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A NOTE ON THE FREDHOLM PROPERTY
OF PARTIAL INTEGRAL EQUATIONS

OF ROMANOVSKIJ TYPE

J. APPELL, I.A. ELETSKIKH AND A.S. KALITVIN

ABSTRACT. Some conditions are given, both necessary
and sufficient, under which a partial integral equation of
Romanovskij type defines a Fredholm operator of index zero
in the space of continuous functions.

In 1932, Romanovskij [6] has described a problem in the theory of
Markov chains with two-sided link which leads to an equation of the
form

(1) x(t, s) = Rx(t, s) + f(t, s), (t, s) ∈ D := [a, b] × [a, b],

where R is the linear operator defined by

(2) Rx(t, s) =
∫ b

a

m(t, s, σ)x(σ, t) dσ

which contains some continuous or measurable kernel function m :
D× [a, b] → R. A particular feature of the operator (2) is that first the
two variables in the unknown integrand x are inverted, and afterwards
the integration is carried out with respect to the first variable.

Equation (1) has been studied for continuous kernel functions in [6]
by means of Fredholm determinants. In this connection it turned out
that many results on the problem (1) are quite different from classical
results on Fredholm integral equations, mainly due to the fact that the
operator (2) is not compact and not even an integral operator. It is
natural (and now common sense) to call operators of the form (2) partial
integral operators, inasmuch as the integration in (2) is carried out only
with respect to one variable while the other variables are “frozen.”
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If one writes the integral in (2) without switching arguments, i.e.,

(3) Mx(t, s) =
∫ b

a

m(t, s, σ)x(t, σ) dσ

one gets an operator with completely different properties. So, in
contrast to the operator (3), the square R2 of the operator (2) is
compact in the Chebyshev space C(D) of all continuous real functions
on D, or in the Lebesgue space Lp(D) of all p-summable, 1 ≤ p <
∞, respectively essentially bounded, p = ∞, real functions on D.
Consequently, the operator I − R is Fredholm in these spaces, while
the operator I − M is not Fredholm even in the most trivial case of a
constant kernel function m.

Equation (1) may be considered as a special case of the more general
equation of Romanovskij type

(4) x = KΠx + f,

where Π denotes the “argument switch” operator Πx(t, s) = x(s, t) and
the operator K is of the form K = L + M + N with M as in (3),

(5) Lx(t, s) =
∫ b

a

l(t, s, τ)x(τ, s) dτ,

and

(6) Nx(t, s) =
∫ b

a

∫ b

a

n(t, s, τ, σ)x(τ, σ) dσ dτ.

Observe that (5) is again a partial integral operator, while (6) is a
usual integral operator of Fredholm type on functions of two variables.
In what follows we assume that the kernel functions l, m and n are
measurable on their domains.

Various analytical and topological properties of the operators (3), (5)
and (6) have been studied in the monograph [3]. Moreover, in the thesis
[2] one may find criteria for the operator equation

(7) x = Kx + f
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to be Fredholm in the spaces C(D) (which means that the operator
I−K is Fredholm). Surprisingly, such criteria are not only of theoretical
interest but also quite useful in view of applications [1]. On the other
hand, Fredholm criteria are not known, even in the case of continuous
kernel functions, for the operator equation (4) and related equations,
and it is the aim of this short note to provide such criteria.

To treat this problem more systematically, we consider the most
general equation of Romanovskij type

(8) x = Kix + f, i = 1, 2, 3, 4,

where we have used the shortcuts

(9)
{

K1 = LΠ + M + N, K2 = LΠ + M + NΠ,

K3 = L + MΠ + N, K4 = L + MΠ + NΠ.

We show now how to obtain Fredholm conditions for the Romanovskij
equation (8) under some natural additional hypotheses on the kernel
functions involved.

Recall that a measurable function m : D × [a, b] → R is called
L1-continuous if for each ε > 0 one may find δ > 0 such that |t−t′| < δ
and |s − s′| < δ implies that

∫ b

a

|m(t, s, σ) − m(t′, s′, σ)| dσ < ε,

and L1-bounded if

C(m) := sup
(t,s)∈D

∫ b

a

|m(t, s, σ)| dσ < ∞.

The corresponding properties of the kernel functions l and n are defined
similarly. Clearly, any continuous kernel function is both L1-continuous
and L1-bounded.

Recall (see, e.g., [4]) that a bounded linear operator is Fredholm of
index zero, i.e., has finite-dimensional kernel and cokernel of the same
dimension, if and only if it may be represented as a sum of an invertible
and a compact operator.
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Theorem 1. Suppose that the kernel functions l, m and n are
L1-continuous and L1-bounded on their domains. Then equation (8) is
Fredholm of index zero in C(D) for i = 1, 2 if and only if the operator
I − M is Fredholm of index zero in C(D). Similarly, equation (8) is
Fredholm of index zero in C(D) for i = 3, 4 if and only if the operator
I − L is Fredholm of index zero in C(D).

Proof. Consider the case i = 1, i.e., the equation

x = (LΠ + M + N)x + f.

We may rewrite this equation in the form

(10) (I − M)(I − LΠ)x = (N + MLΠ)x + f.

By our assumption on the kernel functions l, m and n, the operator
N from (6) is compact in C(D), see, e.g., [7]. Moreover, the operator
MLΠ may be represented in the form

(11) MLΠx(t, s) =
∫ b

a

∫ b

a

m(t, s, τ)l(t, τ, σ)x(τ, σ) dσ dτ,

by Fubini’s theorem. From the estimate

∫ b

a

∫ b

a

|m(t, s, τ)l(t, τ, σ)| dσ dτ ≤
∫ b

a

|m(t, s, τ)|
(∫ b

a

|l(t, τ, σ)| dσ

)
dτ

≤ C(m)C(l)

it follows that the kernel function (t, s, τ, σ) �→ m(t, s, τ)l(t, τ, σ) is
L1-bounded. Let ε > 0. Since the kernel functions l and m are
L1-continuous, we may find δ > 0 such that

∫ b

a

|l(t, s, τ)− l(t′, s′, τ )| dτ <
ε

2C(m)
,

∫ b

a

|m(t, s, σ) − m(t′, s′, σ)| dσ <
ε

2C(l)
.
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Consequently,
∫ b

a

∫ b

a

|m(t, s, τ)l(t, τ, σ)− m(t′, s′, τ )l(t′, τ, σ)| dσ dτ

≤
∫ b

a

∫ b

a

|m(t, s, τ)− m(t′, s′, τ )||l(t, τ, σ)| dσ dτ

+
∫ b

a

∫ b

a

|m(t′, s′, τ )||l(t, τ, σ)− l(t′, τ, σ)| dσ dτ

< C(l)
ε

2C(l)
+ C(m)

ε

2C(m)
= ε.

We conclude that the kernel function (t, s, τ, σ) �→ m(t, s, τ)l(t, τ, σ) is
also L1-continuous, and so the corresponding operator (11) is compact
in the space C(D). Now, since the Fredholm property is invariant
under compact perturbations (see, e.g., [5]) equation (10) is Fredholm
of index zero if and only if the reduced equation

(12) (I − M)(I − LΠ)x = f

is Fredholm of index zero. Again, from Fubini’s theorem, it follows that
the square of the operator LΠ may be represented in the form

(13) (LΠ)2x(t, s) =
∫ b

a

∫ b

a

l(t, s, τ)l(s, τ, ξ)x(τ, ξ) dξ dτ.

As above, one may show that the kernel function

(t, s, τ, ξ) �→ l(t, s, τ)l(s, τ, ξ)

of the operator (13) is both L1-bounded and L1-continuous, and so this
operator is compact in C(D). It follows that I−LΠ is Fredholm of index
zero in C(D) and hence may be represented as sum I −LΠ = J + Q of
an invertible operator J and a compact operator Q. With this notation,
equation (12) reads

(I − M)Jx + (I − M)Qx = f.

Since (I − M)Q is compact in C(D), equation (12) is Fredholm if and
only if the equation

(14) (I − M)Jx = f
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is Fredholm, and this is certainly equivalent to the fact that the
operator I − M is Fredholm of index zero. So the assertion is proved
for the operator K1. The proof for the other three operators in (9) is
similar.

In order to apply Theorem 1, one may use various conditions from
[2] which guarantee the Fredholm property of I − M or I − L and
are formulated in terms of the generating kernel functions m or l,
respectively. We give such a condition for I − M in the special case of
a degenerate kernel function.

To this end, suppose that the kernel function m in (3) has the form

m(t, s, σ) = m0(t, s, σ) +
k∑

j=1

mj(t, s)m̂j(σ),

where the system {m1(t, s), . . . , mk(t, s)} is linearly independent, the
functions from the system {m̂1(σ), . . . , m̂k(σ)} are mutually orthogo-
nal, and

(15) max
(t,s)∈D

∫ b

a

|m0(t, s, σ)| dσ < 1.

Putting this kernel function into (3), the equation x = Mx+f becomes

(16) x = Px + g

with

Px(t, s) =
k∑

j=1

∫ b

a

pj(t, s)m̂j(σ)x(t, σ) dσ,

g(t, s) = f(t, s) +
∫ b

a

r(t, s, σ)f(t, σ) dσ,

where we have put

pj(t, s) = mj(t, s) +
∫ b

a

r(t, s, σ)mj(t, σ) dσ, j = 1, 2, . . . , k,

and

r(t, s, σ) =
∞∑

j=1

m
(j)
0 (t, s, σ),
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with m
(j)
0 defined iteratively by m

(1)
0 (t, s, σ) = m0(t, s, σ) and

m
(j)
0 (t, s, σ) =

∫ b

a

m
(j−1)
0 (t, s, τ)m0(t, τ, σ) dτ, j = 2, 3, . . . .

For j = 1, 2, . . . , k, we introduce the functions of one variable

(17) xj(t) =
∫ b

a

m̂j(σ)x(t, σ) dσ, gj(t) =
∫ b

a

m̂j(σ)g(t, σ) dσ,

and

(18) νij(t) =
∫ b

a

m̂i(σ)pj(t, σ) dσ, i, j = 1, 2, . . . , k.

Then (16) may be equivalently written as system

(19) xi(t) −
k∑

j=1

νij(t)xj(t) = gi(t), i = 1, 2, . . . , k,

and the operator I − M is Fredholm of index zero if and only if the
determinant function

(20) D(t)=det (δij−νij(t))=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1−ν11(t) −ν12(t) · · · −ν1k(t)
−ν21(t) 1−ν22(t) · · · −ν2k(t)

· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

−νk1(t) −νk2(t) · · · 1−νkk(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣
is different from zero, see [2]. We summarize with the following

Theorem 2. Suppose that the kernel functions l, m and n are
L1-continuous and L1-bounded on their domains. Then the operators
I−K1 = I−LΠ−M −N and I−K2 = I−LΠ−M −NΠ are Fredholm
of index zero in C(D) if and only if the determinant function (20) is
different from zero for a ≤ t ≤ b, where the functions νij(t) are given
by (18).
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Of course, an analogous result holds for the operators I − K3 =
I −L−MΠ−N and I −K4 = I −L−MΠ−NΠ if the kernel function
l in (5) has the special degenerate form

l(t, s, τ) = l0(t, s, τ) +
k∑

j=1

lj(t, s)l̂j(τ ).
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