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ON THE KONTOROVICH-
LEBEDEV TRANSFORMATION

SEMYON B. YAKUBOVICH

ABSTRACT. Further developments of the results on the
Kontorovich-Lebedev integral transformation are given. In
particular, properties of the boundedness, compactness in
Lyp, 1 < p < oo, v < 1, are established. The Bochner
type representation theorem is proved. An example of the
Fredholm integral equation associated with the Kontorovich-
Lebedev operator is considered.

1. Introduction and auxiliary results. In this paper we
investigate mapping properties of the Kontorovich-Lebedev operator
3], 5], [11]

(1.1) K. [f] = \/g/ooo Ki-(x)f(z)dz, 7T€R4,

which is associated with the Macdonald function K, as the kernel [1]
in its natural domain of definition f € L° = Li(Ry; Ko(z) dx), i.e.,

(1.2) L0 .= {f : /Ooo Ko(@)|f(z)] dz < oo}.

In particular, it contains all spaces L® = L1 (R4 ; Ko(az) dx), 0 < a <
land L,,(Ry4), v < 1,1 <p < oo, with the norms

(13) Imm=4m%mMﬂmw<m7

1.4 llp = ([ s ae) " <

[£llv.00 = esssupy»q |27 f(2)] < oo
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When v = % we obtain the usual norm in L, denoted by || ||,. The
Macdonald function can be represented by the Fourier integral [5]

(1.5) K- (x) :/ e~ COSh U cog(Tu) du.
0

Therefore, for x > 0, 7 € R, it is real-valued and even function with
respect to the index i7. Furthermore, via the analytic properties of
the integrand in (1.5), the latter integral can be extended to the strip
0 € [0,7/2) in the upper half-plan (cf. in [9)), i.e.,

1 10+00 )
(16) Kl (1’) = 5/ e*WCOShﬁJr’LTﬁ dﬁ

d—o00

This gives us for each x > 0 an immediate uniform estimate
(1.7) |Kir(2)] < e 01T Ko(zcosd), 0<8<dy< g

We note that the Macdonald function is the modified Bessel function
of the second kind K,(z) (in our case p = i7), which satisfies the
differential equation

d*u du
2 2,2y, —
It has the asymptotic behavior [1]
1

T 2
(1.8) K,.(z) = (%> e 14+ 0(1/2)], z— oo,
and near the origin
(1.9) MK, (2) =27 () + o(1), 2 — 0,
(1.10) Ko(z) =—logz+0(1), z—0.

By using relation (2.16.51.8) in [4, Vol. 2], we obtain the useful formula

/OOOT sinh((m — 8)7) K7 () K- (y) d7

(1.11) . Ki((2? + 1y — 2xycosd)?)
= —zxysind 2
2 (22 + y? — 2zy cosd) 2
z,y>0, 0<d<mm.




KONTOROVICH-LEBEDEV TRANSFORMATION 97

In the next section we establish mapping properties of the Kontorovich-
Lebedev operator (1.1) in the spaces L* and L, , (see also [8], [10]).
Mapping properties for distributions were considered in [9].

2. Kontorovich-Lebedev transform. In order to study bound-
edness properties of the operator (1.1) we prove its composition rep-
resentation in terms of the Fourier and Laplace operators, which are
defined respectively by

1) @) == [ e,
(2.2) (Lf) () = / T e ()

Lemma 1. Letv <1, 1 <p<o0,¢q=p/(p—1) and 0 < a < 1.
Then the embedding

(2.3) L,,(Ry)CcL*CL’

s true and

(2.4)

[fllze <[l fllze <

VT
2

=1 L((1—v)/2)TV(q(1 — v))
(1 —(v/2))

1 <p<oo,

(aq £ 1lvps

(2.5) Ifllze < Ifllze < "M £llua Slilg[Ko(x)xlf”]-

Proof. Letting in (1.5) 7 = 0 we easily find that Ky(z) is steadily
decreasing function and invoking (1.3) and (1.4) with the Hoélder
inequality we obtain

o 1/q
||f|Los||f|Las( / Kg<ax>x<“>q1dx> 1l
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Hence, applying the generalized Minkowski inequality we derive

* 1/q
([ st
0
* o a 1/q
= (/ x(l—u)q—l</ e—axcoshu du) dl‘)
0 0
> ° 1/q
S/ du(/ x(lf’/)‘I*le*aqa?coshu dx)
0 0

= (ag)"~ ' TVa(g(1 — v)) / e

cosh™
A e T )

I'(1—(v/2))

Meanwhile, for f € L, 1(R4) we easily verify that

/ Ko(az)|f(z)| dz < "7 fllva Sl;%[Ko(x)xlf”} <00
0 x>
and complete the proof of Lemma 1.

Lemma 2. The Kontorovich-Lebedev transformation (1.1) is a
bounded operator from L, 0 < a < 1, into the space of bounded contin-
wous functions vanishing at infinity. Besides, the following composition
representation in terms of operators (2.1) and (2.2) takes place

(2.6) Kir[f] = (F(LSf)(coshz)) (7).

Proof. Substituting (1.6) with § = 0 in (1.1) we have the estimate

| K[ z)| dx/ e "B ap

_\/_/ |dm/ emawcosh B gg

\f/ Ko(ax)|f(x |dx—\f||f|m.

< g ),
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Hence, in view of Fubini’s theorem, we can invert the order of integra-
tion in the corresponding iterated integral and arrive at the composi-
tion (2.6). It converges uniformly with respect to 7 > 0 and therefore
K;-[f] is a bounded continuous function. Further, under conditions of
Lemma 2 and the latter estimate we have that (Lf)(coshz) € Lq(R).
Hence K;;[f] — 0 when 7 — oo as an immediate consequence of the
Riemann-Lebesgue lemma. Lemma 2 is proved.

Corollary 1. Operator K;-[f] : L, ,(Ry) — L,(R4), p>2, v <1
s bounded and

v—1 - 2/q
<y 2(2) g [r(Ga=0)] 15l

(2.7)
o P
p—1
In particular, forp=2, v = %, we get
NG
(28) Ko7l < T 1l

Proof. Indeed, by appealing to the composition (2.6) and L,-theorem
for the Fourier transform [6, Theorem 74|, we find

[e'e) 1/q
1Ko [f]ll < (2m) )@ (Lf)(cosha)|?dz )
([ vensore)

Hence by the generalized Minkowski and Holder inequalities with
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formula (2.16.2.2) from [4, Volume 2], we obtain
1 1 o0 1/(]
(271')(5)(5)</ |(£f)(coshu)|qdu>
0
1 1 o0 o0 1/q
< (2#)(5)_(5)/ |f(x)</ eqzcoshudu) de
0 0
=)D [ @)K ) do

1/q
< (em®-G >(/ Kolga)a—)i- 1dx) 1l
—1

_ %(g) ;fq {r( (1—1/)):|2/q||f|u,p‘

Consequently combining with (2.9) we have (2.7) and (2.8). Corollary 1
is proved.

Furthermore, we will establish now that the Kontorovich-Lebedev
transform (1.1) is a completely continuous operator.

Lemma 3. The transformation K;;[f] : L,p,(Ry) — Ly(R4),
1<p<2,v<l,gq=p/(p—1) is a completely continuous operator.

Proof. Indeed, this can be done by approximation of the Macdonald
function K; (x) in terms of kernels of finite rank. However, first we
verify the following integral condition

e [ [ ]

We treat double integral (2.10) by using again Fourier integrals (1.5),
(1.6) and Theorem 74 from [6 [ |, see (2.9). Thus, we have

1/q
([ L W]t

1/q
< (2m)1/0—(4 (/ K@D () 1) 1dx>

— 9(3)~(2/p) 11/(2) 1 [C(qg(1 = )Y ((p/2)(1 = v))]*/P
{1’\(?(1—;)-&-1)} 1/p

2191 gr dy < .

< 00.



KONTOROVICH-LEBEDEV TRANSFORMATION 101

In particular, by taking the values of integrals (2.16.52.6) and (2.16.2.1)
from [4, Volume 2] for the Hilbert-Schmidt norm, p =¢ =2, v = %, of
K;;[f], we find

(2.11) /OOO/OOO ‘\/%Kw(w) 2

Therefore, in the Lebesgue space with the norm,

1/q
(2.12) (/ / (7, x)|? (1~ ”)qldex>

there is a sequence {K,(7,z)} of continuous in R and finite kernels,
which converges to 1/2/7 K;-(x) in the space (2.12), namely,

(2.13)

[ ) - |

Denoting by K,, integral operators with kernels K, (7,z) we use the
Holder inequality to obtain

|Kirlf]~ Ko f(r

-1 [\fK K ()| ) do

e8] q/p
‘\/jKiT(ﬂ?)—Kn(T,ﬂ?) x(l_”)q_ldx(/ |f(x)pa?”p_1dx) .
™ 0
Hence,

K [f]=Kn Il

= [ Kl Kurto)

<isig, [ [ \\ffc (r.)|

Consequently, the norm of difference

[e%e] [e'e] 2 q
1Ko — K |J8 < / / ‘\ﬁmf(x)—&(n 2)
o Jo T

n — oo

s
drdr = —.
Tdr =

N g de — 0, 0 — oo

q

q

2091 gy dr,

2 o dr — 0,
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and the Kontorovich-Lebedev operator (1.1) is the L,-limit of the se-
quence {K,} of completely continuous integral operators with contin-
uous finite kernels. Thus K, [f] is a completely continuous operator.
Lemma 3 is proved.

Let us introduce for all x > 0 the following regularization operator
(cf. in [2], [9])

1) (Low =2 L [T @ i

where ¢ € (0,7). We will show that (2.14) gives in some sense an
inversion of (1.1) in L, ,(R4) space when & — 0.

Lemma 4. If g(1) = Ki;[f], fly) € L, p(R4), v< 1, 1< p< o0,
then

(I=9)(z) = (K Leg)(x)

yf(y)dy,

sine [ Ky ((22 4 y? — 22y cose)?)
(2.15) = = /
T Jo (22 +y% — 2zycose)?

x> 0.

Proof. Substituting g(7) in (2.14) and inverting the order of integra-
tion we use relation (1.11) and immediately arrive at the representation
(2.15). The motivation of the change of the order of integration is due
to Fubini’s theorem and the following estimate (see (1.7))

2K, >
—0(3:2005 %) / 7sinh((r — €)T)67(51+52)T dr
=X 0

o 1/a
: (/ K{(ycos dg)yt—r)a1 dy) I fllvp < 00,
0

(K Le f)(2)] <

where 0; € [0,7/2),i=1,2, 61+ +e>m v <1, 1< p<oco. Since
in view of the asymptotic behavior of the Macdonald function (1.8),
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(1.9) and (1.10), we have (cf. (2.4) and (2.5))

/0 " Koy cos 62)| £ ()] dy < (cos 32)"~ sup o)y

< o0,
| Katweoslldy < 27 Heosan12(157 ) Il
< 00,
it follows that representation (2.15) is also true when p = 1,00,

respectively. Lemma 4 is proved.

We are ready to prove now the Bochner type representation theorem
for the regularization operator (2.15).
Theorem. Let fe L, ,(R;), 0<v <1,1<p<oo. Then
(216) fla) = lim (K L. f)(z).
E—
where the limit is with respect to the norm (1.4). Besides, the limit

(2.16) exists for almost all x > 0.

Proof. Making substitution y = x(cose+tsine) in the integral (2.15),
we deduce

xrsine /°° (:csmav +1)
—cote Vi +1

- f(z(cose + tsine))(cose + tsine) dt.

g KLD@ =5

Hence, due to the generalized Minkowski inequality and elementary
inequality for the Macdonald function zK;(x) < 1, > 0, cf. (1.5),
(1.8) and (1.9), we estimate the L, p-norm, 0 < v < 1, 1 < p < o0, of
the integral (2.17) as follows

1 [ dt . .
| KLefllop < ;/ o | f(z(cose + tsine))(cose + tsine)|l,,p
cote

B ||f||,,,p/ (cose + tsing)l =V dt
—cote

T t2+1

Hf”l/p/ (L+[t)' v dt _ 4 1
< 2 (1 -
- T . t2+1 — + v ||f

v
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Consequently, by using the identity

1 /°° dt €
l EdR I
T J—cote t2 +1 m
and denoting by
(2.18) R(z,t,e) = zsineV/t? + 1 Ky (zsineV/t2 + 1)

we find that

IKLef = fllvp

1 [ dt
<= / 211 Hf(x(coss+tsins))(cosz—:+tsinz—:)R(x,t,€)

cote " g)‘lf@)

v
/ t2+1 H{ x(cose +tsine))(cose + tsine)

o - (1 - %) _1f(x)}R(x,t,g)

/COts t2+1||f z)[R(z,t,e) — 1]
=I() + I (e).

But, since (see [1], [2])

v,p

IN
3|

v,p

v,p

d
75 [tK1(2)] = — 2Ko (),
and 2K;(z) — 1, x — 0, we obtain the following representation
zsine(t“+1)2
R(x,t,e) = 1= —/ y Ko(y) dy.
0

Hence, appealing again to the generalized Minkowski inequality, we
deduce
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(o) 1 e dt
g) = —— P a—
? T—¢& —cotat2+1

[es) xsina(tz-&-l)% p %
- ( [ ( / yKo(y) dy) f(a?)l”dw>
0 0

1 e dt >
<L [ it
0

T—€ J_core t2+1

- :
(/ 2 @p ) d
y/(sine(t241)2)

1
1 o0 oo o0 ;
< — dt/ uKo(uvt? + 1)(/ :c”p_1|f(x)|pdx> du
T—€ J_cote 0 T
1 ) NG )
= dt(/ +/ )uKo(uv t241)
T—& J_cote 0 Ve
1
. </ VP f(x)|P dx) du
< — dt/ uKo(uvt? + 1)(/ VP f(x)|P dx) du
™= —cote 0 2

sin €

L di wKo(u) du - (/ a:”p_1|f(x)pdx)p

T—€ J_cote t2 +1 0

v/2 o)
< e’/ ”f”%p/ (t2_|_1)(u/2)*1 dt

m™—E&

yi ul—"Ko<u>du+L( / x””‘llf(w)l”dw)p
0 mT—E 1
NG
_ ™ v/2 _ OO vp—1 p ® N
= (Pl + ([ s@pan) ) —o
NG
e — 0.

Concerning the integral Iy we first approximate f € L, ,(Ry) by a
smooth function ¢ with a compact support on R . This implies that
there exists a function ¢ € C§(R) such that || f — ¢|,., < e. Hence,
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since the kernel (2.18), R(x,t,e) < 1, then in view of the representation,

o(z(cose + tsine))(cose + tsine) — p(x)

cose+tsine
= — d
2.19) / el dy

cose+tsine
= / [p(zy) + 2y (zy)] dy.
1

In a similar manner, we have

(2.20)
1 [ dt .
Ii(e) < ;/ ) IIlf(z(cose + tsine))
— ¢(z(cose + tsine))](cose + tsine)||,p

l/oo dt ng(q;(cose—|—tsin5))(cos€+tsine)
- (1 - §>1f(x)

Q 7cot€t2+1
1 [ (cose+tsing)l™Vdt
< H.f_SDHV,P;/ 241

v,p

—cote

oo d -1
o = (-3) e

1 [e'S] di cose+tsine
! —Vv
+ el + ey [ ] vy

—cote

v,p

. : [
< 1 — I - 12 - v : -
< [t 20 |0 = gt S8l + Dz I

TV

1—1/‘

dt.

|1 —(cose +tsine)
t2+1

—cote

The latter integral in (2.19) we treat by making the substitution
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eV = cose + tsine. Then it takes the form

dt

/°° |1 — (cose +tsine)t~|
—cote t2+1

_m/wwdv

coshwv — cose
h((1 -
(2.21) _sma(/ / >Sm 0%
coshv — cose
‘ 1-v))

_ 1 ho — 1 % d

< sm€( og(coshv — cose)lg +/1 coshv—1 "
_9 €

—) + A, sine,

< sinelog (2_1 sin 5

where

* sinh(v(1 —
Al,:1+/ sinh(v(1 — v)) dv, 0<v<l.
1 coshv —1

Thus, combining with (2.19), we see that lim._, I1(¢) = 0. Therefore,
by virtue of the above estimates lim. ¢ || K L. f — f||., = 0 and relation
(2.16) is proved.

In order to verify the pointwise convergence we use the fact that
any sequence of function {¢,} € C§(Ry) which converges to f in
L, ,(Ry)-norm (1.4) contains a subsequence {¢,, } convergent almost
everywhere, i.e., limg_,o ¢n, () = f(x) for almost all z > 0. Then via
(2.19), (2.20) and (2.21), we obtain

(2.22)

|(KLef)(z) — f (=)
1 [ dt
; /—cota t2 + 1

| f(z(cose + tsine))(cose + tsine)R(x, t, &) — (1 - —)71f(w)

™

IN

o —cote t2 + 1
. ]f(x(cose + tsine) — @p, (x(cose + tsine))|

1 /°° (cose +tsine) dt
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1
TR |t ony (1) + 2t V], (wt)]

. —y e e £
sms[log (2 sin 2>+AV} —l—(l 7T)|<,0m\(:zc) fl@)|+ - |f(2)].
Meantime, by taking 1 < p < oo, ¢ = p/(p — 1), we have

(2.23)

1 /°° (cose +tsine)dt

™ J— cot e t2 + 1
VN = @ngllop (/OO (cose + tsina)qu*”*(%)) dt)l/q
1

Tsink ¢ —cote (tQ + 1)q

v . 3] pd(2—v)—1 dv 1/q
. 1f = il sime /0 (v2 —2cosev + 1)4 '

However, appealing to the relation (2.2.9.7) from [4, Volume I] we get
the value of the latter integral in terms of the Gauss function

|f(z(cose +tsine) — ¢y, (x(cose + tsine))|

IN

/Oo p1Z=r)=1 gy ~ T(q(2—v))'(qv)
o (v2—2cosev+1)7 I'(2q)
. _aoav. L.
2F1(q 2,2,q+2,sm 5)
_, P2 = v)l(gv)

, €—0.

I'(2q)
Therefore we see that the righthand side of inequality (2.22) tends to
zero for almost all z > 0 when € — 0, k > k.

Finally let us consider the pointwise convergence when f € L, 1(Ry).
In this case for any k > ko, we get || f — onllva < 0. Making
substitution v = cose + tsine the first integral in (2.23) becomes

T J—cote t2+1

: o] 2—v

sine v v1

= v zv) — 0, (zv)| dv
I /0 (v — cose)? +sin? e F(@v) = on (0]

1 [ t si dt
/ (cose + ¢sine) | f(z(cose + tsine)— @y, (z(cose + tsine))]

x Vsine v2Y
< ——|If — enillva sup
Q v>0

(v —cose)? +sin’e
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However, by using the methods of calculus it is not difficult to show
that

v2—v ,Ug*l/ 22-v
Sup T2 T2 . X T 9
v>0 (V—cose)?2+sin“e  (vg—cose)? +sin“e ~ sin“e

where vg = 1 — ((cose)/v) + v/((cos? ) /v2) + (2(1 — cose) /).
Thus,

v (@v) —n, (2v) dv <

T mTsine

sine/oo kg 22 VgTV§
o (v—cose)2+sin’e

which tends to 0 by choosing first € and then . The theorem is proved.

3. Fredholm equation. In this final section we consider an example
of Fredholm integral equation in the space La(R.), which is associated
with the Kontorovich-Lebedev operator (1.1). Precisely, let us consider
the following integral equation of the second kind

(31) s -2 [ K0 a = o),

where z > 0, g € La(Ry) and the function f € La(Ry) is to be
determined. According to Corollary 1 and norm inequality (2.8) the
Kontorovich-Lebedev transformation is a bounded operator in Lo(R )
and we have that ||K;.|| < v/7/2 < 1. Consequently, by virtue of
the Banach theorem integral operator I — K, has a bounded inverse
operator [I — K;;]~! with the norm

1 1
I — Kiz] || < T=va2

Furthermore, the unique Lo-solution of the equation (3.1) is represented
through the absolutely and uniformly convergent Neumann series

(3.2) flx) = Kilgl,
n=0
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where the iterates K. [g] are defined by the recurrence relation

KO[g) = 9. KDg) = Kiul K2 g]] = / " K () dt,

n>1.

(3.3)

We show that the kernel I\, (z,t) of the compositions (3.3) can be ex-
pressed in terms of the Fourier transform (2.1) and Fourier convolution
operator

(3.0 (r)) == [ ol tuar

To do this, we use the fact from [6, Theorem 65] that (¢*v)(x) € La(R)
and F(p x ¢¥)(x) = (Fo)(x)(FY)(z) in Ly(R) if ¢ € Ly(R) and
¥ € Li(R). Then from (1.6) we easily find that the kernel of K} [g] is
Ki(z,t) = (Femteoshu)(z).

Further, for n = 2, we obtain the composition

K lgl = 2" Kiz(y) dy h Kiy(t)g(t) dt
(3.5) m 04 /0
= / Ka(z,t)g(t) dt,
0
where
(36) Kalant) = 2 [ K)o 1)

Note that the interchange of the order of integration in (3.5) is plainly
verified via Fubini’s theorem by means of the inequality (1.7) and
condition g € Ly(R4). Hence, invoking (1.5) and the value of integral
(2.16.14.1) from [4, Volume 2] after using the Parseval equality for the
Fourier cosine transform (cf. in [6]), we derive

(3.7)
Ko(z,t) _ /ooe_tCOSh“cos( log(u + Vu? + 1)) _ e
= T
2 cosh(rz/2) Jo & Vu?z+1
1

oo

—t coshsinhu

= e cos(zu) du.
cosh(mz/2) /0 (zu)
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Meantime with the integral (2.5.46.5) in [4, Volume 1] and the fac-
torization property for Fourier convolution (3.4), the latter integral in
(3.7) implies

1 oo .
K = — - —tcoshsinhu d
o(x,t) cosh(wz/?)/o e cos(zu) du

= (et (£ @)

cosh u

1 .
— ]_-( ” e—tcoshsmhu) ({E)

coshu

Thus for the nth iterate it is not difficult to deduce the corresponding
formula for the kernel K,,(z,t). It gives

1
cosh u

_ \/gm F(Kp1(sinhu, ) (@), n>2.

Kn(z,t) = ]—"( % KCrr_1 (sinh t)) (z)
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