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CONVERGENCE THEOREMS AND MEASURES
OF NONCOMPACTNESS FOR NONCOMPACT
URYSOHN OPERATORS IN IDEAL SPACES

MARTIN VÄTH

ABSTRACT. A result about the uniform convergence of se-
quences of Urysohn operators in ideal spaces is proved when
the limit operator is too singular to be compact. An esti-
mate about the measure of noncompactness of such (weakly)
singular Urysohn operators is obtained.

1. Introduction. Let S and T be σ-finite measure spaces, M a
metric space, and V a Banach space. Given some function f : T × S ×
M → V , we are interested in the corresponding Urysohn operator

A(f)x(t) :=
∫

S

f(t, s, x(s)) ds, t ∈ T,

where the integral is understood in the Lebesgue-Bochner sense. If
M = V = R and f is a so-called Carathéodory function, it is known
that under some growth assumptions on f the operator A(f) is compact
in Lp-spaces or, more generally, in ideal spaces. These are classical
results of Krasnosel’skĭı [4] and Zabrĕıko, see e.g., [5, 14]. It is also
possible to weaken the growth conditions slightly [6, 9].

However, there are situations where f does not satisfy these growth
assumptions but where one nevertheless would like to say something
about the compactness of A(f); if A(f) is not compact, one would at
least like to find good estimates for the measure of noncompactness of
its image. If such a measure is sufficiently small, one can still apply,
e.g., degree theory [3] (and in the linear case, the Fredholm alternative
holds [1]).
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This is the question which we would like to tackle in this paper. For
the case of linear operators such estimates have been obtained in [2].
However, we obtain different estimates in this paper which are usually
better even in the linear case, although our emphasis is on the nonlinear
case.

The philosophy for the compactness estimates is to approximate the
given Urysohn operator A(f) by a sequence of simpler Urysohn oper-
ators A(fn) which are “regular enough” to prove their compactness.
If we would have that A(fn) converges uniformly to A(f), this would
imply the compactness of A(f). However, if we do not require the
growth assumptions on A(f), we need not have uniform convergence.
Nevertheless, we will establish a “convergence” theorem which yields
that A(fn) is “uniformly close” to A(f) for large n. This “convergence”
theorem is the main novelty of this paper. Since this theorem is of in-
dependent interest, not only in connection with the compactness proof
(we will also use it in the forthcoming paper [7]), we formulate it in
larger generality in the next section.

2. A uniform convergence theorem for Urysohn operators.
Let T and S be σ-finite measure spaces, with nonnegative measures.
Let (V, | · |) be a Banach space, M a metric space and Mn ↑ M a
sequence of Borel sets, once and for all fixed. In most applications
M = U will be a normed space and Mn := {u ∈ U : |u| < n} but also
other constellations are thinkable.

By a measurable function we will always understand a strongly
measurable function, i.e., a function which can be approximated almost
everywhere (in the sense of the Lebesgue extension of the measure
space) by a sequence of functions which assume only finitely many
values and which have measurable fibers.

Let B be a set of measurable functions x: S → M . We call a
function f : T ×S ×M → V a B-function if the superposition operator
F (f)x(t, s) := f(t, s, x(s)) defines a measurable function for each x ∈
B. For example, if f(·, ·, u) is measurable for each u ∈ M and f(t, s, ·)
is continuous for almost all (t, s) ∈ T × S, i.e., if f is a Carathéodory
function, then f is a B-function, see e.g., [10, Proposition 8.2]. For
each B-function f , we define the corresponding Urysohn operator A(f)
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by

A(f)x(t) :=
∫

S

f(t, s, x(s)) ds =
∫

S

F (f)x(t, s) ds, t ∈ T

and Krasnosel’skĭı’s cutting operator

Cnf(t, s, u) :=
{

f(t, s, u) if u ∈ Mn,
0 otherwise.

Note that Cnf is automatically a B-function, because Mn is assumed
to be a Borel set.

Proposition 1. Let f be a B-function and x ∈ B. Then A(|f |)x is
always measurable, and if A(f)x(t) is defined, i.e., A(|f |)x(t) < ∞, for
almost all t, then A(f)x is measurable. Moreover, in this case for each
B-function g with |g| ≤ |f | also A(g)x is almost everywhere defined and
measurable. In particular, also A(Cnf)x are defined and measurable for
each n.

Proof . The claim follows from the Fubini-Tonelli theorem in the
form [11, Theorem 1.33].

Let (Y, ‖·‖) be a pre-ideal space of functions y: T → V , i.e., a normed
space of (classes of) measurable functions with the property that, for
each y ∈ Y and each measurable z: T → V the relation |z(s)| ≤ |y(s)|
almost everywhere implies z ∈ Y and ‖z‖ ≤ ‖y‖. If Y is complete,
then Y is called an ideal space. For surveys on ideal spaces, we refer
to [8, 12, 13]. Actually, we require only that Y is quasi-normed, i.e.,
instead of the triangle inequality of the norm, we require only that

(1) ‖x + y‖ ≤ q · (‖x‖ + ‖y‖), x, y ∈ X

for some finite constant q. We associate to Y its real form YR which is
a space of scalar measurable functions z: T → R defined in the obvious
way by the relations

|y| ∈ YR ⇐⇒ y ∈ Y, ‖|y|‖YR
= ‖y‖.
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Henceforth, we will notationally not distinguish between Y and its real
form.

For a measurable function y and a measurable set E, we denote by
PEy the function PEy(s) := χE(s)y(s). In a slight misuse of notation,
we will also use this projection operator if y is a function of more
variables than s. If En are measurable sets with E1 ⊇ E2 ⊇ · · ·
and

⋂
n En = ∅, we write En ↓ ∅. The notation En ↑ E is defined

analogously.

Let now fn be a sequence of B-functions which converges to a function
f in the sense that there is a sequence of sets Rk ↑ T ×S (up to possibly
some null set) such that fn → f uniformly on each set of the form
Rk ×Mk. Since we have in particular for each u ∈ M that fn(t, s, u) →
f(t, s, u) almost everywhere and so fn(t, s, x(s)) → f(t, s, x(s)) almost
everywhere, f is automatically a B-function.

Further, let g be a B-function which “dominates” the convergence in
the sense that for each x ∈ B the estimate

(2) |fn(t, s, x(s))− f(t, s, x(s))| ≤ g(t, s, x(s))

holds for almost all (t, s). For each natural numbers j ≤ n, let
Fj,n be an operator which maps x ∈ B to a measurable function
Fj,nx: T × S → V such that Fj,n lies “between” F (Cjfn) and F (f)
in the sense that

(3)
{

Fj,nx(t, s) = fn(t, s, x(s)) if x(s) ∈ Mj ,
|Fj,nx(t, s) − f(t, s, x(s))| ≤ g(t, s, x(s)) if x(s) /∈ Mj ,

for almost all (t, s) ∈ T × S. In particular, the choices Fj,n := F (fn)
and Fj,n := F (Cjfn) are possible. We are interested in a uniform
convergence theorem of the double sequence

Aj,nx(t) :=
∫

S

Fj,nx(t, s) ds, t ∈ T

to the Urysohn operator A(f). In particular, the sequences of Urysohn
operators Aj,n = A(fn) or Aj,n = A(Cjfn) have this form. However,
more general operator sequences Aj,n are also admissible, which will
turn out to be important in [7]. Aj,n need not even be an Urysohn op-
erator because we do not require that Fj,n is a superposition operator.
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Nevertheless, since Fj,n lies “between” F (Cjfn) and F (f), one could
expect that, under reasonable mild assumptions, we have Aj,nx →
A(f)x as j, n → ∞. The crucial point, however, is that we want to
obtain estimates which are uniform with respect to x ∈ B. The growth
of the dominating function g will play the key role. More precisely, we
will assume that the following quantities are defined and finite:

γS(g, B) := sup
S⊇Dn↓∅

lim sup
n→∞

sup
x∈B

∥∥∥∥
∫

Dn

|g(·, s, x(s))| ds

∥∥∥∥,(4)

γT (g, B) := sup
T⊇En↓∅

lim sup
n→∞

sup
x∈B

‖PEn
A(|g|)x‖.(5)

Recall that, since S is σ-finite, there exists a normalized measure ν
on S, i.e., a finite measure with the same measurable sets and null sets
as the original measure space S. We call the set B measure bounded,
for the sequence Mn ↑ M , if

lim
n→∞ sup

x∈B
ν({s ∈ S : x(s) /∈ Mn}) = 0.

Recall that this property is actually independent of the particular choice
of ν, see e.g., [10, Proposition 9.4]. Moreover, for the case that M = U
is normed and Mn := {u ∈ U : |u| ≤ n}, the set B is measure bounded
if and only if it is bounded in the topological (metric) vector space of
all measurable functions S → U , endowed with its usual topology with
respect to the measure ν.

Theorem 1. Let B in the above situation be measure bounded, and
suppose that Aj,nx and A(f)x are almost everywhere defined for each
x ∈ B. Suppose that there are sets Tk ↑ T and Sk ↑ S, up to null sets,
such that for each k, each j ∈ N, and each ε > 0, we have

(6) lim
n→∞ sup

x∈B
mes

{
t ∈ Tk :

∫
Sk

χQn
(t, s)|Cjg(t, s, x(s))| ds > ε

}
= 0

where Qn := (T ×S) \Rn ↓ ∅. Then there are sequences j1 < j2 < · · ·
and p1 < p2 < · · · of natural numbers with jn ≤ pn such that
Ajn,pn

x − A(f)x ∈ Y for all sufficiently large n and

lim sup
n→∞

sup
x∈B

‖Ajn,pn
x − A(f)x‖(7)

≤ q min{γS(g, B) + qγT (g, B), qγS(g, B) + γT (g, B)}
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where q is the quantity from (1). The choice of jn depends only on B
and the sets Mn.

Remark 1. For the case that γS(g, B) = γT (g, B) = 0 and Aj,n =
A(fn), Theorem 1 brings to mind the convergence result [10, Theo-
rem 9.21] where [10, Lemma 9.20] is already incorporated (the latter
was necessary to obtain a sharper estimate in the case γS(g, B) > 0).
However, in contrast to what one might expect by this remark, our
proof requires some more careful estimates than the proof of [10, The-
orem 9.21].

Before we prove the result, let us point out that the technical
condition (6) is actually rather mild. It appears that all examples
for which this condition fails are rather pathologic. For example,
if g(t, s, ·) is a scalar linear function, this condition is automatically
satisfied, as we will see. Each of the earlier cited compactness results
for Urysohn operators requires a similar condition as (6) (besides
γS(g, B) = γT (g, B) = 0), and as discussed in [9], condition (6) is
the mildest of those.

Proof . Since suppY exists by [10, Proposition 3.6] and all functions
in consideration vanish almost everywhere outside supp Y , it is no loss
of generality to assume supp Y = T . By [10, Theorem 3.8], there is a
sequence of sets T̃k ↑ T = supp Y with χ

T̃k
∈ Y . Replacing the sets

Tk in the hypothesis of the theorem by Tk ∩ T̃k, if necessary, we may
thus assume without loss of generality that χTn

∈ Y . Similarly, since
S is σ-finite, we may assume that the sets Sk in the hypothesis of the
theorem have finite measure.

Since B is measure bounded, there is a sequence jn ↑ ∞ of natural
numbers such that for each sequence xn ∈ B the set

(8)
∞⋂

k=1

∞⋃
n=k

{s ∈ S : xn(s) /∈ Mjn
}

is a null set, see [10, Proposition 9.4]. Applying (6), we find for each k
some mk with

(9) sup
x∈B

mes
{

t ∈ Tk :
∫

Sk

χQmk
(t, s)|Cjk

g(t, s, x(s))| ds >
1
k

}
<

1
k2

.
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Without loss of generality, we may assume that m1 < m2 < · · · . Let

Pj,xy(t, s) :=
{

y(t, s) if x(s) ∈ Mj ,
0 if x(s) /∈ Mj .

In view of (3), we have Pj,xFj,nx = Pj,xF (fn)x. Hence, since fn → f
uniformly on Rmk

×Mjk
and Sk has finite measure, we find some pk ≥ jk

such that
(10)∫

Sk

χRmk
(t, s)|Pjk,x(Fjk,pk

x − F (f)x)(t, s)| ds ≤ 1
k

, x ∈ B, t ∈ T.

We claim that (7) holds with the above constructed sequences jn and
pn. Assume by contradiction that this is not the case. Then there is a
sequence xn ∈ B, some δ > 0, and an infinite set N ⊆ N with

(11) ‖Ajn,pn
xn − A(f)xn‖ ≥ q(min{γS(g, B) + qγT (g, B), qγS(g, B)

+ γT (g, B)} + (1 + q)δ),
n ∈ N.

Put now

Dk := (S \ Sk) ∪
( ∞⋃

n=k

{s ∈ S : xn(s) /∈ Mjn
}
)

.

Then Dk ↓ ∅ (up to a null set, since (8) is a null set), and so we find
by the definition of γS(g, B) some index K with

(12) ‖A(|PDk
g|)xn‖ < γS(g, B) + δ, n ∈ N, k ≥ K.

The estimate (9) implies that the measure of the set

Hn :=
{

t ∈ Tn :
∫

Sn

χQmn
(t, s)|Cjn

g(t, s, xn(s))| ds >
1
n

}

is at most 1/n2, and so E :=
⋂∞

k=1

⋃∞
n=k Hn is a null set, because

mes E ≤ ∑∞
n=k mes Hn ≤ ∑∞

n=k 1/n2 for all k. Put now

Ek := (T \ Tk) ∪
( ∞⋃

n=k

Hn

)
.
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Then Ek ↓ ∅ (up to a null set, since E is a null set) and so we find by
the definition of γT (g, B) some index J such that

(13) ‖PEJ
A(|g|)xn‖ < γT (g, B) + δ, n ∈ N.

Observe that (3) implies in view of (2) that

(14) |Fj,nx(t, s) − f(t, s, x(s))| ≤ g(t, s, x(s))

almost everywhere for each j ≤ n and each x ∈ B. We use this to
estimate the nonnegative function

cn(t) := χT\EJ
(t)

∫
S\DK

|Fjn,pn
xn(t, s) − f(t, s, xn(s))| ds

for n ∈ N and n ≥ max{J, K}. Note that for s ∈ SK \ DK the
definition of DK implies xn(s) ∈ Mjn

and so, using T \EJ ⊆ TJ ⊆ Tn,
S \ DK ⊆ SK ⊆ Sn, Hn ⊆ EJ , and (14), we obtain

cn(t) ≤ χTJ\EJ
(t)

∫
SK

|Pjn,xn
(Fjn,pn

xn − F (f)xn)(t, s)| ds

≤ χTJ
(t)

∫
SK

χRmn
(t, s)|Pjn,xn

(Fjn,pn
xn − F (f)xn)(t, s)| ds

+ χTJ
(t)χTn\Hn

(t)
∫

Sn

χQmn
(t, s)|Cjn

g(t, s, xn(s))| ds.

From (10) and the definition of Hn we conclude that cn(t)≤χTJ
(t)(1/n+

1/n), and so

(15) ‖cn‖ ≤ 2
n
‖χTJ

‖, max{J, K} ≤ n ∈ N.

By (14), we have for almost all t that

|Ajn,pn
xn(t)−A(f)xn(t) ≤

∫
S

|Fjn,pn
xn(t, s) − f(t, s, xn(s))| ds

≤ |A(|PDK
g|)xn(t)|+|PEJ

A(|g|)xn(t)|+cn(t).
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Now we take the (quasi-)norm on the functions of both side of this in-
equality, using the triangle inequality twice on the right-hand side. Do-
ing this in two different ways, we obtain from the three estimates (12),
(13) and (15) for all sufficiently large n ∈ N the estimate

‖Ajn,pn
xn − A(f)xn‖ < q(min{γS(g, B) + qγT (g, B), qγS(g, B)

+ γT (g, B)} + (1 + q)δ)

which contradicts (11).

3. An estimate for the measure of noncompactness of the
Urysohn operator. We consider the situation described in the
beginning of the previous section. For the fixed sequence of Borel sets
Mn ↑ M , we equip the space B(M, V ) of all maps h: M → V with the
uniform structure of uniform convergence on each Mn, i.e., we equip
B(M, V ) e.g., with the metric

dB(M,V )(h1, h2) =
∞∑

n=1

sup
u∈Mn

min{d(h1(u), h2(u)), 2−n}

or some other equivalent metric.

As in the previous section, let B be a set of measurable functions
x: S → M , and f be a B-function. Then we call f a strict B-function
if the function g(t, s) := f(t, s, ·) is measurable as a function from T ×S
into B(M, V ).

If Mn is separable, then a Carathéodory function f is a strict B-
function if and only if for almost all (t, s) the value f(t, s, ·) belongs
to a separable subset of B(M, V ), see [10, Theorem 8.5]. This is
in particular the case for each Carathéodory function if M is locally
compact and separable [10, Theorem 8.15]. Hence, as a rule, if M
is a (not too pathological) subset of a finite-dimensional space, the
assumption that f is a strict B-function is usually satisfied. The
situation is different, in general, if M is a subset of an infinite-
dimensional space. An exception of this rule is the case when each
of the maps f(t, s, ·) is a compact Urysohn operator in ideal spaces
which is discussed in [10, Section 10].

As in the previous section, let V be a Banach space and Y a (quasi-
normed) pre-ideal space of functions y: T → V . The regular part Y0 of
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Y is the subspace of all functions y ∈ Y with the property that for each
sequence En ↓ ∅ we have infn‖PEn

y‖ = 0. The regular part is itself a
pre-ideal space and even an ideal space if Y is an ideal space.

We want to estimate the measure of noncompactness of the image of
B under the Urysohn operator A(f). More precisely, we are interested
in the Hausdorff measure of noncompactness. For a subset A of a metric
(or quasinormed) space Z, we define this measure as

χZ(A) := inf {ε > 0 : A has a finite ε-net in Z}.

Of course, χZ(A) = 0 if and only if the completion of A is compact,
i.e., if and only if each sequence in A has a Cauchy subsequence. Our
main compactness result is the following:

Theorem 2. Let B be measure bounded, and f be a strict B-function
with A(|f |): B → Y and such that g := f satisfies the assumptions of
Theorem 1, i.e., (6) holds. Suppose that there is a measurable function
rn: T × S → [0,∞] with

(16) χV (f(t, s, Mn)) ≤ rn(t, s)

for almost all (t, s). Assume that the regular part Y0 of Y contains the
image A(f)(B) and each of the functions

In(t) :=
∫

S

rn(t, s) ds.

Then

χY0(A(f)(B))
≤ q2(q sup

n
‖In‖ + min{γS(f, B) + qγT (f, B), qγS(f, B) + γT (f, B)}),

where γS and γT are defined by (4) and (5), respectively.

Proof . As in the proof of Theorem 1, we may assume that supp Y0 =
T and thus that we find a sequence Tn ↑ T = suppY0 with χTn

∈
Y0. Since In ∈ Y0, the functions rn are almost everywhere finite.
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Condition (16) thus implies in particular that f(t, s, Mk) is for almost
all (t, s) a bounded subset of V , i.e., the function

hk(t, s) := sup
u∈Mk

|f(t, s, u)|

is almost everywhere finite. Let us first prove that hk is measurable.

In fact, since f is a strict B-function, it can be approximated by a
sequence gn of simple functions, i.e., each gn is a finite sum of functions
of the form (t, s, u) �→ χR(t, s)b(u), and for almost all (t, s), we have
gn(t, s, ·) → f(t, s, ·) in the space B(M, V ), i.e., uniformly on each
Mk. The latter implies that supu∈Mk

|gn(t, s, u)| → hk(t, s), and from
the form of gn it is clear that the function on the left-hand side is
measurable. Hence, hk is measurable, as claimed.

Choose sets Sn ↑ S of finite measure, and put

Rk,j := {(t, s) ∈ Tj × Sj : hk(t, s) ≤ j}.

For each fixed k, we have Rk,j ↑ T × S. By [11, Lemma 1.4], we find
a sequence Rn ↑ T × S which is finer than any of these sequences,
i.e. for each n and each k there is some j with Rn ⊆ Rk,j . Put
fn(t, s, u) := χRn

(t, s)f(t, s, u). Since Rn is increasing, we have fn → f
uniformly on each Rk × M . Moreover, for each n and each k, we find
some j such that the function Ckfn has its support in Tj × Sj and
is bounded by j. In particular, for all measurable sets Dm ⊆ S and
Em ⊆ T , we have

∫
Dm

|Ckfn(t, s, x(s))| ds ≤ j mes (Dm ∩ Sj)χTj
(t),

and
|PEm

A(|Ckfn|)x(t)| ≤ j mes (Sj)PEm
χTj

(t)

for each x ∈ B for almost all t ∈ T . Since mes Sj < ∞ and since
χTj

belongs to the regular part of Y , we conclude that γS(Ckfn, B) =
γT (Ckfn, B) = 0. Moreover, for almost all (t, s), and fixed k and n,
the family

{Ckfn(t, s, x(·)) : x ∈ B}
is uniformly dominated on each Sm by the integrable function jχSm

,
and so this family is bounded in L1(Sm, Y ) with equicontinuous norm.



78 M. VÄTH

Hence, and in view of [10, Proposition 9.11] all conditions of the
compactness result [10, Theorem 9.10] are satisfied for the Urysohn
operator A(Ckfn). This result implies that

χY0(A(Ckfn)(B)) ≤ q2 sup
n

‖In‖,

i.e., for each ε > supn ‖In‖, each k and each n, we find a finite ε-net
Nk,n,ε ⊆ Y0 for A(Ckfn)(B). By Theorem 1, we find some k and n
with

sup
x∈B

‖A(Ckfn)x − A(f)x‖

≤ q min{γS(f, B) + qγT (f, B), qγS(f, B) + γT (f, B)},
and so Nk,n,ε ⊆ Y0 is a finite q(q min{γS(f, B)+qγT (f, B), qγS(f, B)+
γT (f, B)} + q2 supn ‖In‖)-net for A(f)(B).

Even if the reader should only be interested in the case of linear
integral operators, it appears unavoidable to make use of the cutting
operator. Thus, even if we start with a linear kernel, we end up with
a nonlinear, although very simple, Urysohn operator in the proof. Let
us formulate the special case of linear integral operators explicitly.

Thus, let U be a normed linear space, V a Banach space, and B(U, V )
the space of all bounded linear operators from U into V , endowed
with the uniform topology. Let S and T be σ-finite measure spaces,
k: T × S → B(U, V ), M ⊆ U and Mn := {u ∈ M : |u| ≤ rn} with rn ↑
∞. Let X be a (quasi-normed) pre-ideal space of functions x: S → U
and Y a (quasi-normed) pre-ideal space of functions y: T → V . Assume
that k(·, ·)u is measurable for each u ∈ U . Let B ⊆ X be bounded and
such that each x ∈ B attains almost all of its values in M . We consider
the linear integral operators

Kx(t) =
∫

S

k(t, s)x(s) ds, t ∈ T

|K|0x(t) =
∫

S

|k(t, s)x(s)| ds, t ∈ T

and

|K|x(t) =
∫

S

k(t, s)x(s) ds, t ∈ T.
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Note that |K|0 is a nonlinear operator and that |K|0x(t) is finite if and
only if Kx(t) is defined. If we consider scalar functions, we have of
course |K|0x = |K||x|, but in general |K|0x is smaller.

As previously remarked, condition (6) is automatically satisfied if we
consider scalar functions. For non-scalar functions, we have to assume
that also |K||x| is finite:

Corollary 1. In the above situation the following holds:

1. B ⊆ X is measure bounded (with respect to Mn).

2. If |K|χE is almost everywhere finite for each χE ∈ X with
mes E < ∞, then condition (6) holds with g(t, s, u) := |k(t, s)||u| for
each B ⊆ X.

This is in particular the case if dimU < ∞ and Kx is almost
everywhere defined for each measurable x: S → U with |x(s)| = χD(s) ∈
X and mes D < ∞.

3. Suppose in addition to the above assumption that |K|0 sends B
into the regular part Y0 of Y . Assume also that k: T × S → B(U, V ) is
measurable (this is automatically the case if dimU < ∞).

Then K: B → Y0, and if k(t, s) is compact for almost all (t, s) ∈ T×S,
we have

(17) χY0(K(B)) ≤ q min{γS(k, B) + qγT (k, B), qγS(k, B) + γT (k, B)}

where q is the constant (1) for the space Y , and

γS(k, B) := sup
S⊇Dn↓∅

lim sup
n→∞

sup
x∈B

‖|K|0PDn
x‖(18)

γT (k, B) := sup
T⊇En↓∅

lim sup
n→∞

sup
x∈B

‖PEn
|K|0x‖.(19)

Proof . 1. Since convergence in X implies convergence in the normal-
ized measure by [10, Theorem 3.4], we obtain from [10, Corollary 9.6]
that each bounded B ⊆ X is measure bounded.

2. We may assume that supp X = S. By [8, Corollary 2.2.7], we
find a sequence Sn ↑ S with χSn

∈ X and mesSn < ∞, i.e., for
almost all t the value |K|χSn

(t) is finite, i.e., for almost all t ∈ T the
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function |k(t, ·)| is integrable over Sn. By [10, Proposition 9.13], and
the subsequent remark (9.11), it follows that (6) holds.

If dim U < ∞ and Kx is almost everywhere defined for each mea-
surable x with |x| = χE , then it follows from [2] that |K|χE is almost
everywhere finite.

3. Put for a moment M := U and Mn := {u ∈ U : |u| < n}. Then the
Carathéodory function (t, s, u) �→ k(t, s, u) is a strict B-function if and
only if k: T × S → B(U, V ) ⊆ B(M, V ) is measurable. If dim U < ∞,
then this is automatically the case by [10, Theorem 8.15], since U is
locally compact and separable. The claim now follows from Theorem 2
with g(t, s, u) = k(t, s)u and rn(t, s) ≡ 0: The quantities (18) and (19)
correspond to (4) and (5), respectively.

We point out that the estimate (17) is stronger than the related
result [2]. We emphasize in this connection also that it is not necessary
for Corollary 1 that B is the full unit ball of X. As sketched in [2], this
observation is particularly useful for Hammerstein operators

Hx(t) =
∫

S

k(t, s)f(s, x(s)) ds

which can be written in the form H = KF with the superposition
operator Fx(s) := f(s, x(s)): Under mild assumptions on f , one
obtains usually much better estimates for (18) and (19) on a bounded
set of the form F (B) than on the full (multiple of the) unit ball of X.

We close with a very simple application of Theorem 2.

Example 1. Let S := T := [0, 1], and let f : S × T × RN → RM be a
Carathéodory function satisfying a linear growth condition of the form

|f(t, s, u)| ≤
(

C1

t
+ C2

)
|u|, 0 ≤ s ≤ t ≤ 1

with fixed numbers C1, C2 ≥ 0. Then, for the unit ball B in the space
X := Y := Lp([0, 1]), 1 < p < ∞, the Volterra-Urysohn operator

(20) Ax(t) :=
∫ t

0

f(t, s, x(s)) ds, t ∈ [0, 1],
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satisfies

(21) χY (A(B)) ≤ 2C1p

p − 1
.

In fact (6) holds, because for almost all t Hölder’s inequality and the
dominated convergence theorem imply

sup
x∈B

∫ t

0

χQn
(t, s)|f(t, s, x(s))| ds

≤
(

C1

t
+ C2

)∥∥∥χQn
(t, ·)

∥∥∥
Lp/(p−1)

−→ 0, Qn ↓ ∅.

Moreover, γS(f, B) and γT (f, B) are both at most C1p/(p−1), because
the linear integral operator

(22) Kx(t) :=
C1

t

∫ t

0

x(s) ds t ∈ [0, 1]

satisfies ‖Kx‖Y ≤ C1p/(p− 1) for x ∈ B by Hardy’s inequality, and so

sup
x∈B

∥∥∥∥
∫

Dn

|f(·, s, x(s))| ds

∥∥∥∥
Y

≤ sup
x∈B

(‖Kx‖Y + C2mes (Dn))

−→ C1p

p − 1
, Dn ↓ ∅

(without loss of generality, we assume f(t, s, u) = 0 for s > t) and
similarly

sup
x∈B

∥∥∥∥PEn

∫ 1

0

|f(·, s, x(s)) ds

∥∥∥∥
Y

≤ sup
x∈B

(‖PEn
Kx‖Y + C2mes (En)1/p)

−→ C1p

p − 1
, En ↓ ∅.

Note that, since the well-known Hardy operator (22) is not compact,
also (20) is not compact in general. Hence, the classical compactness
results cannot be applied in Example 1 (not even indirectly, because
in general A is not just a compact perturbation of some multiple of
the Hardy operator). For the Hardy operator and, more general, when
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C2 = 0, one can obtain a better, by the factor 2, estimate than (21)
in the trivial way by estimating ‖Ax‖, i.e., by considering the finite
net {0} ⊆ Y . However, for large C2, the estimate (21) obtained by
Theorem 2 is better, of course.
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1. R.R. Akhmerov, M.I. Kamenskĭı, A.S. Potapov, A.E. Rodkina and B.N.
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