
JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 16, Number 3, Fall 2004

ON NECESSARY AND SUFFICIENT CONDITIONS
FOR EXPONENTIAL STABILITY IN LINEAR

VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

JOHN A.D. APPLEBY AND DAVID W. REYNOLDS

ABSTRACT. Suppose K is a continuous matrix-valued
function such that ∫ ∞

0

t2|K(t)| dt < ∞,

and let X be the matrix-valued solution of the resolvent
problem

X′(t) = AX(t) +

∫ t

0

K(t − s)X(s) ds, t > 0; X(0) = I.

If the solution X is in L1(0,∞), then the following are equiv-
alent:

(a) There are β > 0, c > 0 such that

|K(t)| ≤ ce−βt, t ≥ 0.

(b) There are α > 0, c0 > 0 such that

|X(t)| ≤ c0e−αt, |X′(t)| ≤ c0e−αt, |X′′(t)| ≤ c0e−αt, t ≥ 0.

1. Introduction. This paper is a study of the exponential decay to
zero of the solution of the resolvent equation

X ′(t) = AX(t) +
∫ t

0

K(t − s)X(s) ds, t > 0;(1.1a)

X(0) = I.(1.1b)
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Here the solution X is a matrix-valued function on [0,∞), A is a real
matrix, and K is a continuous and integrable matrix-valued function
on [0,∞). The significance of (1.1) is that the vector-valued solution
of the Volterra integro-differential equation

(1.2a) y′(t) = Ay(t) +
∫ t

0

K(t − s)y(s) ds + f(t), t > 0,

(1.2b) y(0) = y0,

can be represented in terms of the variation of parameters formula

y(t) = X(t)y0 +
∫ t

0

X(t − s)f(s) ds.

For this reason X is referred to as the resolvent, or fundamental solution
of (1.2).

The question arises as to whether the integrability of the solution of
(1.1) necessarily implies its exponential decay. This is equivalent to a
problem posed in the survey article of Corduneanu and Lakshmikan-
tham [8]. The papers of Murakami [14, 15], which motivate this work,
throw considerable light on this question. Murakami shows that the ex-
ponential decay of all solutions of (1.1) is equivalent to an exponential
decay property of the kernel K under the restriction that none of the
elements Kij change sign on [0,∞). The exponential decay restriction
is

(1.3)
∫ ∞

0

|K(s)|eγs ds < ∞ for some γ > 0.

It should be mentioned that a special case of a result of this type can
be proved by slightly extending a result of Burton [6, Theorem 1.3.7].
Moreover, the possibility of results like this was anticipated in a remark
of MacCamy and Wong [12].

In this paper, we remove the sign restriction on the kernel K. We
show, whenever the fundamental solution X of (1.1) is integrable, that
the following are equivalent:

(a) There is β > 0, c > 0 such that

|K(t)| ≤ ce−βt, t ≥ 0;
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(b) There is α > 0, c0 > 0 such that

|X(t)| ≤ c0e
−αt, |X ′(t)| ≤ c0e

−αt, |X ′′(t)| ≤ c0e
−αt, t ≥ 0.

In order to prove this equivalence, we require that K be a continuous,
integrable function which obeys the integrability condition∫ ∞

0

t2|K(t)| dt < ∞.

Murakami’s theorem has applications beyond this characterization of
exponential stability. His result and methods can be applied in order
to determine necessary and sufficient conditions for almost sure and
moment exponential asymptotic stability of solutions of stochastically
perturbed versions of (1.1a). Results for linear equations are estab-
lished in Appleby and Freeman [3]; nonlinear equations are considered
in Appleby [1].

An application of his results in the study of exponential stability
in the theory of linear viscoelasticity is covered in Appleby, Fabrizio,
Lazzari and Reynolds [2]. In this setting, physical considerations render
a relaxation of the sign condition on the kernel highly desirable.

We also stress that results which identify particular decay properties
of the resolvents with the decay properties of the kernel, exist in the
literature. Instances of this type of analysis are provided in work of
Burton, Huang and Mahfoud [7] (wherein the existence of moments is
studied), Appleby and Reynolds [4, 5] (which are concerned with the
existence of subexponential solutions) and Fabrizio and Polidoro [9]
(in which the polynomial stability in linear models of viscoelasticity is
examined). A classical result in this spirit, but one in which converse
results are not considered, is given in Shea and Wainger [16]. It is
proven that whenever the kernel of a linear Volterra integro-differential
equation lies in a particular weighted space, and the resolvent is
integrable, then the resolvent lies in the same weighted space as the
kernel. These results may be seen in Gripenberg, Londen, and Staffans
[10, Theorems 4.4.13, 4.4.16].

2. Mathematical preliminaries. We introduce some standard
notation. We denote by R the real number set, and α ∧ β denotes
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the minimum of the real numbers α and β. Let Mn(R) be the set of
real-valued n × n matrices, with I the identity matrix and O the zero
matrix. | · | denotes the absolute value of real and complex numbers. It
also denotes a norm on Mn(R) with the property that |AB| ≤ |A||B|.
Thus for example we could take |A| =

∑
1≤i,j≤n |Aij |. If J is an interval

in R and V a finite-dimensional normed space, we denote by C(J, V )
the family of continuous functions ϕ : J → V . Similarly, Cm(J, V )
denotes the family of functions which are m times differentiable on J ,
and have continuous m-th derivative. The space of Lebesgue integrable
functions on ϕ : (0,∞) → V will be denoted L1((0,∞), V ). Where the
codomain V is clear from the context, we omit it from these notations.
The convolution of F and G in C((0,∞), Mn(R)) is denoted by F ∗G
and defined to be the function given by

(F ∗ G)(t) =
∫ t

0

F (t − s)G(s) ds, t ≥ 0.

We denote by C the set of complex numbers, the real part of z in C
by Re z, and the imaginary part by Im z. If F : [0,∞) → Mn(R), and
there is an α ∈ R such that

∫∞
0

|F (t)|e−αt dt < ∞, we can define the
Laplace transform of F to be

F̂ (z) =
∫ ∞

0

F (t)e−zt dt, Re z ≥ α.

In this case, F̂ (z) exists and is continuous in z for Re z ≥ α, and
analytic on Re z > α.

Next we precisely formulate our problem. Throughout the paper, we
assume that K : [0,∞) → Mn(R) is a function with the property that

(H1) K ∈ C[0,∞) ∩ L1(0,∞).

Under the hypothesis (H1), it is well known that the initial-value
problem (1.1) has a unique continuous solution, which is moreover
continuously differentiable. Also the solution X of equation (1.1) is
in L1(0,∞) if and only if

det(zI − A − K̂(z)) 	= 0, for all Re z ≥ 0.

This result was first established in Grossman and Miller [11]. The
uniform asymptotic stability of the zero solution of (1.1a) is equivalent
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to the fundamental solution X of (1.1) being integrable, by a result of
Miller [13].

3. Discussion of results. In this section, we explain the connection
between the results on exponential decay presented in Murakami [14,
15] and those in this paper.

In Theorem 1 of [15], it is shown that if there is γ > 0 such that

(3.1) κ :=
∫ ∞

0

|K(s)|eγs ds < ∞,

and the solution X of (1.1) is integrable, then there are α > 0, c > 0
such that

(3.2) |X(t)| ≤ ce−αt, t ≥ 0.

Proposition 3.1. Suppose that the solution of (1.1) is integrable
and (3.1) holds. Then there are c, β > 0 such that

|X(t)| ≤ ce−βt, |X ′(t)| ≤ ce−βt, t ≥ 0.

Proof. If γ ≤ α, we have∣∣∣∣∫ t

0

K(t − s)X(s) ds

∣∣∣∣ ≤ e−γt

∫ t

0

|K(t − s)|eγ(t−s) · ce−(α−γ)s ds

≤ cκe−γt,

while if γ > α∣∣∣∣∫ t

0

K(t − s)X(s) ds

∣∣∣∣ ≤ ce−αt

∫ t

0

|K(t − s)|eγ(t−s)e−(γ−α)(t−s) ds

≤ ce−αt

∫ t

0

|K(s)|eγs ds ≤ cκe−αt.

Hence from (1.1), (3.1) and (3.2), there is c′ > 0 such that |X ′(t)| ≤
c′e−(α∧γ)t, t ≥ 0.
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It is illuminating to observe that Murakami’s exponential integrability
hypothesis (3.1) is equivalent to a pointwise exponential bound on
t 
→ ∫∞

t
|K(s)| ds.

Proposition 3.2. There exist c > 0 and δ > 0 such that

(3.3)
∫ ∞

t

|K(s)| ds ≤ ce−δt, t ≥ 0,

if and only if γ > 0 satisfies (3.1).

Proof. If γ satisfies (3.1), then

κ ≥
∫ ∞

t

eγs|K(s)| ds ≥ eγt

∫ ∞

t

|K(s)| ds,

and (3.3) holds. To see that the converse holds, we note that (3.3)
implies that

c

ε
≥
∫ ∞

0

e(δ−ε)t

∫ ∞

t

|K(s)| ds dt

=
1

δ − ε

∫ ∞

0

{
e(δ−ε)s − 1

}
|K(s)| ds,

for each 0 < ε < δ. This rearranges to give∫ ∞

0

|K(s)|eγs ds ≤
∫ ∞

0

|K(s)| ds +
c

ε
(δ − ε),

with γ := δ − ε > 0.

These propositions allow us to reformulate Theorem 2 of [14].

Theorem 3.3. Suppose that the solution of (1.1) is in L1(0,∞) and
that K obeys (H1). If

(C1) no entry of K changes sign on [0,∞),

then the following conditions are equivalent:
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(a) There exist c > 0, δ > 0 such that∫ ∞

t

|K(s)| ds ≤ ce−δt, t ≥ 0.

(b) There exist α > 0, c0 > 0 such that

|X(t)| ≤ c0e
−αt, |X ′(t)| ≤ c0e

−αt, t ≥ 0.

The main result of this paper is the following.

Theorem 3.4. Suppose that the solution of (1.1) is in L1(0,∞) and
that K obeys (H1). If

(C2)
∫ ∞

0

t2|K(t)| ds < ∞,

then the following conditions are equivalent:

(a) There exist β > 0, c > 0 such that

|K(t)| ≤ ce−βt, t ≥ 0.

(b) There exist α > 0, c0 > 0 such that

|X(t)| ≤ c0e
−αt, |X ′(t)| ≤ c0e

−αt, |X ′′(t)| ≤ c0e
−αt, t ≥ 0.

By restating Murakami’s result as Theorem 3.3 above, we can readily
see the connection between his result and Theorem 3.4. Apart from the
technical conditions (C1), (C2), we see that the difference between the
results is essentially one of regularity of X and K. Theorem 3.3 iden-
tifies the exponential decay of X and X ′ with the exponential decay of
t 
→ ∫∞

t
|K(s)| ds, while Theorem 3.4 identifies the exponential decay

of X, X ′, and X ′′ with the exponential decay of K. Thus, Theorem 3.3
requires weaker conditions on the integrability of K (

∫∞
0

|K(t)| dt < ∞)
and the exponential decay of K (t 
→ ∫∞

t
|K(s)| ds → 0 exponentially

fast) in order to prove weaker results on the exponential decay of X
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(X, X ′ → 0 exponentially fast). Theorem 3.3 requires stronger condi-
tions on the integrability of K (

∫∞
0

t2|K(t)| dt < ∞) and the exponen-
tial decay of K (K → 0 exponentially fast) in order to prove stronger
results on the exponential decay of X (X, X ′, X ′′ → 0 exponentially
fast).

We now show that condition (a) of Theorem 3.4 does not hold unless
X ′′ decays exponentially.

Proposition 3.5. Suppose that K obeys (H1) and (3.1). If the
solution of (1.1) is integrable, then there exist c0 > 0, α > 0 such that

|X(t)| ≤ c0e
−αt, |X ′(t)| ≤ c0e

−αt, t ≥ 0.

Moreover,

(3.4) lim sup
t→∞

|X ′′(t)|eεt = ∞ for all ε > 0

if and only if

(3.5) lim sup
t→∞

|K(t)|eεt = ∞ for all ε > 0.

Proof. We first show that (3.5) implies (3.4). Notice that, as K is
continuous, X is in C2(0,∞), and indeed

(3.6) X ′′(t) = AX ′(t) +
∫ t

0

K(s)X ′(t − s) ds + K(t).

Then we get

|X ′′(t)| ≥ |K(t)| − |A||X ′(t)| −
∣∣∣∣∫ t

0

K(t − s)X ′(s) ds

∣∣∣∣
≥ |K(t)| − |A|c0e

−αt − c1e
−(α∧γ)t

≥ |K(t)| − c2e
−(α∧γ)t.

Therefore with 0 < ε < α ∧ γ, we have lim supt→∞ |X ′′(t)|eεt = ∞,
which implies (3.4).
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The proof that (3.4) implies (3.5) uses (3.6). Since

|K(t)| ≥ |X ′′(t)| − |A||X ′(t)| −
∣∣∣∣∫ t

0

K(t − s)X ′(s) ds

∣∣∣∣
≥ |X ′′(t)| − |A|c0e

−αt − c1e
−(α∧γ)t,

(3.5) follows.

It is not difficult to find functions K which satisfy (3.1), but also obey

lim sup
t→∞

|K(t)|eεt = ∞ for all ε > 0.

To construct a scalar example, let γ > 0, and define k by

k(t) =

⎧⎪⎨⎪⎩
e−γ2n

+ 2n(e−γ2n − 1)(t − 2n), t ∈ In for some n,

1 + 2n(e−γ(2n+21−n) − 1)(t − (2n+2−n)), t ∈ Jn for some n,
e−γt, otherwise,

where In = [2n, 2n +2−n], Jn = [2n +2−n, 2n +21−n] and n ∈ N. Then
for every ε ∈ (0, γ), ∫ ∞

0

e(γ−ε)s|k(s)| ds < ∞.

But, because lim supt→∞ k(t) = 1, lim supt→∞ eεtk(t) = ∞ for all
ε > 0.

Proposition 3.5 shows that the exponential stability of the zero
solution is not sufficient to imply the pointwise exponential decay of
the kernel. Furthermore, the exponential decay of the solution and its
derivative is also insufficient. Thus, the hypotheses of Theorem 3.4,
which gives the equivalence of the exponential stability of the solution
and its first two derivatives, and the pointwise exponential decay of K,
are essential.

We finish our discussion by observing that an infinite family of
results similar to Theorem 3.4 can be established, under a stronger
differentiability restriction on the kernel K. When K ∈ Cm(0,∞),
these results connect the exponential decay of the solution X of (1.1)
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and its first m + 2 derivatives with the exponential decay of K and
its first m derivatives. The general theorem for K ∈ Cm(0,∞) (in the
case m ≥ 2) is stated below.

Theorem 3.6. Suppose that the solution of (1.1) is in L1(0,∞).
Suppose there is m ≥ 2 such that K ∈ Cm(0,∞) ∩ L1(0,∞). Then the
following conditions are equivalent:

(a) There exist β > 0, c > 0 such that

|K(j)(t)| ≤ ce−βt, t ≥ 0

for all j = 0, 1, . . . , m.

(b) There exist α > 0, c0 > 0 such that

|X(i)(t)| ≤ c0e
−αt, t ≥ 0.

for all i = 0, 1, . . . , m + 2.

The methods and argument used to prove this result are similar to
those involved in the proof of Theorem 3.4, so we do not supply a proof
here.

The reader may note that a moment condition of the form (C2) is
not needed in Theorem 3.6. However, in order to prove a comparable
result when K ∈ C1(0,∞), a moment condition on K of the form (C2)
must be reimposed.

Theorem 3.7. Suppose that the solution of (1.1) is in L1(0,∞).
Suppose that K ∈ C1(0,∞) ∩ L1(0,∞). If∫ ∞

0

t|K(t)| ds < ∞,

then the following conditions are equivalent:

(a) There exist β > 0, c > 0 such that

|K(t)| ≤ ce−βt, |K ′(t)| ≤ ce−βt, t ≥ 0.
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(b) There exist α > 0, c0 > 0 such that

|X(t)| ≤ c0e
−αt, |X ′(t)| ≤ c0e

−αt,

|X ′′(t)| ≤ c0e
−αt, |X ′′′(t)| ≤ c0e

−αt, t ≥ 0.

Once again, the interested reader is invited to establish this assertion.

4. Preparatory results. To prove Theorem 3.4, it is first neces-
sary to establish a number of supporting results, and introduce some
auxiliary functions.

We observe that if K obeys

(H2)
∫ ∞

0

t2|K(t)| ds < ∞,

then under (H1), (H2), the functions

(4.1) K1(t) =
∫ ∞

t

K(s) ds, K2(t) =
∫ ∞

t

K1(s) ds

are well defined.

We first show that the exponential decay of K2 defined in (4.1), and
the exponential decay of X, X ′ and X ′′ imply the pointwise exponential
decay of K.

Lemma 4.1. Suppose that K satisfies (H1), (H2), and that there is
c2 > 0, γ2 > 0 such that K2 defined by (4.1) obeys |K2(t)| ≤ c2e

−γ2t.
If there exist c0 > 0, α > 0 such that the solution of (4.1) obeys

|X(t)| ≤ c0e
−αt, |X ′(t)| ≤ c0e

−αt, |X ′′(t)| ≤ c0e
−αt, t ≥ 0,

then there is c > 0 such that |K(t)| ≤ ce−(α∧γ2)t, for t ≥ 0.

Proof. We first prove that there is c1 > 0 and γ1 > 0 such that
|K1(t)| ≤ c1e

−γ1t.
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Integrating the convolution K ∗ X by parts, we have

(4.2)

∫ t

0

K(s)X(t − s) ds = −K1(t) +
∫ ∞

0

K(u) du X(t)

−
∫ t

0

K1(s)X ′(t − s) ds,

and integrating the last integral on the righthand side by parts gives∫ t

0

K1(s)X ′(t − s) ds = −K2(t)X ′(0) +
∫ ∞

0

K1(s) ds X ′(t)

−
∫ t

0

K2(s)X ′′(t − s) ds.

Thus there is c′′ > 0 such that∣∣∣∣∫ t

0

K1(s)X ′(t − s) ds

∣∣∣∣ ≤ c′′e−(α∧γ2)t.

Substituting (4.2) into (1.1) yields

K1(t) = AX(t) − X ′(t) +
∫ ∞

0

K(u) du X(t) −
∫ t

0

K1(s)X ′(t − s) ds,

so |K1(t)| ≤ c1e
−(α∧γ2)t for some c1 > 0.

We now show that K is exponentially bounded. Let γ1 = α∧ γ2 > 0.
We note that∫ t

0

K(s)X ′(t − s) ds = −K1(t) +
∫ ∞

0

K(s) ds X ′(t)

−
∫ t

0

K1(s)X ′′(t − s) ds.

Hence there exists a c′ > 0 such that∣∣∣∣∫ t

0

K(s)X ′(t − s) ds

∣∣∣∣ ≤ c′e−(α∧γ1)t.

By (3.6), |K(t)| ≤ ce−(α∧γ1)t for some c > 0.
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We now appeal to Theorem 1 of [15] to prove the following result.

Theorem 4.2. Suppose that K obeys (H1) and that there exist c > 0,
β > 0 such that |K(t)| ≤ ce−βt. Suppose that the solution of (1.1) is in
L1(0,∞). Then, there exist c0 > 0, α > 0 such that for t ≥ 0,
(4.3) |X(t)| ≤ c0e

−αt, |X ′(t)| ≤ c0e
−αt, |X ′′(t)| ≤ c0e

−αt.

Proof. Since X ∈ L1(0,∞) and |K(t)| ≤ ce−βt, we have automatically
by Theorem 1 of [15] that |X(t)| ≤ c1e

−α1t for some c1 > 0, α1 > 0.
Using this estimate and |K(t)| ≤ ce−βt in (1.1) gives |X ′(t)| ≤
c2e

−(α1∧β)t, and in turn using this in (3.6) yields
|X ′′(t)| ≤ c3e

−(α1∧β)t.

Hence the result is true with α = α1 ∧ β > 0.

We now give an additional condition on K under which (4.3) implies
|K2(t)| ≤ ce−γt for some c, γ > 0.

Theorem 4.3. Suppose that K obeys (H1) and (H2), and that there
exist c > 0, γ > 0 such that (4.3) holds. Then there exist c2 > 0, γ2 > 0
such that K2 defined by (4.1) obeys |K2(t)| ≤ c2e

−γ2t, t ≥ 0.

We now see that this result enables us to prove Theorem 3.4: the
proof that (b) implies (a) follows from Theorem 4.3 and Lemma 4.1.
The fact that (a) implies (b) is nothing but the subject of Theorem 4.2.

5. Proof of Theorem 4.3. In this proof, we follow Murakami’s
presentation of Theorem 1 in [15] and give a self-contained demon-
stration. It relies upon obtaining an integral equation for K2 which is
then analyzed using transform techniques. In this section, X and its
derivatives are viewed as data.

By (H2), K1 and K2 are in L1(0,∞). Since K ′
1(t) = −K(t), and

(K1 ∗ X)′(t) =
∫ t

0

K ′
1(t − s)X(s) ds +

∫ ∞

0

K(s) dsX(t)

= −X ′(t) + AX(t) +
∫ ∞

0

K(s) dsX(t),
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(1.1) can be integrated to give∫ t

0

K1(t − s)X(s) ds = −X(t) −
(

A +
∫ ∞

0

K(s) ds

)∫ ∞

t

X(s) ds.

Similarly, because K ′
2(t) = −K1(t),

(K2 ∗ X)′(t) = −(K1 ∗ X)(t) + K2(0)X(t)

= (I + K2(0))X(t) +
(

A +
∫ ∞

0

K(s) ds

)∫ ∞

t

X(s) ds,

we see that

(5.1)
∫ t

0

K2(t − s)X(s) ds = Φ(t).

where

Φ(t) = L −
∫ ∞

t

{
(I + K2(0))X(s) +

(
A +

∫ ∞

0

K(v) dv

)
×
∫ ∞

s

X(u) du

}
ds.

The constant of integration L is chosen so that Φ(0) = 0.

Since |X(t)| ≤ c0e
−αt and K2(0) =

∫∞
0

sK(s) ds,

Φ(0) = L −
{(

I +
∫ ∞

0

sK(s) ds

)∫ ∞

0

X(s) ds

+
(

A +
∫ ∞

0

K(s) ds

)∫ ∞

0

sX(s) ds

}
.

If it can be shown that

(5.2)
(

I +
∫ ∞

0

sK(s) ds

)∫ ∞

0

X(s) ds

+
(

A +
∫ ∞

0

K(s) ds

)∫ ∞

0

sX(s) ds = 0

then Φ(0) = L, and so L = 0. The proof of (5.2) follows by taking
Laplace transforms of (1.1). Since X and K are in L1(0,∞), we have

(5.3) (zI − A − K̂(z))X̂(z) = I, Re z ≥ 0.
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Since z 
→ X̂(z), z 
→ K̂(z) are analytic in Re z > 0, we can differentiate
both sides of (5.3) to give

(zI − A − K̂(z))X̂ ′(z) + (I − K̂ ′(z))X̂(z) = 0, Re z > 0.

Now, because

lim
z→0, Re z>0

K̂ ′(z) = −
∫ ∞

0

sK(s) ds,

and z 
→ X̂(z) is analytic at z = 0, we get

−
(

A +
∫ ∞

0

K(s) ds

)
X̂ ′(0) +

(
I +

∫ ∞

0

sK(s) ds

)
X̂(0) = 0,

which is nothing other than (5.2). Therefore

(5.4) Φ(t) = −
∫ ∞

t

{
(I + K2(0))X(s) +

(
A +

∫ ∞

0

K(v) dv

)
×
∫ ∞

s

X(u) du

}
ds.

The asymptotic behavior of K2 is now investigated using transform
methods. An exponential bound of the form |Φ(t)| ≤ c1e

−αt follows
from |X(t)| ≤ c0e

−αt and (5.4). In particular, Φ ∈ L1(0,∞). Also,
X ∈ L1(0,∞), and K2 ∈ L1(0,∞) by (H2). Therefore, taking Laplace
transforms of (5.1) gives

(5.5) K̂2(z)X̂(z) = Φ̂(z), Re z ≥ 0.

We now show that X̂(z) is invertible for all Re z ≥ 0. Suppose to the
contrary that there is z0 ∈ C with Re z0 ≥ 0 such that det(X̂(z0)) = 0.
By (5.3) we get

1 = det(I) = det([z0I − A − K̂(z0)]X̂(z0)) = 0,

a contradiction. Therefore, we may define

F (z) = Φ̂(z)X̂(z)−1, Re z ≥ 0,
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and so, by (5.5)
K̂2(z) = F (z), Re z ≥ 0.

Let us now show that F can also be defined on a strip in the negative
real half-plane.

Observe that z 
→ Φ̂(z), z 
→ X̂(z), z 
→ X̂ ′(z) are defined for
Re z > −α, and therefore for Re z ≥ −(2α)/3. By the Riemann-
Lebesgue Lemma, and the fact that |X ′(t)| ≤ c0e

−αt, there exists
T0 > 0 such that |X̂ ′(z)| < 1/2 for all z ∈ C with −(2α)/3 ≤ Re z < 0
and |Im z| > T0. Therefore zX̂(z) = I+X̂ ′(z) is invertible in the region
−(2α)/3 ≤ Re z < 0, |Im z| > T0, and so z 
→ X̂(z) is invertible in that
region. Now consider

D =
{

z ∈ C : −2α

3
≤ Re z ≤ 0, |Im z| ≤ T0

}
.

Since D is compact and z 
→ det(X̂(z)) is analytic on D, det(X̂) has
only finitely many zeros in D. Since we have already established that
det(X̂(z)) 	= 0 for Re z ≥ 0, it follows that if there is z ∈ D such that
det(X̂(z)) = 0, we can define γ0 < 0 such that

γ0 = max{Re z : z ∈ D, det(X̂(z)) = 0}.
In the case that det(X̂(z)) 	= 0 for all z ∈ D, we can define γ0 = −α/2.
Thus in either case, there exists γ0 < 0 such that det(X̂(z)) 	= 0 for
Re z > γ0, or that z 
→ X̂(z) is invertible for Re z > γ0. Thus we can
extend F by

F (z) = Φ̂(z)X̂(z)−1, γ0 < Re z < 0,

and F is analytic for all Re z > γ0.

Let ε ∈ (0,−γ0). For T > 0 the analyticity of F in the box
{ξ + iη : −ε ≤ ξ ≤ ε, −T ≤ η ≤ T} gives(∫ ε+iT

ε−iT

+
∫ −ε+iT

ε+iT

+
∫ −ε−iT

−ε+iT

+
∫ ε−iT

−ε−iT

)
F (z)ezt dz = 0.

If we can show that

(5.6) lim
T→∞

∫ ε−iT

−ε−iT

F (z)ezt dz = 0, lim
T→∞

∫ ε+iT

−ε+iT

F (z)ezt dz = 0,
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the inversion formula for Laplace transforms gives

(5.7)
K2(t) =

1
2πi

∫ −ε+i∞

−ε−i∞
F (z)ezt dz

=
1

2πi

∫ −ε+i∞

−ε−i∞
zΦ̂(z)

(
zX̂(z)

)−1

ezt dz, t > 0.

The exponential bounds on X(j)(t), j = 0, 1 and (5.4) imply the
existence of positive constants c1, c2 and c3 such that |Φ(j)(t)| ≤
cj+1e

−αt, j = 0, 1, 2. Therefore, the expansion

Φ̂(z) =
Φ(0)

z
+

Φ′(0)
z2

+
Φ̂′′(z)

z2
, Re z ≥ −ε,

is valid. Because Φ(0) = 0, there is a constant M > 0 such that
|z|2|Φ̂(z)| ≤ M , Re z ≥ −ε. Due to the expansion

X̂(z) =
I

z
+

X̂ ′(z)
z

, Re z ≥ −ε,

there exists T > 0 such that∣∣∣(zX̂(z)
)−1
∣∣∣ ≤ 2, Re z ≥ −ε, |Im z| > T.

Hence∣∣∣∣∣
∫ ε+iT

−ε+iT

zΦ̂(z)
(
zX̂(z)

)−1

ezt dz

∣∣∣∣∣
≤
∫ ε

−ε

1
|ξ + iT | |ξ + iT |2|Φ̂(ξ + iT )|

∣∣∣(ξ + iT )X̂(ξ + iT )
)−1
∣∣∣ eεt dξ

≤ eεt

∫ ε

−ε

2M

T
dξ =

4εM

T
eεt.

Therefore, this term has zero limit as T → ∞. This establishes the
first formula in (5.6). The second formula can be obtained in a similar
fashion, and so (5.7) follows.

Next, define

G(z) = F (z) − Φ′(0)
z − γ0

= Φ̂(z)X̂(z)−1 − Φ′(0)
1

z − γ0
.
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Now we show that

(5.8) lim
|z|→∞

z2G(z) exists for Re z ≥ −ε.

Since |X ′′(t)| ≤ c0e
−αt, (5.4) implies that |Φ′′′(t)| ≤ c4e

−αt. Therefore

Φ̂(z) =
Φ′(0)
z2

+
Φ′′(0)

z3
+

Φ̂′′′(z)
z3

, z 	= 0.

Since (I + C)−1 = I − C + C2 + · · · if |C| < 1 and |X̂ ′(z)| → 0 as
|z| → ∞, we see that for large enough |z| with Re z ≥ −ε,

(I + X̂ ′(z))−1 = I + Y1(z) = I − X̂ ′(z) + Y2(z),

where |Y1(z)| ≤ µ|X̂ ′(z)| and |Y2(z)| ≤ µ|X̂ ′(z)|2 for some constant
µ > 0. Then,

z2G(z) = Φ′(0)
[

γ0z

γ0 − z
I − X ′(0) − X̂ ′′(z) + zY2(z)

]
+
(
Φ′′(0) + Φ̂′′′(z)

)
(I + Y1(z)).

By the Riemann-Lebesgue lemma, Y1(z) → 0 and zY2(z) → 0 as
|z| → ∞; also X̂ ′′(z) → 0 and Φ̂′′′(z) → 0 as |z| → ∞. These combine
to establish (5.8).

Therefore, we have

1
2π

∫ ∞

−∞
|G(−ε + iη)| dη =: κ1 < ∞.

By (5.7) and the definition of G, we have

|K2(t)| ≤ 1
2π

∣∣∣∣∫ ∞

−∞
G(−ε + iη)e(−ε+iη)t dη

∣∣∣∣
+
∣∣∣∣ 1
2π

∫ ∞

−∞

Φ′(0)
−ε + iη − γ0

e(−ε+iη)t dη

∣∣∣∣
≤ κ1e

−εt + |Φ′(0)|
∣∣∣∣ 1
2π

∫ ∞

−∞

e(−ε+iη)t

−ε + iη − γ0
dη

∣∣∣∣ .
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Since
1

2πi

∫ −ε+i∞

−ε−i∞

ezt

z − γ0
dz = eγ0t,

we have |K2(t)| ≤ (κ1 + |Φ′(0)|)e−εt as γ0 < −ε, which proves
Theorem 4.3.
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