (α)
P(α)

,

where

δ−p (α) =
1

α+ 1

[
−θ(p) +

∫ p

0

(p
r

)α+1

dθ(r)
]
,

δ+p (α) =
1

α+ 1

[
θ(p) +

∫ ∞

p

(p
r

)α+1

dθ(r)
]
.

The last equality can be also written in the following form

L(N )(p) =
1

2πi

∫
Γ−

ρ

δ−p (α)
P(α)

dα− 1
2πi

∫
Γ+

ρ

δ+p (α)
P(α)

dα,

where the contours Γ±
ρ are given by

Γ−
ρ = {α | |α+ 1| = 1/ρ, Re: α ≤ −1}⋃

{α | Re: α = −1, Im: α ∈ [−ρ,−1/ρ] ∪ [1/ρ, ρ]}⋃
{α | |α+ 1| = ρ, Re: α ≤ −1}

and

Γ+
ρ = {α | |α+ 1| = 1/ρ, Re: α ≥ −1}⋃

{α | Re: α = −1, Im: α ∈ [−ρ,−1/ρ] ∪ [1/ρ, ρ]}⋃
{α | |α+ 1| = ρ, Re: α ≥ −1},
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and ρ > 0 is big enough. Passing to the limit as ρ→ ∞, we obtain

L(N )(p) =
1
2π

lim
ρ→∞

[∫ π/2

3π/2

1
P(−1+eiλ/ρ)

[
− θ(p)+

∫ p

0

(p
r

)eiλ/ρ

dθ(r)
]
dλ

−
∫ −π/2

π/2

1
P (−1+eiλ/ρ)

[
θ(p) +

∫ ∞

p

(p
r

)eiλ/ρ

dθ(r)
]
dλ

]

+
1

2πi
lim

ρ→∞

[∫ −1−i/ρ

−1−iρ

1
P (α)(α+1)

∫ ∞

0

(p
r

)α+1

dθ(r) dα

+
∫ −1+iρ

−1+i/ρ

1
P (α)(α+1)

∫ ∞

0

(p
r

)α+1

dθ(r) dα

]

=
θ(∞) − θ(0)

2

+
1

2πi
P.V.

∫ −1+i∞

−1−i∞

1
P (α)(α+1)

∫ ∞

0

(p
r

)α+1

dθ(r) dα

=
θ(∞) − θ(0)

2

+
1

2πi
P.V.

∫ +∞

−∞

1
γP(−1 + iγ)

∫ +∞

0

(p
r

)iγ

dθ(r) dγ.

If the roots of the characteristic polynomial are not simple, the polyno-
mial can be approximated by polynomials with simple roots and taking
the limit we get (20).

3.3 General case. Here we show that the formula for L(N )(p)
obtained in the previous section can be also used when Θ(Kp) is given
by an infinite series (9). In this case P(α) is a series

P(α) =
∞∑

j=0

(−1)jQj+1

j!
α(α− 1) · · · (α− j + 1).

The series of this type are known as Newton series. We shall call P a
characteristic function. We say that the characteristic function is well
defined if the Newton series converges for α with Imα = −1, and is
different from zero.

Now let us prove the main result.
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Theorem 2. Assume that

1. the series
∑∞

j=1 j|Qj | converges,

2. there exists the integral∫ ∞

0

lnKN (K) dK,

3. there exist a constant c > 0 and a sequence of polynomials

PJ (α) =
J−1∑
j=0

(−1)jQ
(J)
j+1

j!
α(α− 1) · · · (α− j + 1)

such that |PJ (−1 + iγ)| > c(1 + |γ|), for all γ ∈ (−∞,+∞), and

lim
J→∞

∞∑
j=1

j|Q(J)
j −Qj | = 0,

where Q(J)
j = 0, j > J .

Then the characteristic function P(α) is well defined for α with
Reα = −1 and

(26)

L(N )(p) =
θ(∞)−θ(0)

2
+

1
2πi

∫ +∞

−∞

∫ +∞

0

1
γ

(
(p/r)iγ

P(−1 + iγ)
− 1
)
dθ(r)dγ.

Remark. The second condition of the theorem is equivalent with the
existence of a finite energy distribution first moment:∫ ∞

0

EN(E) dE <∞.

Proof. First show that the characteristic function P(α) is well defined.
Indeed, since

∑∞
j=1 j|Qj | < +∞ the Newton series

P(α) =
∞∑

j=0

(−1)jQj+1

j!
α(α− 1) · · · (α− j + 1)
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converges for α = −2. This implies the convergence for all α satisfying
Reα > −2, see [7], for example.

Without loss of generality all roots of the polynomials PJ (α) are
different. Denote them by αJ,l, l = 1, J − 1. Consider the function

GJ(p) =
∑

l∈J−
J

pαJ,l+1

P ′
J (αJ,l)

∫ p

0

θ(r)dr
rαJ,l+2

−
∑

l∈J+
J

pαJ,l+1

P ′
J (αJ,l)

∫ ∞

p

θ(r)dr
rαJ,l+2

,

where J −
J = {l | Re: αJ,l < −1} and J+

J = {l | Re: αJ,l > −1}. It
satisfies the Euler equation

(27)
θ(p)
p

=
J−1∑
j=0

(−1)jQ
(J)
j+1

j!
p jG

(j)
J (p), p > 0,

see the proof of Theorem 1. Since

∣∣∣∣
∫ p

0

(p
r

)αJ,l+1 θ(r)dr
r

∣∣∣∣ ≤
∫ p

0

(p
r

)ReαJ,l+1 θ(r)dr
r

=
1

1 − ReαJ,l
,

l ∈ J−
J ,

and∣∣∣∣
∫ ∞

p

(p
r

)αJ,l+1 θ(r)dr
r

∣∣∣∣ ≤
∫ ∞

p

(p
r

)ReαJ,l+1 θ(r)dr
r

=
1

1 + ReαJ,l
,

l ∈ J+
J ,

we see that there exists a constant b > 0 such that

(28) |pGJ(p)| ≤ b, p ≥ 0.

From Lemma 1 we conclude that GJ(p) is a unique solution to (27)
satisfying (28). Invoking Lemma 2 and arguing as in the last part of
the proof of Theorem 1, we obtain

pGJ(p) =
θ(∞) − θ(0)

2

+
1

2πi
P.V.

∫ +∞

−∞

1
γPJ (−1 + iγ)

∫ +∞

0

(p
r

)iγ

dθ(r) dγ.
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Put
gJ (p) = G(p) −GJ(p)

and

σJ (p) =
∞∑

j=0

(−1)j(Q(J)
j+1 −Qj+1)
j!

p j+1G(j)(p)

=
∞∑

j=1

(Q(J)
j −Qj)

∫ ∞

0

(
Kp

1 +Kp

)j

N (K) dK.

Then we have

σJ (p)
p

=
J−1∑
j=0

(−1)jQ
(J)
j+1

j!
p jg(j)(p), p > 0.

Moreover |pgJ (p)| < bJ , p ≥ 0, where bJ > 0 is a constant. By Lemma 1
these conditions uniquely determine the function gJ (p). Applying
Lemma 2, as above we get

pgJ(p) =
σJ (∞) − σJ(0)

2

+
1

2πi
P.V.

∫ +∞

−∞

1
γPJ (−1 + iγ)

∫ +∞

0

(p
r

)iγ

dσJ (r) dγ.

To estimate the integral

I(p) = P.V.
∫ +∞

−∞

1
γPJ (−1 + iγ)

∫ +∞

0

(p
r

)iγ

dσJ (r) dγ

observe that it can be represented as a sum of three integrals

I(p) = I1(p) + I2(p) + I3(p),

where

I1(p) = P.V.
∫ 1

−1

1
γPJ (−1 + iγ)

∫ +∞

0

(p
r

)iγ

dσJ (r) dγ,

I2(p) =
∫ −1

−∞

1
γPJ (−1 + iγ)

∫ +∞

0

(p
r

)iγ

dσJ (r) dγ,
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and

I3(p) =
∫ +∞

1

1
γPJ (−1 + iγ)

∫ +∞

0

(p
r

)iγ

dσJ (r) dγ.

The integrals I2(p) and I3(p) satisfy the inequality

(29)

|I2,3(p)| ≤
∫ +∞

−∞

dγ

|PJ (−1 + iγ)|
∫ ∞

0

|dσJ (r)|

≤
∫ +∞

−∞

dγ

|PJ (−1 + iγ)|max{1, |γ|}

×
∫ ∞

0

∞∑
j=1

|Q(J)
j −Qj |d

(∫ ∞

0

(
Kp

1+Kp

)j

N (K) dK
)

=
∫ +∞

−∞

dγ

c(1 + |γ|) max{1, |γ|}
∞∑

j=1

|Q(J)
j −Qj |.

To estimate the integral I1(p) note that P.V.
∫ +∞
−∞ dγ/γ = 0 and

therefore

I1(p) = P.V.
∫ 1

−1

1
γ

∫ ∞

0

(
(p/r)iγ

PJ (−1 + iγ)
− 1

PJ (−1)

)
dσJ (r) dγ

= I∗(p) + I∗∗(p),

where

I∗(p) = P.V.
∫ 1

−1

1
γ

∫ ∞

0

(p/r)iγ − 1
PJ (−1 + iγ)

dσJ (r) dγ

and

I∗∗(p) = P.V.
∫ 1

−1

1
γ

∫ ∞

0

(
1

PJ (−1 + iγ)
− 1

PJ (−1)

)
dσJ (r) dγ.

Since ∣∣∣∣ 1γ
((p

r

)iγ

− 1
)∣∣∣∣ =

∣∣∣∣ 1γ
∫ γ

0

(
d

dω

(p
r

)iω
)
dω

∣∣∣∣
=
∣∣∣∣ 1γ
∫ γ

0

(
−i
(p
r

)iω

ln r
)
dω

∣∣∣∣ ≤ | ln r|,



ADSORPTION INTEGRAL EQUATION 311

we have

|I∗(p)| ≤
∫ 1

−1

dγ

|PJ (−1 + iγ)|
∫ ∞

0

ln r dσJ (r).

Observe that∫ ∞

0

ln r dσJ (r) =
∫ ∞

0

ln r
∞∑

j=1

(Q(J)
j −Qj)d

∫ ∞

0

(
Kr

1+Kr

)j

N (K) dK

=
∞∑

j=1

(Q(J)
j −Qj)

∫ ∞

0

[∫ ∞

0

ln r d
(

Kr

1+Kr

)j
]
N (K) dK.

We need the following auxiliary estimate.

Lemma 3. The following inequality holds∣∣∣∣
∫ ∞

0

ln r d
(

Kr

1 +Kr

)n∣∣∣∣ ≤ 1 + n ln 2 + lnK.

Proof. Indeed, we have
(30)∫ ∞

0

ln r d
(

Kr

1+Kr

)n

=
∫ ∞

0

ln(Kr)d
(

Kr

1+Kr

)n

−lnK
∫ ∞

0

d

(
Kr

1+Kr

)n

=
∫ ∞

0

ln s d
(

s

1+s

)n

− lnK.

This integral can be represented as∫ ∞

0

ln s d
(

s

1 + s

)n

=
∫ 1

0

ln s d
(

s

1 + s

)n

+
∫ ∞

1

ln s d
((

s

1 + s

)n

− 1
)
.

Integrating by parts we obtain∫ ∞

0

ln sd
(

s

1 + s

)n

= −
∫ 1

0

1
s

(
s

1 + s

)n−1
ds

1 + s

+
∫ ∞

1

1
s

(
1 −

(
1 − 1

1 + s

)n)
ds.
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Obviously

(31)

∣∣∣∣∣
∫ 1

0

1
s

(
s

1 + s

)n−1
ds

1 + s

∣∣∣∣∣ ≤ 1.

To estimate the second integral observe that

(
1 − 1

1 + s

)n

≥ 1 − n

1 + s

(Bernoulli’s inequality). Therefore we have

∫ ∞

1

1
s

(
1 −

(
1 − 1

1 + s

)n)
ds ≤ n

∫
ds

s(1 + s)
= n ln 2.

Combining this with (30) and (31) we obtain the result.

Invoking the lemma we obtain

∣∣∣∣
∫ ∞

0

ln rdσJ(r)
∣∣∣∣ ≤

∞∑
j=1

|Q(J)
j −Qj |

∫ ∞

0

(1 + j ln 2 + lnK)N (K) dK

≤ (const)
∞∑

j=1

j|Q(J)
j −Qj |.

Thus we have

(32) |I∗(p)| ≤ (const)
∫ 1

−1

dγ

c (1 + |γ|)
∞∑

j=1

j|Q(J)
j −Qj |.

To estimate the integral I∗∗(p) observe that

P ′
J (−1 + iω) = i

J−1∑
j=0

(−1)jQ
(J)
j+1

j!

×
j−1∑
k=0

(iω−1) · · · (iω−k)(iω−k−2) · · · (iω−j).
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From this we obtain

|P ′
J (−1 + iω)| ≤

J−1∑
j=0

|Q(J)
j+1|
j!

j−1∑
k=0

2 · 3 · · · · · j

≤
J∑

j=1

j|Q(J)
j | ≤

∞∑
j=1

j|Q(J)
j −Qj | +

∞∑
j=1

j|Qj |.

Therefore we get

|I∗∗(p)| ≤
∣∣∣∣
∫ 1

−1

(
1

γPJ (−1 + iγ)
− 1

PJ (−1)

)
dγ

∣∣∣∣
∣∣∣∣
∫ ∞

0

dσJ (r)
∣∣∣∣

≤
∣∣∣∣
∫ 1

−1

γ−1
∫ γ

0
P ′

J (−1 + iω)dω
PJ (−1 + iγ)PJ (−1)

∣∣∣∣
∞∑

j=1

|Q(J)
j −Qj |

≤
∫ 1

−1

dγ

2c2(1+|γ|)
( ∞∑

j=1

j|Q(J)
j −Qj | +

∞∑
j=1

j|Qj |
) ∞∑

j=1

|Q(J)
j −Qj |.

Combining this with (32) we obtain

|I1(p)| ≤ (const)
∞∑

j=1

j|Q(J)
j −Qj |.

From this and (29) we see that |pgJ (p)| tends to zero as J goes to
infinity. Passing to the limit as J → ∞ in the equality

pG(p) = pgJ (p) + pGJ(p) =
σJ (∞) − σJ(0)

2
+
θ(∞) − θ(0)

2

+
1

2πi

∫ +∞

−∞

∫ +∞

0

1
γ

(
(p/r)iγ

PJ (−1+iγ)
− 1

PJ (−1)

)
d(σJ(r)+θ(r)) dγ

we obtain (26). This ends the proof.

4. Approximate solutions to the adsorption integral equa-
tion. In this section we construct some approximations for solutions to
the adsorption integral equation. We assume that the global isotherm θ
is known only at a sequence of points pl > 0, l = 1, 2, . . . . As it will be
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clear from our consideration this information is enough to reconstruct
the function θ(p) in the half-plane Re: p > 0. Using the results of the
previous section one can find the function L(N )(p), p > 0. Then it
remains to solve the Stieltjes equation in order to find the distribution
function N . To this end we have to know L(N )(p) in the complex plane
cut along the negative real ray. We reduce the function θ reconstruc-
tion problem and the solution of the Stieltjes equation to a problem
of complex analytic continuation with prescribed bound. The main
feature of the approach presented here is the use of condition (7) to
derive bounds for the Taylor coefficient of the analytic function under
consideration. This allows to reduce the analytic continuation problem
to a sequence of mathematical programming problems, see Theorem 3.

4.1 A series expansion for θ(p). Consider the Möbius mapping

ζ =
p− 1
p+ 1

.

It maps the half-plane Re: p > 0 onto the unit disk K = {ζ | |ζ| < 1}
and the positive real ray on the disk’s diameter, (−1, 1). The inverse
of ζ = ζ(p) is given by

p =
1 + ζ

1 − ζ
.

The function θ (1 + ζ/1 − ζ) is analytic in K and

sup
ζ∈K

∣∣∣∣θ
(

1 + ζ

1 − ζ

)∣∣∣∣ ≤M.

Hence

θ

(
1 + ζ

1 − ζ

)
=

∞∑
k=0

θkζ
k, |θ| < 1,

and from the Cauchy inequality we have |θk| ≤M , k = 1, 2, . . . .

4.2 A change of variables in the Stieltjes equation. Consider
the conformal mapping

w =
√
p− 1√
p+ 1

,
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where by
√
p we mean the branch satisfying

√
1 = 1. It maps the plane

cut along L = {p | Re: p ≤ 0, Im: p = 0} onto the unit disk K =
{w | |w| < 1}. The “upper” side of L, L+ = {p + i0}, is transformed
into the set Γ+ = {w | |w| = 1, Imw > 0} and the “lower” side of L,
L− = {p − i0}, is mapped on the set Γ− = {w | |w| = 1, Imw < 0}.
Finally the image of the ray −L is the disk’s diameter, (−1, 1). The
inverse of w = w(p) is given by

(34) p =
(

1 + w

1 − w

)2

.

In the complex plane w integral equation (11) has the form

(35) Ψ(w) = −
∫

Γ+
K(w, τ)ψ(τ )dτ, −1 < w < 1,

where

Ψ(w) = Φ
((

1 − w

1 + w

)2)
, ψ(τ ) = φ

(
−
(

1 − τ

1 + τ

)2)
,

and

K(w, τ) =
(

1 + w

1 + τ

)(
1

w − τ
+

1
1 − τw

)
.

4.3 Series expansions for Ψ and φ. If |w| < 1 and |τ | = 1, we
can represent K(w, τ) in the following form

K(w, τ) =
(

1+w
1+τ

)(
− 1
τ

(
1+

w

τ
+
w2

τ2
+ · · ·

)
+
(
1+ τw + τ2w2+ · · ·

))
.

Combining this with (35), we obtain

(36)

Ψ(w) = −
∫

Γ+

τ − 1
τ (τ+1)

ψ(τ )dτ−
∞∑

k=1

(∫
Γ+

(τk−1 − τ−k−1)ψ(τ ) dτ
)
wk.

Putting τ = eiν , ν ∈ [0, π], from (36) we get

(37) Ψ(w) = π

∞∑
k=0

bkw
k,
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where

b0 =
1
π

∫ π

0

1 − cos ν
2

N
(

1 − cos ν
1 + cos ν

)
d

(
1 − cos ν
1 + cos ν

)

and

bk =
1
π

∫ π

0

sin kν sin νN
(

1 − cos ν
1 + cos ν

)
d

(
1 − cos ν
1 + cos ν

)

=
2
π

∫ π

0

sin kν
(

1 − cos ν
1 + cos ν

)
N
(

1 − cos ν
1 + cos ν

)
dν

=
2
π

∫ π

0

sin kνφ
(

1 − cos ν
1 + cos ν

)
dν, k = 1, 2, . . . .

The jump relation (13) now can be rewritten as

ψ(w) = lim
|w|↑1,Im : w>0

Ψ(w̄) − Ψ(w)
2πi

.

Setting w = ρeiµ, ρ > 0, µ ∈ (0, π), from (37) we obtain

(38) ϕ(µ) = φ

(
1 − cosµ
1 + cosµ

)
= − lim

ρ↑1

∞∑
k=1

bkρ
k sin kµ.

Thus the function −ϕ is a limit of the Abel means of its Fourier
sine series. Comparing (37) and (38), we see that the sine Fourier
coefficients of −ϕ are the Taylor coefficients of Ψ divided by π.

The approximation techniques presented below are based on the
following estimates for the coefficients bk, k = 1, 2, . . . ,

(39)

|bk| ≤ 1
π

∫ π

0

N
(

1 − cos ν
1 + cos ν

)
d

(
1 − cos ν
1 + cos ν

)

=
1
π

∫ ∞

0

N (K) dK =
1
π
, k = 1, 2, . . . .

4.4 Approximation with constraints. From the previous consid-
eration we see that the reconstruction of the function θ and solution



ADSORPTION INTEGRAL EQUATION 317

of the Stieltjes equation can be reduced to the problem of complex
analytic continuation of a function, analytic in the unit disk, with pre-
scribed bounds for the Taylor coefficients. Here we present a method,
which allows to get an approximate solution to this problem stable with
respect to small perturbations of the data.

Consider a function f analytic in the unit disk K = {w | |w| < 1}.
The function f can be written as

f(w) =
∞∑

k=0

akw
k, |w| < 1.

We assume that

(40) |ak| ≤ dk, k = 0, 1, 2, . . . .

Let {zk}∞k=0 be a sequence of complex numbers. By �zn we shall
denote the n-dimensional vector consisting of the first n terms of the
sequence: �zn = (z0, z1, . . . , zn−1). By V m

n (�zn) we denote the m-norm
in the n-dimensional space:

V m
n (�zn) =

(
n−1∑
k=0

|zk|m
)1/m

, m = 1, 2, . . . ,

and for m = ∞ we put

V∞
n (�zn) = max

k=0,n−1
|zk|.

Let {Ak}∞k=0 be a sequence of complex numbers. Define the polyno-
mials

P (w, �An) =
n−1∑
k=0

Akw
k.

Consider two sequences {wk}∞k=0 and {fk}∞k=0. We assume that |wk| ≤
r < 1. Let n̄(n) be a sequence of non-negative integers satisfying
n̄(n) ≥ n, n = 0, 1, . . . . Put

�P ( �An) = (P (w0, �An), P (w1, �An), . . . , P (wn̄(n)−1, �An))
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and

�̃fn = (f(w0), f(w1), . . . , f(wn̄(n)−1)).

Here the points wk, k = 0, 1, . . . , are the points where we know
approximate values fk, k = 0, 1, . . . , of the function f . These values
are, in general, different from the values f(wk), k = 0, 1, . . . . Put
�̃An = (a0, a1, . . . , an−1). Our aim is to find the coefficients ak,
k = 0, 1, . . . . To this end we construct approximations of the function
f by polynomials with coefficients satisfying restrictions (40).

Let m be a positive integer or ∞. Consider the following optimization
problem

(41) minimize
{
V m

n̄(n)(�P ( �An) − �fn̄(n)) | |Ak| ≤ dk, k = 0, n− 1
}
.

The solution to this problem we denote by �̂An = (Â0, Â1, . . . , Ân−1).

Theorem 3. Assume that

1. limn→∞ m
√
n̄(n)

∑∞
k=n+1 dkρ

k = 0, for all ρ ∈ [0, 1),

2. limn→∞ V m
n (�fn − �̃fn) = 0.

Then the polynomials P (w, �̂An) converge uniformly inside the circle
K = {w | |w| < 1} to the function f(w) as n goes to infinity.

Proof. Let l and n be positive integers satisfying n ≥ l. Then we
have

|P (wl, �̂An) − f(wl)| ≤ V m
n̄(n)(�P ( �̂An) − �̃f n̄(n))

≤ V m
n̄(n)(�P ( �̂An) − �fn̄(n)) + V m

n̄(n)(�fn̄(n) − �̃f n̄(n)).

Since �̂An solves (41), we see that the right side of the obtained
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inequality is less than or equal to

V m
n̄(n)(�P ( �̃An) − �fn̄(n)) + V m

n̄(n)(�fn̄(n) − �̃f n̄(n))

≤ V m
n̄(n)(�P ( �̃An) − �̃f n̄(n)) + 2V m

n̄(n)(�fn̄(n) − �̃f n̄(n))

≤ m
√
n̄(n) max

l=1,n
|P (wl, �̃An) − f(wl)| + 2V m

n̄(n)(�fn̄(n) − �̃f n̄(n))

= m
√
n̄(n) max

l=1,n

∣∣∣∣
∞∑

k=n+1

akw
k
l

∣∣∣∣+ 2V m
n̄(n)(�fn̄(n) − �̃f n̄(n))

≤ m
√
n̄(n)

∞∑
k=n+1

dkr
k + 2V m

n̄(n)(�fn̄(n) − �̃f n̄(n))

The right side of this inequality tends to zero when n goes to infinity.
Thus we see that the polynomials P (w, �̂An) converge to f(w) at the
points wl, l = 1, 2, . . . .

Let us show that the sequence of polynomials P (w, �̂An) is bounded
inside the disk K. Let 0 < ρ < 1 and |w| < ρ. Then we have

|P (w, �̂An)| ≤
n∑

k=0

dkρ
k ≤

∞∑
k=0

dkρ
k.

The result now follows from the Vitali theorem, see [9].
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