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MULTI-LEVEL ITERATION METHODS FOR
SOLVING INTEGRAL EQUATIONS

OF THE SECOND KIND

WEIFU FANG, FUMING MA AND YUESHENG XU

ABSTRACT. In this paper we develop multi-level iteration
methods for solving Fredhom integral equations of the second
kind based on the Galerkin method for which the Galerkin
subspace has a multi-resolution decomposition. After express-
ing the equations using matrices of operators in accordance
to the multi-resolution structure, we propose two iteration
schemes for solving the equations that are analogues to the
Jacobi and Gauss-Seidel iteration schemes for solving alge-
braic systems. We then discuss the two-grid nature of the
schemes, compare them with the well-known two-grid schemes
and a two-level scheme and prove their convergence. We also
present our numerical implementation of these methods using
piecewise linear polynomial wavelets for an integral equation
with the logarithmic kernel.

1. Introduction. Numerical methods of solving integral equations
often lead to solving very large linear algebraic systems that usually
do not have convenient structures such as sparseness. Special efficient
iteration methods (see, e.g., [2, 3, 13, 14]) are often used to solve
such large systems by taking advantage of distinct properties from the
integral equations and approximating subspaces. Recently more and
more studies on using wavelet spaces for solving integral equations have
emerged and shown promise ([4, 6 9, 11, 12, 16, 17]). The multi-
resolution property of the wavelet subspaces makes such schemes most
efficient in many applications, including solving integral equations.
There have been existing iteration methods ([5, 10]) that utilize
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the multi-resolution structure of these approximating subspaces. The
purpose of this paper is to develop some alternative iteration schemes
that allow us to move several levels at once for Fredholm integral
equations of the second kind. To illustrate the main idea using the
Galerkin method, suppose an initial level k, usually not too large, has
been chosen to compute an initial approximation for the solution of
the integral equation under consideration. By using a multi-resolution
decomposition for the approximating subspace, it is convenient to
identify the operator at the (k+l)-th level with a matrix of operators at
the k-th level. Using such an expression of the equations, we propose
iteration schemes that are analogue to the Jacobi and Gauss-Seidel
iteration methods for solving algebraic linear systems. Our derivation is
based on the operator matrix reformulation of the Galerkin method on
the multi-resolution structure of the approximating subspaces. These
iteration methods turn out to be of two-grid nature if we properly
choose residual corrections for the defect correction iteration. In the
special case of l = 1, our two-level Gauss-Seidel iteration is the same as
the well-known two-grid method for integral equations (see, e.g., [2])
with naturally chosen “prolongation” and “restriction” operators. As
for the general case of l > 1, the Gauss-Seidel scheme does incorporate
some of the multilevel information between the coarse grid and the fine
grid, unlike most standard two-grid methods.

The rest of our presentation is organized as follows. We describe
in Section 2 the multilevel iteration schemes and the ideas leading to
these algorithms, and discuss their two-grid nature and relations to the
existing two-grid methods and a two-level method from [5]. Section
3 is devoted to establishing the convergence results for these methods
and discussing their rates of convergence. In Section 4 we present
numerical implementations of these methods to demonstrate some of
the theoretical results with numerical examples, and propose and test
a stopping criterion for such iteration methods.

2. Galerkin based multilevel iterations. Let X be a Hilbert
space and K : X → X an operator such that I − K is bijective on X.
Consider the Fredholm integral equation of the second kind given by

(2.1) (I − K)u = f,

where f ∈ X is given and u ∈ X is the solution to be determined.
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To solve equation (2.1) by the Galerkin method, let Xn be a nested
sequence of finite dimensional subspaces of X:

(2.2) Xn ⊆ Xn+1, n = 0, 1, . . . .,

such that
∞⋃

n=0

Xn = X.

Let Pn : X → Xn denote the sequence of orthogonal projections. Then

‖Pn‖=1, Xn= PnX, P∗
n= Pn, and Pn→ I pointwise in X.

The Galerkin method is to find un ∈ Xn satisfying the equation

(2.3) (I − PnK)un = Pnf,

or, equivalently,

(2.4) (I − PnKPn)un = Pnf.

We require that, for all n large enough, I − PnK is invertible and its
inverse is bounded by a constant C independent of n:

(2.5) ‖(I − PnK)−1‖ ≤ C.

This requirement is fulfilled when K is a compact operator on X. In
this case, it follows from the pointwise convergence of Pn to I and the
compactness of K and K∗ that

lim
n→∞ ‖K − PnK‖ = lim

n→∞ ‖K − KPn‖ = 0,

which implies in particular condition (2.5). Consequently, equation
(2.3) or (2.4) has a unique solution un ∈ Xn which satisfies the
estimates

‖un‖ ≤ c‖f‖, ‖u− un‖ ≤ c inf
vn∈Xn

‖u− vn‖,

where u ∈ X is the exact solution of equation (1.1). For more details
on the Galerkin method, see, e.g., [2, 14].
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Next we develop our multilevel iteration methods. In the nestedness
property of the approximating subspace sequence (2.2), each Xn rep-
resents a level of resolution in approximating X and solving un ∈ Xn

in (2.3) or (2.4) is seeking an approximation of up to the nth level of
resolution to the exact solution u ∈ X. This nestedness property also
implies that there exist subspaces Wn of Xn+1 such that

(2.6) Xn+1 = Xn ⊕⊥ Wn, n = 0, 1, . . . .

Let
Qn = Pn+1 − Pn.

It is then straightforward to show that Qn is a projection onto Wn and

Wn = QnXn+1, n = 0, 1, 2, . . . .

Repeatedly using equation (2.6) produces, for k ≥ 0 and l ≥ 1, the
following decomposition of the space Xn with n = k + l:

(2.7) Xn = Xk+l = Xk ⊕⊥ Wk ⊕⊥ · · · ⊕⊥ Wk+l−1.

We observe that the operators Pn andQn have the following orthogonal
relations:

PnPm = Pmin(m,n), QnQm = δnmI,
and

PnQm = QmPn =
{O if m ≥ n,

Qm if m < n.

It is convenient to develop our iteration schemes using matrices
of operators. For this purpose, following [5] we identify the vector
[f0, g0, . . . , gl−1]T in Xk ×Wk × · · · ×Wk+l−1 with the vector

f0 + g0 + · · ·+ gl−1 ∈ Xk ⊕⊥ Wk ⊕⊥ · · · ⊕⊥ Wk+l−1

for f0 ∈ Xk and gi ∈ Wk+i, k ≥ 0, 0 ≤ i ≤ l − 1. Accordingly, for
uk+l ∈ Xk+l, we write

uk+l = uk,0 + vk,0 + · · ·+ vk,l−1,
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where uk,0 ∈ Xk and vk,i ∈ Wk+i (0 ≤ i ≤ l − 1), and

Pk+l = Pk +Qk + · · ·+Qk+l−1.

For n,m ≥ 0, define

Kn = PnKPn, Kn,m = QnKQm,

Bn,m = PnKQm for n ≤ m, and Cn,m = QnKPm for n ≥ m.

With these notations and convention, we can identify the operator Kk+l

with the matrix of operators

(2.8) Ak,l =




Kk Bk,k · · · Bk,k+l−1

Ck,k Kk,k · · · Kk,k+l−1

...
...

. . .
...

Ck+l−1,k Kk+l−1,k · · · Kk+l−1,k+l−1




Thus, in analogy with the algebraic matrix operations, we can express
operator equation (2.3) or (2.4) in the form

(2.9) uk,l − Ak,luk,l = fk,l

where uk,l=[uk,0, vk,0, . . . , vk,l−1]T and fk,l=[Pkf,Qkf, . . . ,Qk+l−1f ]T .

As in (2.3) or (2.4), we seek the solution to (2.9) in the approximating
space Xk+l. Once the bases for Xk and Wk+i are chosen, the matrix
representation of Kk+l has exactly the block structure as Ak,l in (2.8).

To develop multilevel iteration schemes for solving equation (2.9),
we introduce two matrices of operators from Ak,l: the strictly upper
triangular matrix

Uk,l =




O Bk,k Bk,k+1 · · · Bk,k+l−1

O Kk,k+1 · · · Kk,k+l−1

. . .
...

. . . Kk+l−2,k+l−1

O


 ,

and the lower triangular matrix

Lk,l =




O
Ck,k Kk,k

...
...

. . .
Ck+l−1,k Kk+l−1,k · · · Kk+l−1,k+l−1


 .
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In addition, we define

Dk,l := I − Ak,l +Uk,l + Lk,l.

In terms of operators on X, this is in fact the operator I − Kk. When
viewed as a matrix of operator on Xk+l (such as Uk,l and Lk,l), Dk,l

has the form

Dk,l =



I − Kk

I
. . .

I




where the Is on the diagonal are understood as identity operators
on the corresponding subspaces Xk, Wk, . . . , Wk+l−1. Accordingly,
equation (2.9) can be rewritten as

(2.10) (Dk,l − Uk,l − Lk,l)uk,l = fk,l.

It is this matrix form that leads us to the following two multilevel
iteration schemes for solving equation (2.3).

• Jacobi type iteration:

(2.11) Dk,lu
(m+1)
k,l = (Uk,l + Lk,l)u

(m)
k,l + fk,l, m = 0, 1, 2, . . .

with any initial approximation u(0)
k,l . Except for the first component, all

the other components of u(m+1)
k,l are already expressed in terms of u(m)

k,l

since the diagonal blocks in Dk,l are identity operators. Only the first
component needs to be solved by inverting I − Kk, which is also the
difference between this iteration scheme and the usual algebraic Jacobi
scheme.

• Gauss-Seidel type iteration:

(2.12) (Dk,l − Uk,l)u
(m+1)
k,l = Lk,lu

(m)
k,l + fk,l, m = 0, 1, 2, . . .

with any initial approximation u(0)
k,l . Like the usual algebraic Gauss-

Seidel iteration, (2.12) can be solved easily in the “backward substitu-
tions” fashion for the components of u(m+1)

k,l , and the only inverse we
need is for the first component, i.e., (I − Kk)−1.
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It is clear that the two methods are similar in the way of updating
the components of u(m+1)

k,l ; they differ only in that the Gauss-Seidel
scheme uses newly available components within each iteration while
the Jacobi scheme waits till an iteration is completed. Both methods
require inverting the operator I −Kk at the kth level. Hence, we have
to choose k so that the inverse of I − Kk exists and is relatively easy
to find. In the meantime, we can take advantage of this to start the
iteration with a good initial guess u(0)

k,l := [(I − Kk)−1Pkf, 0, . . . , 0]T .

Now we examine the two-grid nature of these schemes. Recall that a
two-grid method for solving systems like (2.9) has the following form
[14, Section 14.2]:

(2.13) u(m+1)
k,l = [I − Bk,l(I− Ak,l)]u

(m)
k,l +Bk,lfk,l

where Bk,l is an approximation of the inverse (I−Ak,l)−1 at a coarser
grid. This approximation Bk,l is used in computing the correction from
u(m)

k,l to u(m+1)
k,l . It is easy to see that schemes (2.11) and (2.12) are

results of (2.13) with the following choice of approximating matrix Bk,l

at the coarse grid of the k-th level:

• For the Jacobi type scheme (2.11), choose Bk,l := D−1
k,l which has

the matrix form on Xk+l as

Bk,l =



(I − Kk)−1

I
. . .

I


 .

• For the Gauss-Seidel type scheme (2.12), choose Bk,l := (Dk,l −
Uk,l)−1, which on Xk+l has the matrix form

Bk,l =




(I − Kk)−1 Gk,k Gk,k+1 · · · Gk,k+l−1

I Sk,k+1 · · · Sk,k+l−1

. . .
...

. . . Sk+l−2,k+l−1

I


 .

Here the operators Gkj have the form PkK̃Qj and Sij are operators of
the form QiK̃Qj for some operators K̃ on X.
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Clearly, the Jacobi type is an obvious choice for the approximation
of the inverse (I − Ak,l)−1 at the coarse grid of level k. In fact, it is
a common choice for many two-grid methods. As for the Gauss-Seidel
scheme, only in this matrix form can we see that this is also another
natural choice for the approximation, which also utilizes that multi-
level structure between the coarser grid k and the finer grid n := k+ l.

To further compare with well-known two-grid methods ([2, 13, 14])
and the two-level method ([5]), let us consider the special case of l = 1
in the following. In this case equation (2.10) reduces to

(2.14)
[ I − Kk −Bk,k

−Ck,k I − Kk,k

] [
uk,0

vk,0

]
=

[ Pkf
Qkf

]

and our Gauss-Seidel type iteration (2.12) for solving (2.14) becomes

(2.15)[ I − Kk −Bk,k

0 I
][

u
(m+1)
k,0

v
(m+1)
k,0

]
=

[
0 0

Ck,k Kk,k

][
u

(m)
k,0

v
(m)
k,0

]
+

[ Pkf
Qkf

]

The two-grid method used in solving linear systems resulted from
discretization of integral equations is often formulated through the
introduction of the “restriction” and “prolongation” operators ([2, 3]).
In our setting, these operators are naturally defined by the truncation
Rk,l = [I, O] (from Xk+l to Xk) and extension Pk,l = [I, O]T (from
Xk to Xk+l). One of the formulations requires the following steps ([2,
Section 6.3]) in each iteration from [u(m)

k,0 , v
(m)
k,0 ]T to [u(m+1)

k,0 , v
(m+1)
k,0 ]T :

1. Smooth [u(m)
k,0 , v

(m)
k,0 ]T by the Picard iteration[

ũ
(m)
k,0

ṽ
(m)
k,0

]
=

[ Kk Bk,k

Ck,k Kk,k

][
u

(m)
k,0

v
(m)
k,0

]
+

[ Pkf
Qkf

]

2. Compute the defect of its restriction on the coarser grid

r
(m)
k = Pkf − (I − Kk)ũ

(m)
k,0 + Bk,kṽ

(m)
k,0 .

3. Compute a correction on the coarser grid

δu
(m)
k,0 = (I − Kk)−1r

(m)
k .
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4. Prolongate the correction to the finer grid and update the approx-
imation by

u
(m+1)
k,0 = ũ

(m)
k,0 + δu

(m)
k,0 and v

(m+1)
k,0 = ṽ

(m)
k,0 .

After combining the above steps into one iteration from [u(m)
k,0 , v

(m)
k,0 ]T to

[u(m+1)
k,0 , v

(m+1)
k,0 ]T , we can easily recover the Gauss-Seidel type scheme

(2.15).

In [5], the following two-level method is introduced and analyzed for
solving (2.14):

(2.16)
[ I − Kk −Bk,k

0 I − Kk,k

][
u

(1)
k,0

v
(1)
k,0

]
=

[
0 0

Ck,k 0

] [
uk

0

]
+

[ Pkf
Qkf

]
,

where uk ∈ Xk solves exactly (I − Kk)uk = Pkf . In this scheme,
although no iteration is required, we need to solve for the second
component vk,0 exactly from the equation

(I − Kk,k)v
(1)
k,0 = Ck,kuk +Qkf.

As for scheme (2.15), this component need not be solved exactly, but
approximated through iterations which also involves approximations of
the first component u

(m)
k,0 :

v
(m+1)
k,0 = Ck,ku

(m)
k,0 +Kk,kv

(m)
k,0 +Qkf.

Thus, we see that scheme (2.15) with finite steps of iterations and
scheme (2.16) in fact provide different approximations for the exact
solution to (2.14), and (2.16) requires solving an equation exactly
without iterations while (2.15) needs iterations but not solving the
equation exactly.

3. Convergence analysis. In this section, we provide convergence
analysis for both Gauss-Seidel type and Jacobi type iteration schemes,
(2.11) and (2.12), when the operator K is compact on X. In this case,
the conditions we assume in Section 2 are satisfied. In particular, we
have

(3.1) lim
n→∞ ‖(Pn+i − Pn+j)K‖ = lim

n→∞ ‖K(Pn+i − Pn+j)‖ = 0.
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Moreover, for n large enough, I −Kn is invertible and the norm of the
inverse operator is bounded uniformly for all n. In the following, we
will establish convergence for both schemes (2.11) and (2.12) for k large
enough, and discuss the rate of convergence.

To this end, we need to view the operators used to define these
schemes as operators on X, and estimate their norms as operator norm
on X.

From the definition of Uk,l, we can see that Uk,l is in fact defined
for all u ∈ X, and Uk,l acting on u is exactly the same as it acting on
(Pk+� − Pk)u:

Uk,l u = PkK(Pk+l − Pk)u+
l−2∑
i=0

Qk+iK(Pk+l − Pk+i+1)u.

Hence, for each fixed l ≥ 1, we can estimate its norm on X by

(3.2) ‖Uk,l‖ ≤
l−1∑
j=0

‖K(Pk+l − Pk+j)‖ → 0 as k → ∞,

where we have used (3.1) and the fact that ‖Qj‖ = 1. Similarly, we
have

Lk,l u = (Pk+l − Pk)KPku+
l−1∑
i=0

(Pk+l − Pk+i)KQk+iu.

and thus

‖Lk,l‖ ≤
l−1∑
i=0

‖(Pk+l − Pk+i)K‖ → 0 as k → ∞.

Moreover, since Uk,l + Lk,l = Kk+l −Kk, we have that

(3.3) ‖Uk,l+Lk,l‖ ≤ ‖(Pk+l−Pk)K‖+‖K(Pk+l−Pk)‖ → 0 as k→∞.

On the other hand, as an operator on X, Dk,l = I − Kk. Hence

D−1
k,l = (I − Kk)−1
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and

(Dk,l − Uk,l)−1 = (I − (I − Kk)−1Uk,l)−1 (I − Kk)−1.

Therefore, we obtain the norm estimates for the two inverses:

‖D−1
k,l‖ = ‖(I − Kk)−1‖(3.4)

and

‖(Dk,l − Uk,l)−1‖ ≤ ‖(I − Kk)−1‖
1− ‖(I − Kk)−1‖‖Uk,l‖ .

Since ‖(I − Kk)−1‖ is uniformly bounded for large enough k, in view
of (3.2), these two inverses are both bounded uniformly for large
enough k.

Combining the above, we see that, for each fixed l ≥ 1, the iteration
operators for schemes (2.11) and (2.12) are both convergent to 0 in the
operator norm:

‖D−1
k,l (Lk,l+Uk,l)‖ → 0 and ‖(Dk,l−Uk,l)−1 Lk,l‖ → 0 as k → ∞.

Hence they can be chosen less than 1 if k is large enough, which in turn
yields the convergence of the iteration schemes (2.11) and (2.12).

Next we examine the rate of convergence of the iteration schemes.
Let

qk,l =

{
‖D−1

k,l (Uk,l + Lk,l)‖ for scheme (2.11),

‖(Dk,l − Uk,l)−1Lk,l‖ for scheme (2.12).

This is roughly the factor between two consecutive errors in the itera-
tion. More precisely, for each (k, l), the quantity qk,l is the least upper
bound for the ratios of two consecutive errors or the ratios of differences
of two consecutive iterates:

‖u(m)
k,l − uk,l‖

‖u(m−1)
k,l − uk,l‖

≤ qk,l and
‖u(m)

k,l − u(m−1)
k,l ‖

‖u(m−1)
k,l − u(m−2)

k,l ‖
≤ qk,l.

We have shown that, for fixed l ≥ 1, qk,l → 0 as k → ∞ and thus
qk,l < 1 for large enough k. Note that the argument depends on the
a priori chosen l, the number of additional levels beyond the initial
level k.
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For the Jacobi type scheme (2.11), we can show that this rate is
essentially independent of all large enough l. Indeed, from (3.3) and
(3.4) above,

qk,l ≤ ‖D−1
k,l‖ ‖(Uk,l + Lk,l)‖

≤ ‖(I − Kk)−1‖(‖(Pk+l − Pk)K‖+ ‖K(Pk+l − Pk)‖),
hence

(3.5) lim sup
l→∞

qk,l ≤ ‖(I − Kk)−1‖(‖K − PkK‖+ ‖K − KPk‖) < 1

if k is chosen large enough.

To derive an estimate for the rate of convergence of the Gauss-Seidel
scheme (2.12), we further assume that

(3.6)
∞∑

i=0

‖(I − Pi)K‖ < ∞,
∞∑

i=0

‖K(I − Pi)‖ < ∞

and

(3.7) lim
l→∞

l‖(P − Pl)K‖ = lim
l→∞

l‖K(I − Pl)‖ = 0.

For any positive integer k, we now introduce two quantities

rk :=
∞∑

i=0

‖(I − Pk+i)K‖ and r′k :=
∞∑

i=0

‖K(I − Pk+i)‖.

Under assumption (3.6), we see that

(3.8) lim
k→∞

rk = lim
k→∞

r′k = 0

and hypothesis (3.7) ensures that

(3.9) lim sup
l→∞

‖Lk,l‖ ≤ rk and lim sup
l→∞

‖Uk,l‖ ≤ r′k

Therefore, we conclude from (3.8) and (3.9) that for the Gauss-Seidel
scheme

(3.10)

lim sup
l→∞

qk,l ≤ lim sup
l→∞

‖(I − Kk)−1‖‖Lk,l‖
1− ‖(I − Kk)−1‖‖Uk,l‖

≤ ‖(I − Kk)−1‖rk

1− ‖(I − Kk)−1‖r′k
< 1,
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if k is chosen large enough.

We summarize our discussions above in the following theorem.

Theorem 3.1. Suppose that the operator K is compact on the Hilbert
space X, I − K is bijective on X, and the sequence of approximating
subspaces possesses the nestedness property (2.2) and each has the
decomposition (2.7) by orthogonal projections. Then the following
statements hold.

(i) For each l ≥ 1 and sufficiently large k, the iteration schemes
(2.11) and (2.12) for solving the equation (2.3) or (2.10) are both
convergent.

(ii) The rate of convergence for the Jacobi iteration scheme (2.11)
is essentially independent of l for all sufficiently large k. If hypotheses
(3.6) and (3.7) are satisfied, the rate of convergence for the Gauss-Seidel
iteration scheme is also essentially independent of l for all sufficiently
large k.

(iii) The rate of convergence for the Jacobi scheme can be made
smaller (by increasing k) in the same order of approximation PkK
to K. Moreover, if hypotheses (3.6) and (3.7) are satisfied, the rate
of convergence for the Gauss-Seidel scheme can be made smaller (by
increasing k) in the same order of rk going to zero.

We remark that conditions (3.6) and (3.7) are fulfilled in many appli-
cations when Xn are chosen as piecewise polynomial spaces. This point
will be further addressed in Section 4 by examples. As demonstrated in
the previous sections, the iteration schemes (2.11) and (2.12) are two-
grid in nature. Like other two-grid methods, it is possible to use them
as efficiently as a multigrid method, since the overall number of itera-
tions can be kept small and of equal order to that of multigrid method.
More details on discussions and comparison of these two methods can
be found in [2, 3].

4. Numerical examples. In this section, we carry out the numeri-
cal implementation of solving the following typical integral equation in
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the setting outlined in the previous sections:

(4.1) u(x)−
∫ 1

0

ln(|x− y|) u(y) dy = f(x) for x ∈ (0, 1).

It is well known that the operator K defined by

(Ku)(x) :=
∫ 1

0

ln(|x− y|) u(y) dy, x ∈ (0, 1),

is compact from L2(0, 1) to L2(0, 1). In fact K is self-adjoint and maps
L2(0, 1) into the Sobolev space H1−ε(0, 1) for any ε > 0.

First, we describe the construction of approximating subspaces Xn ⊂
L2(0, 1). We will use piecewise linear polynomial wavelet spaces as
described in [1, 15]. As mentioned in Section 2, the sequence of the
subspaces Xn possesses the nestedness property (2.2), and each Xn has
the orthogonal decomposition (2.7) or,

Xn = X0 ⊕⊥ W0 ⊕⊥ W1 ⊕⊥ · · · ⊕⊥ Wn−1.

We construct each of these subspaces by choosing its orthonormal basis:

X0=span {w−1,1, w−1,2} with

{
w−1,1(x) = 1,

w−1,2(x) = 2
√
3 (x−1/2),

W0=span {w01, w02} with

{
w01(x)=6(x−1/2)−2 sgn (x−1/2),

w02(x)=4
√
3 |x−1/2| − √

3.

These basis functions are defined for x ∈ [0, 1] by the expressions above
and considered having zero extension to the rest of R for convenience.
Starting with W1, the W -spaces are defined successively as: if

Wi−1 = span {wi−1,j : j = 1, . . . , 2i},
then

Wi = span {wij : j = 1, . . . , 2i+1}

with

{
wij(x) =

√
2wi−1,j(2x),

wi,2i+j(x) =
√
2wi−1,j(2x− 1),

1 ≤ j ≤ 2i.
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Note that dim (Xn) = 2n+1, dim (Wi) = 2i+1, and the graph of each
wij consists of two straight line segments on two neighboring intervals
of width 1/2i+1.

The functions {wij} form an orthonormal basis for Xn, arranged in
the following order:

(4.2) {w−1,j}2
j=1, {w0j}2

j=1, {w1j}22

j=1, . . . , {wn−1,j}2n

j=1.

Thus, under this setting, solving the integral equation (4.1) in Xn

by the Galerkin method leads to solving the following linear algebraic
system, which is the matrix representation of the operator equation
(2.9):

(4.3) (I −An)vn = fn

where the unknown 2n+1-vector vn consists of the coefficients of the
approximate solution un inXn with the basis (4.2), and the components
of fn are the L2-inner products of f with the basis functions wij . The
coefficient matrices are of 2n+1×2n+1: I is the identity matrix and An

consists of double integrals of all possible pairs from the basis functions
with the kernel K.

We employ the iteration schemes (2.11) and (2.12) to solve this linear
system. In the matrix form, these schemes are block-matrix iterative
schemes, where the block partition is based on the levels of resolutions.
We begin with an initial level k, 1 ≤ k < n, and let l = n − k be the
number of additional levels from this level to the final level n. Then
An is partitioned into (l + 1)× (l + 1)-block matrix:

An = Ak,l = [Aij ]k+l
i,j=k :

Aij is 2max(i,k+1) × 2max(j,k+1) and Akk = Ak.

Accordingly, the three matrices of operators, Dk,l, Uk,l and Lk,l

introduced in Section 2, have their block-matrix representations as
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follows.

Dk,l =




I −Ak

I
. . .

I


 ,

Uk,l =




O Ak,k+1 · · · Ak,k+l−1

O · · · Ak+1,k+l−1

. . .
...
O


 ,

and

Lk,l =




O
Ak+1,k Ak+1,k+1

...
...

. . .
Ak+l−1,k Ak+l−1,k+1 · · · Ak+l−1,k+l−1


 .

The iteration matrices for the two schemes are:

MGS
k,l = (Dk,l − Uk,l)−1Lk,l for the Gauss-Seidel scheme (2.12),

MJ
k,l = D−1

k,l (Uk,l + Lk,l) for the Jacobi scheme (2.11).

We present some of our numerical results below. Our calculations
are carried out by using Matlab. Note that the integrals needed for
setting up the coefficient matrix and the righthand side vector can
be computed exactly for this particular example, so we do not use
numerical integrations in our calculations.

Example 4.1. The two-norm of the iteration matrices. First
we calculate the 2-norm of the iteration matrix for each scheme, with
various values of k and l. The purpose of this experiment is to verify
the results proved on the convergence rate and its independence on
the number l. We use the standard Matlab routines, M=D\(U+L) and
norm(M), to compute each iteration matrix and its matrix 2-norm. As
shown in the tables, for each k, the norm clearly converges as l increases,
and its variation is very small even from l = 1. From the last numbers
in the columns (i.e., these with k+l = 10), we can also see that the norm
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TABLE 4.1. The two-norm of the iteration matrices for the two schemes.

(a) ‖MJ
k,l‖2 for the Jacobi scheme.

k = 4 k = 5 k = 6 k = 7 k = 8

l = 1 3.3888e−02 1.7038e−02 8.5434e−03 4.2779e−03 2.1406e−03

l = 2 3.4015e−02 1.7101e−02 8.5746e−03 4.2934e−03 2.1483e−03

l = 3 3.4213e−02 1.7198e−02 8.6228e−03 4.3174e−03

l = 4 3.4234e−02 1.7208e−02 8.6278e−03

l = 5 3.4236e−02 1.7209e−02

l = 6 3.4236e−02

(b) ‖MGS
k,l ‖2 for the Gauss-Seidel scheme.

k = 4 k = 5 k = 6 k = 7 k = 8

l = 1 3.0932e−02 1.5468e−02 7.7342e−03 3.8672e−03 1.9340e−03

l = 2 3.0977e−02 1.5491e−02 7.7459e−03 3.8731e−03 1.9369e−03

l = 3 3.1036e−02 1.5522e−02 7.7616e−03 3.8809e−03

l = 4 3.1041e−02 1.5525e−02 7.7630e−03

l = 5 3.1042e−02 1.5525e−02

l = 6 3.1042e−02

decreases between two consecutive ks by the factor of almost exactly
1/2. This is in fact the order of the approximation of PkK to K:

(4.4) ‖K − PkK‖2 = O(2−k(1−ε)) for any ε > 0,

due to the fact that Ku is actually in H1−ε(0, 1) for u ∈ L2(0, 1).
For the Jacobi scheme, we have proved these results theoretically in
the previous section (see (3.5)) and for the Gauss-Seidel scheme, we
have also proved a similar result (see (3.10)). Table 4.1(a) and Table
4.1(b) confirm these theoretical results. In comparison, we can see that
the convergence rate of the Gauss-Seidel scheme is an improvement of
about 10% on that of the Jacobi scheme.

Example 4.2. Convergence rates for the Gauss-Seidel scheme.
We employ the Gauss-Seidel iteration scheme to find approximate so-
lutions to (4.3). Results using the Jacobi scheme are similar and thus
are not presented here. We test on the example for which u(x) = x2 is
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the exact solution to (4.1); i.e., we set

f(x) = x2 −
∫ 1

0

y2 ln |x− y| dy, x ∈ [0, 1].

As we have proved, the convergence of the iteration is global, and we can
choose any initial guess for the iteration. In practice we usually choose
the solution at the initial level as the initial guess: u

(0)
k,l = (uT

k , 0)T

where uk = uk,0 is the exact solution to (4.3) with n = k. This is in
fact one of the reasons we are interested in iteration schemes of this
type: a solution of the higher resolutions can be obtained faster from
an existing solution of lower resolutions. We choose the initial level
at k = 5 (A5 is 64 × 64), and the final levels at n = 7, 8, 9, 10 (hence
l = 2, 3, 4, 5, respectively). Recall that the system (4.3) has dimension
of 2n+1. For each n, we start the iteration (2.12) with u

(0)
n as described

above, and terminate the iteration when the difference of two successive
iterates is smaller than 1.0e− 15. At each iterate, the exact solution at
the initial level k = 5 is solved by using the standard Matlab routine,
u=(I-A)\f. Numerical results are tabulated in Table 4.2. The ratio of
successive differences,

ν
(m)
k,l =

|u(m)
k,l − u

(m−1)
k,l |2

|u(m−1)
k,l − u

(m−2)
k,l |2

,

seems to converge as m increases, nearly independent of l, and is close
to but slightly smaller than the 2-norm of the iteration matrix MGS

k,l

computed in the second column of Table 4.1(b). In the last column
of Table 4.2, we also compute the L2 error between u

(m)
k,l (the function

obtained by multiplying the vector u
(m)
k,l and the basis functions) and

the exact solution u(x) = x2. We can see that the later iterates at each
case do not improve the L2 error from the exact solution u. The reason
seems to be clear: it has reached the limit of accuracy determined
by the approximation of Xn to X. We will return to this issue in
Example 4.4.
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TABLE 4.2. Iterations by Gauss-Seidel scheme (2.12) with k = 5.

(k, l) dim = 2k+l+1 m |u(m)
k,l

− u
(m−1)
k,l

|2 ratio ν
(m)
k,l

‖u(m)
k,l

− u‖2

1 7.3733e-05 4.6795e-06

3 1.7084e-08 1.5347e-02 4.5493e-96

(5,2) 256 5 4.0600e-12 1.5424e-02 4.5493e-06

7 9.6675e-16 1.5433e-02 4.5493e-06

1 7.3865e-05 1.5812e-06

3 1.7137e-08 1.5364e-02 1.1373e-06

(5,3) 512 5 4.0740e-12 1.5424e-02 1.1373e-06

7 9.6992e-16 1.5431e-02 1.1373e-06

1 7.3874e-05 1.1349e-06

3 1.714e-08 1.5365e-02 2.8454e-07

(5,4) 1024 5 4.0749e-12 1.5424e-02 2.8449e-07

7 9.7014e-16 1.5431e-02 2.8459e-07

1 7.3874e-05 1.1012e-06

3 1.7142e-08 1.5365e-02 6.8082e-08

(5,5) 2048 5 4.0750e-12 1.5424e-02 6.9294e-08

7 9.7014e-16 1.5431e-02 6.8893e-08

Example 4.3. Order of convergence rate for iteration in
terms of k. In the following we test the order of convergence rates
for the Gauss-Seidel iteration in terms of k, as predicted by (3.10). For
this particular example, the order of ‖K−PkK‖ is as given in (4.4). We
use the Gauss-Seidel scheme to solve (4.3) when n = 10, with various
choices of the initial level k. As in Example 4.2, for each k we stop
the iteration when the successive difference is smaller than 1.0e−15,
and use the last available ratio ν

(m)
k,l as the convergence rate νk,l. Note

that these ratios are comparable to the matrix norms computed in
Table 4.1(b), and they are essentially independent of l. The order is
then computed by

order = log2

νk−1,l+1

νk,l
.

Numerical results are reported in Table 4.3. As indicated by (4.4), the
order is nearly 1, and larger k requires fewer iterations to obtain the
same accuracy in successive differences.
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TABLE 4.3. Order of convergence rate for Gauss-Seidel scheme.

(k, l) m ν
(m)
k,l ≈ νk,l order

(4,6) 9 3.0795e−02
(5,5) 7 1.5431e−02 0.9968
(6,4) 6 7.7243e−03 0.9987
(7,3) 5 3.8640e−03 0.9993
(8,2) 5 1.9322e−03 0.9999

Example 4.4. A stopping criterion for the iterations. The
iteration schemes considered in this study are for solving linear system
(4.3) whose solution un ∈ Xn is an approximation to the exact solution
u ∈ X. The accuracy of un to u is determined by the choice of the
approximate subspaces, and for this particular example, it is well-
known that the approximation is of second order:

(4.5) ‖un − u‖2 = O(2−2n).

Estimates of this type are available for commonly used approximate
subspaces, such as piecewise polynomials (see, e.g., [5]). As seen in
Example 4.2 above, the later iterations u

(m)
k,l do not reduce error to

the exact solution u, since the iterations are for finding un ∈ Xn only.
If our goal is simply to find an approximation to the exact solution
u ∈ X, then un ∈ Xn by the Galerkin method is one candidate with
the accuracy stated in (4.5), and certainly we should also accept other
approximations that have the same accuracy. This idea of finding an
approximation of the Galerkin solution un with the same accuracy to
the exact solution u is implemented and analyzed in [5] by a multi-
level method. Here we propose a stopping criterion for our iteration
schemes to obtain an iterate u

(m)
k,l that falls into the neighborhood of

the exact solution u as specified by (4.5). To do so we need to have an
estimate for the “big-O” in (4.5), and one way to obtain this is to use
u

(m0)
k,1 as an estimate for the exact solution. Here u

(m0)
k,1 is the m0-th

iterate at the k+1 level from the initial guess of uk, the exact solution
of (4.3) for n = k. Of course, the larger m0 is, the better this esti-
mate is, and we can in fact use iterations at another level ' > 1 for the
same purpose if so desired. In practice m0 as small as 1 or 2 might work



MULTI-LEVEL ITERATION METHODS 375

TABLE 4.4. Results of using the stopping criterion (4.6) with m0 = 1.

(k, l) m |u(m)
k,l −u

(m−1)
k,l |2 ‖u(m)

k,l −u‖2 order ‖u∗
k+l−u‖2 order

(5,2) 2 1.1132e−06 4.5493e−06 4.5493e−06
(5,3) 2 1.1154e−06 1.1375e−06 1.9998 1.1373e−06 2.0001
(5,4) 3 1.7141e−08 2.8454e−07 1.9992 2.8459e−07 1.9986
(5,5) 3 1.7142e−08 6.8082e−08 2.0633 6.9094e−08 2.0422

well. Using such an approximation, we obtain the following stopping
criterion: terminate the iteration at the m-th iterate if

(4.6) |u(m)
k,l − u

(m−1)
k,l |2 < ck2−2l−1 with ck = |u(m0)

k,1 − uk|2.

In this way we save the unnecessary iterates yet yield an approximation
of uk,l which has the same accuracy as the approximating subspace
Xk+l would allow. As expected, when k is fixed, for larger l, it requires
more iterates to obtain accurate approximations at the k + l level.
We tested this criterion for the Gauss-Seidel scheme with m0 = 1
and obtain satisfactory results. When k = 5 and m0 = 1, we have
ck = 7.3874e−5. We summarize results of this numerical experiment
in Table 4.4. For comparison purposes, we use the Matlab routine,
|u=(I-A)\f|, to obtain the exact solution u∗

n = u∗
k+l to (4.3). As seen

from the results, this criterion works very well for this example to save
many unnecessary iterations. The approximations obtained are as close
to the exact solution u in X as the exact solution u∗

n in Xn. The orders
computed for both u

(m)
k,l and u∗

n verify the order stated in (4.5). The
savings of solving a larger system in this way can be clearly seen if we
notice that, for example, instead of solving a full 2048× 2048 system,
we only need to solve a 64× 64 system three times.

We remark that the simple stopping criterion tested in this example
is also applicable for other iteration schemes provided that estimates
similar to (4.5) are available.
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