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FAST COLLOCATION SOLVERS
FOR INTEGRAL EQUATIONS ON OPEN ARCS

J. SARANEN AND G. VAINIKKO

ABSTRACT. In this work we develop a unified approach
for numerical approximation and fast solution of classical in-
tegral equations on open arcs. The approximation is obtained
applying the cosine transform and fully discrete trigonometric
collocation together with an asymptotic approximation of the
operator. The computed approximation is of optimal accuracy
order in a large scale of Sobolev norms, and it can be obtained
in O(n log n) arithmetical operations. Our results cover log-
arithmic singular integral equations, Cauchy singular integral
equations, as well as hypersingular integral equations.

1. Introduction. In many applications the boundary integral
method leads to solution of an integral equation on an open arc, when
two-dimensional phenomena are considered. In the basic examples the
arising integral equations can be covered by the following types: loga-
rithmic singular integral equations, Cauchy singular integral equations
and hypersingular integral equations. For the parametrized forms of
the model equations see (2.1) (2.3). Equations of these types come
from various fields such as fracture mechanics, aerodynamics, electro-
magnetism and elasticity, for example. Except for some special cases
the arising integral equation cannot be solved explicitly but requires
an approximate solution by numerical methods. In the literature var-
ious numerical schemes have been proposed for particular examples.
These schemes cover the standard spline based methods [31, 8, 38,
12] as well as trigonometric methods and polynomial approximation
with their fully discrete variants including also other quadrature meth-
ods [17, 2, 9, 25, 5, 19, 6, 7, 11]. This list is not complete, in
particular for Cauchy singular equations there are many earlier stud-
ies but they can be traced from the works mentioned here. Also fast
solution has been considered: for the case of Cauchy singular equation
with a polynomial approximation, see [3, 4].
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The purpose of this work is to develop a unified approach for numer-
ical approximation and fast solution of classical integral equations on
open arcs. For our approach we proceed as follows. Starting from the
parametrized form we first apply the cosine transform and obtain for
the original problem an equivalent formulation as a periodic problem
of certain parity. It is well-known that the cosine transform has some
obvious advantages. In particular, in the case of logarithmic singular
and Cauchy singular equations on an open arc Γ, the solution may have
a singularity of the order O(|x − c|−1/2) at the endpoint c of Γ even
when the righthand term of the equation is smooth. The cosine trans-
form removes this singularity. Moreover, for smooth bk(x, y) and g(x),
see (2.1) (2.3), also the coefficients and the righthand term of the peri-
odized problem are smooth, consequently so is the solution of the peri-
odized problem. Thus the periodized forms of problems (2.1) (2.3) are
rather convenient for an approximate solution. We use a fully discrete
version, cf. [28], of trigonometric collocation method for determining
low frequencies of the solution. The computation of high frequencies
is based on some asymptotic approximation of the operator. The ap-
proximation, see (8.10), (8.11) and their matrix form, Sections 9, 10, is
organized so that the application of the n× n-stiffness matrix to an n-
vector costs O(n logn) arithmetical operations. This allows us to solve
the discrete problem in O(n logn) operations using a suitable two grid
iteration. The computed approximation is of optimal accuracy order
in a scale of Sobolev norms. This scale is of maximal length in the
situation where only grid values of the righthand term are used. We
also point out that in case of analytic data and solution, [28] provides
exponential convergence.

2. Parametrized equation. In our analysis we start from an
integral equation which is given on the open interval I = (0, 1) and
apply the cosine transform to obtain a more convenient form of the
equation which allows application of an approach for fast solution based
on [29]. For the parametrized equations we assume one of the following
three types

(2.1)
(BLv)(x) :=

∫ 1

0

(b0(x, y) log |x− y| + b1(x, y))v(y) dy

= g(x), x ∈ I,
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(2.2)

(BCv)(x) :=
∫ 1

0

(
b0(x, y)
x− y

+ b1(x, y) log |x− y| + b2(x, y)
)
v(y) dy

= g(x), x ∈ I,

(2.3)

(BHv)(x) :=
∫ 1

0

(
b0(x, y)
|x− y|2 + b1(x, y) log |x− y| + b2(x, y)

)
v(y) dy

= g(x), x ∈ I.

Here we assume that bk ∈ C∞(Ī × Ī), k = 0, 1, 2 and b0(x, x) �= 0,
x ∈ Ī. The first integrals in (2.2) and (2.3) are understood in the sense
of the principal value and the finite-part of Hadamard, respectively.
Introduce the weighted spaces L2

σ(I), L2
1/σ(I) and H1

σ(I) of functions
having a finite norm

‖v‖σ =
( ∫ 1

0

σ(y)|v(y)|2 dy
)1/2

,

σ(y) = y1/2(1 − y)1/2,

‖v‖1/σ =
( ∫ 1

0

1
σ(y)

|v(y)|2 dy
)1/2

,

‖v‖1,σ = (‖v‖2
σ + ‖v′‖2

σ)1/2,

respectively. Define also
◦
H1

σ(I) = {v ∈ H1
σ(I) | v(0) = v(1) = 0} with

the norm induced from H1
σ(I). The following mapping properties of

BL, BC and BH can be obtained from our consideration:

BL : L2
σ(I) −→ H1

σ(I) is a Fredholm operator of index 0,
BC : L2

σ(I) −→ L2
σ(I) is a Fredholm operator of index 1,

BC : L2
1/σ(I) −→ L2

1/σ(I) is a Fredholm operator of index − 1,

BH :
◦
H1

σ(I) −→ L2
σ(I) is a Fredholm operator of index 0.

In the case of BC the above properties are explicitly given, for the
Cauchy operator, in [16]. For BL and BH also the mapping properties
BL : H̃−1/2(I) → H1/2(I) and BH : H̃1/2(I) → H−1/2(I) are known,
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see [31, 36], but we will not use those (for the definitions of spaces
Hs(I) and H̃s(I) = Hs

00(I), s ∈ R, see, e.g., [14]).

Example 2.1. Equations with a logarithmic singular kernel. Let Γ
be a smooth open arc in the plane. Consider the integral equation

(2.1a) (Sk,ΓvΓ)(z) =
∫

Γ

Gk(z, ξ)vΓ(ξ) dsξgΓ(z), z ∈ Γ

where dsξ denotes the integration with respect to the arc-length and
Gk(z, ξ) is the fundamental solution to the Laplace equation if k = 0
and to the Helmholtz equation if k �= 0,

(2.1b)
G0(z, ξ) = − 1

2π
log |z − ξ|,

Gk(z, ξ) =
i

4
H

(1)
0 (k|z − ξ|), k �= 0,

where H(1)
0 (z) is the Hankel function of the first kind and order zero.

With k = 0 we have Symm’s equation with the logarithmic kernel. It
arises when solving the potential equation with the Dirichlet boundary
condition in the exterior domain of Γ. With k �= 0 equation (2.1a)
appears in solution of the exterior Dirichlet problem for the Helmholtz
equation which arises from the two-dimensional time-harmonic scat-
tering problem at a soft screen. For a general k the singularity of the
kernel Gk is also logarithmic. Let x �→ z(x), x ∈ I be a parametriza-
tion of the arc Γ. We transform the integral operator Sk,Γ on Γ to the
integral operator Sk on I where

(2.1c) (Skv)(x) :=
∫ 1

0

Gk(z(x), z(y))|z′(y)|v(y) dy.

Then we have (Skv)(x) = (Sk,ΓvΓ)(z(x)) if v(x) = vΓ(z(x)). Now
equation (2.1a) becomes

(2.1d)
(Skv)(x) = − 1

2π

∫ 1

0

(|z′(y)| log |x− y| + bk(x, y))v(y) dy

= g(x), x ∈ I

where bk(x, y) is a smooth function and g(x) = gΓ(z(x)). In some ap-
propriate function spaces the equations (2.1a) and (2.1d) are uniquely
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solvable if k = 0 and Cap (Γ) �= 1 [24, 37], or if k �= 0 and Im k ≥ 0
[27, 30, 31]. Here Cap (Γ) is the logarithmic capacity or, equivalently,
the transfinite diameter of Γ. In fact, under these conditions, Sk defines
an isomorphism from L2

σ(I) to H1
σ(I).

Example 2.2. Cauchy-singular integral equations. The singular
integral equation
(2.2a)∫ 1

0

(
b0(x, y)
x− y

+ b1(x, y) log |x− y| + b2(x, y)
)
v(y) dy = g(x), x ∈ I,

appears in several applications concerning flow problems around air-
foils. In particular, with the constant function b0(x, y) = b0 �= 0 and
b1 = b2 = 0, we have the basic airfoil equation. Equations including the
logarithmic term and the function b2(x, y) appear also in applications;
an example coming from modeling the circulation around freely mov-
ing weakly loaded propellers is discussed in [20, 23]. Another example
which appears in solving the pressure distribution around thin oscillat-
ing airfoils in a ventilated wind tunnel is described in [10]. However,
equation (2.2a) is not yet uniquely solvable in these examples, but the
uniqueness is assured by imposing an additional condition of the form

(2.2b) ΦIv :=
∫ 1

0

v(y) dy = γ

which has the interpretation that the circulation around the profile is
given. So, instead of (2.2a) we have to consider the system

(2.2c)
(BCv)(x) = g(x), x ∈ I,

ΦIv = γ.

In the case of the special example given in [23] the system (2.2c) is
uniquely solvable in v ∈ L2

σ(I) for any given data g ∈ L2
σ(I), γ ∈ C.

Example 2.3. Hypersingular equations. Consider the hypersingular
integral equation

(2.3a)
(Hk,ΓvΓ)(z) = − ∂

∂nz

∫
Γ

∂

∂nξ
Gk(z, ξ)vΓ(ξ) dsξ

= gΓ(z), z ∈ Γ
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where Gk(z, ξ) is the fundamental solution defined in Example 2.1.
Here we additionally assume that Γ is an oriented arc, nz being the
unit normal vector at the point z ∈ Γ. Substituting z = z(x), ξ = z(y),
the kernel can be decomposed as

(2.3b) − ∂

∂nz

∂

∂nξ
Gk(z, ξ)

= − 2π
|z′(x)||x− y|2 + b1k(x, y) log |x− y| + b2k(x, y)

where b1k, b2k are smooth functions, see, e.g., [18]. Now equation (2.3a)
reduces to an integral equation on I,

(2.3c)∫ 1

0

(
− 2π

|z′(x)||x− y|2 + b1k(x, y) log |x− y| + b2k(x, y)
)
v(y) dy

= g(x), x ∈ I

where v(x) = vΓ(z(x)), g(x) = gΓ(z(x)). Equations (2.3a) and (2.3c)
are uniquely solvable if k �= 0 and Im ≥ 0 [27, 36]. Equation
(2.3a) arises from the Neumann-type exterior problem for the potential
equation, k = 0, and for the Helmholtz equation, k �= 0, which appears
in the time-harmonic scattering at a hard screen.

3. Periodization of the parametrized equation. Having an
integral equation which is given by one of the forms (2.1) (2.3) on
I = (0, 1), we apply the cosine transform

(3.1) x = x(t) = (1 − cos 2πt)/2, t ∈ (0, 1/2).

After this transform we obtain a new integral equation for the unknown
function u and the righthand side f on (0, 1/2). The new kernel is
defined in a natural way already on the symmetric interval (−1/2, 1/2)
and, moreover, has a natural 1-biperiodic extension to R2. The final
form of the equation is obtained by extending the functions u and f as
even or odd functions to R.

3.1 Equations with a logarithmic singular kernel. We recall the
equations of the general form (2.1),

(3.2)
∫ 1

0

(b0(x, y) log |x− y| + b1(x, y))v(y) dy = g(x), x ∈ I
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where b0, b1 ∈ C∞(Ī × Ī). Applying the transform (3.1), extending
x(t) by the formula (3.1) for all t ∈ R and writing u(t) = v(x(t))|x′(t)|,
f(t) = g(x(t)), t ∈ R, we obtain

(3.3)
∫ 1/2

0

(b0(x(t), x(s)) log |x(t) − x(s)|

+ b1(x(t), x(s)))u(s) ds = f(t), t ∈ (0, 1/2).

Since u and f are even functions and the kernel is an even function with
respect to both of the arguments t and s, equation (3.3) is equivalent
to

(3.4)
1
2

∫ 1/2

−1/2

(b0(x(t), x(s)) log |x(t) − x(s)|

+ b1(x(t), x(s)))u(s) ds = f(t), t ∈ R.

Here we have

1
2

∫ 1/2

−1/2

b0(x(t), x(s)) log |x(t) − x(s)|u(s) ds

=
1
2

∫ 1/2

−1/2

b0(x(t), x(s)) log | sinπ(t− s)|u(s) ds

+
1
2

∫ 1/2

−1/2

b0(x(t), x(s′)) log | sin π(t+ s′)|u(s′) ds′.

Substituting s′ = −s in the last term, we obtain

1
2

∫ 1/2

−1/2

b0(x(t), x(s)) log |x(t) − x(s)|u(s) ds

=
∫ 1/2

−1/2

b0(x(t), x(s)) log | sinπ(t− s)|u(s) ds.

Hence we have reduced (3.4) to the more convenient form
(3.5)

(ALu)(t) :=
∫ 1/2

−1/2

(a0(t, s)κ0(t− s) + a1(t, s))u(s) ds = f(t), t ∈ R
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where u and f are 1-periodic even functions on R and a0(t, s) =
b0(x(t), x(s)), a1(t, s) = b1(x(t), x(s))/2 are smooth 1-biperiodic even
functions, and κ0(t) = log | sinπt|.

3.2 Cauchy-singular equations. Here we consider equations of the
general form (2.2),
(3.6)∫ 1

0

(
b0(x, y)
x−y + b1(x, y) log |x−y| + b2(x, y)

)
v(y) dy = g(x), x ∈ I

where bk ∈ C∞(Ī × Ī). We introduce two different periodizations
for (3.6). First let u(t), t ∈ R be the 1-periodic even extension of
the function u(t) = v(x(t))x′(t), t ∈ (0, 1/2). Then, due to parity
properties,

∫ 1/2

−1/2
(b0(x(t), x(s))x′(s)u(s))/(cos 2πs−cos 2πt) ds = 0 and

equation (3.6) is equivalent with

(3.7)
1
2

∫ 1/2

−1/2

b0(x(t), x(s))(x′(t) − x′(s))u(s)
(cos 2πs− cos 2πt)/2

ds

+
1
2

∫ 1/2

−1/2

b1(x(t), x(s))x′(t) log |x(t) − x(s)|u(s) ds

+
1
2

∫ 1/2

−1/2

b2(x(t), x(s))x′(t)u(s) ds

= x′(t)g(x(t)), t ∈ R.

For the first term T0, we obtain

(3.8)

T0 =
∫ 1/2

−1/2

b0(x(t), x(s))(x′(t) − x′(s))u(s)
(cos 2πs− cos 2πt)

ds

= π

∫ 1/2

−1/2

b0(x(t), x(s)) cotπ(t− s)u(s) ds.

Here we have the formula (sinx−sin y)/(cosx−cos y) = − cot((x+y)/2).
Putting f(t) = x′(t)g(x(t)), we see that (3.7) is of the form

(3.9a)
(A1Cu)(t) :=

∫ 1/2

−1/2

(a0(t, s)κ0(t− s) + a11(t, s)κ1(t− s)

+ a12(t, s))u(s) ds
= f(t), t ∈ R,
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where u is an even and f an odd 1-periodic function in R. Moreover,
(3.9b)
κ0(t) = cotπt, κ1(t) = log | sinπt|, a0(t, s) = πb0(s(t), x(s)),
a11(t, s) = b1(x(t), x(s))x′(t), a12(t, s) = b2(x(t), x(s))x′(t)/2.

In the applications connected to Example 2.2, we have to take the
additional condition (2.2b) into account. By the cosine transform we
obtain

(3.9c) ΦIv = Φu :=
1
2

∫ 1/2

−1/2

u(s) ds = γ.

Define the operator A1C × Φ by (A1C × Φ)u = [A1Cu,Φu]. Now the
system of the equations (3.9a) and (3.9c) is given by a single equation:
for given [f, γ] find the function u such that

(3.10) (A1C × Φ)u = [f, γ].

In the other periodization of (3.6) the function u(t) is chosen to be
the odd 1-periodic extension of v(x(t)), 0 < t < 1/2 and f(t) = g(x(t)),
t ∈ R is even. Proceeding in a similar manner as above, we find that
(3.6) is equivalent to

(3.11)
(A2Cu)(t) :=

∫ 1/2

−1/2

(a0(t, s)κ0(t− s) + a21(t, s)κ1(t− s)

+ a22(t, s))u(s) ds
= f(t), t ∈ R.

Here the functions a0(t, s), κ0(t) and κ1(t) are the same as for A1C but

a21(t, s) = b1(x(t), x(s))x′(s), a22(t, s) = b2(x(t), x(s))x′(s)/2.

In the case of the second formulation we do not use any additional
condition for the uniqueness but we insert a new parameter ω in order
to obtain a uniquely solvable equation for all righthand sides f . Thus
we shall consider the solution of the equation

(3.12) A2Cu+ w = f.



66 J. SARANEN AND G. VAINIKKO

3.3 Hypersingular equations. We recall the equation (2.3),

(3.13)

∫ 1

0

(
b0(x, y)
|x− y|2 + b1(x, y) log |x− y| + b2(x, y)

)
v(y) dy = g(x),

x ∈ I.

Applying the cosine transform and multiplying the resulting equation
by x′(t), we obtain for u(t) = v(x(t)), f(t) = x′(t)g(x(t)), the equation

(3.14)
∫ 1/2

0

K(t, s)u(s) ds = f(t), 0 < t <
1
2
,

where K = K0 +K1 +K2 with

K0(t, s) =
b0(x(t), x(s))x′(t)x′(s)
| cos 2πt− cos 2πs|2/4 ,

K1(t, s) = b1(x(t), x(s))x′(t)x′(s) log | sinπ(t− s) sinπ(t+ s)|
K2(t, s) = b2(x(t), x(s))x′(t)x′(s).

The function f is an odd function on R, and we extend u as an
odd function to the whole real axis. By the parity properties of the
functions Kj , f and u, (3.14) is equivalent to

(3.15)
1
2

∫ 1/2

−1/2

K(t, s)u(s) ds = f(t), t ∈ R.

By using the relation (cos 2πt−cos 2πs)2/4 = (sinπ(t−s) sinπ(t+s))2

and
sin 2πt sin 2πs

(sinπ(t− s) sinπ(t+ s))2
=

1
sin2 π(t− s)

− 1
sin2 π(t+ s)

we obtain

1
2

∫ 1/2

−1/2

K0(t, s)u(s) ds = π2

∫ 1/2

−1/2

b0(x(t), x(s))
sin2 π(t− s)

u(s) ds.

Moreover, we have

1
2

∫ 1/2

−1/2

K1(t, s)u(s) ds

= π2

∫ 1/2

−1/2

b1(x(t), x(s))x′(t)x′(s) log | sinπ(t− s)|u(s) ds,
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and (3.15) becomes for the 1-periodic odd functions u, f ,

(3.16)
(AHu)(t) :=

∫ 1/2

−1/2

(a0(t, s)κ0(t− s) + a1(t, s)κ1(t− s)

+ a2(t, s))u(s) ds
= f(t), t ∈ R,

where
κ0(t) = (sin2 πt)−1, κ1(t) = log | sin πt|,

a0(t, s) = π2b0(x(t), x(s)),
a1(t, s) = b1(x(t), x(s))x′(t)x′(s),
a2(t, s) = b2(x(t), x(s))x′(t)x′(s)/2.

Remark 3.1. The cosine substitution was introduced by Multhopp
in [15] for the airfoil equation of Prandtl, see also [35, 22, 21]. For
Symm’s equation it was applied by Yan and Sloan [37] and for the
basic hypersingular integral equation on an interval by Bühring [7].

4. Even and odd operators. By means of the periodization we
have transformed all the equations (2.1) (2.3) to the form

(4.1)
∫ 1/2

−1/2

(a0(t, s)κ0(t− s) + a1(t, s)κ1(t− s)

+ a2(t, s))u(s) ds = f(t), t ∈ R,

where u and f are 1-periodic and ap ∈ C∞1,1(R
2), the space of all

1-biperiodic smooth functions. Moreover, it holds that a0(t, t) �= 0,
t ∈ R. Equation (4.1) is a special example of equations analyzed in
[28]. In order to include more applications than just those connected
to equations (2.1) (2.3), we assume the general form used in [28]. We
consider the equation

(4.2) Au = f,

where A =
∑q

p=0Ap such that

(4.3) (Apu)(t) =
∫ 1/2

−1/2

κp(t− s)ap(t, s)u(s) ds, ap ∈ C∞1,1(R
2).
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Furthermore, we assume that κp, 0 ≤ p ≤ q, are 1-periodic distributions
on R such that the Fourier coefficients satisfy for α ∈ R,

(4.4)
|Δkκ̂p(l)| ≤ ck|l|α−p−k,

0 �= l ∈ Z, k ∈ N0 = N ∪ {0}, p = 0, 1, . . . , q.

Here Δ is the difference operator, Δκ̂p(l) = κ̂p(l + 1) − κ̂p(l). Due to
(4.3) and (4.4), Ap ∈ Op

∑α−p, i.e., Ap is a periodic pseudodifferential
operator of order α − p. On the main part A0 of the operator A we
impose the following condition for a positive number c00:

|κ̂0(l)| ≥ c00|l|α, 0 �= l ∈ Z,(4.5a)
a0(t, t) �= 0, t ∈ R.(4.5b)

It follows from (4.3) (4.5) that A is an elliptic periodic pseudodif-
ferential operator of order α, see [33], and A ∈ L(Hλ, Hλ−α) for any
λ ∈ R. Here Hλ is the Sobolev space of 1-periodic distributions u with
the norm

‖u‖λ =
( ∑

k∈Z
[max(1, |k|)]2λ|û(k)|2

)1/2

,

û(k) =
∫ 1/2

−1/2

u(s)e−ik2πs ds = 〈u, e−ik2πt〉.

Moreover, A : Hλ → Hλ−α is a Fredholm operator of index zero for
any λ ∈ R, and N(A) = {u ∈ Hλ | Au = 0} ⊂ C∞1 (R) is independent
of λ; N(A) = {u ∈ C∞1 (R) | Au = 0}. Therefore, if

(4.6) Au = 0, u ∈ C∞1 (R) ⇒ u = 0,

then A : Hλ → Hλ−α, λ ∈ R is an isomorphism.

Next we discuss solvability of (4.2) in the special cases of (2.1) (2.3).
The transformed equations (3.5), (3.9) and (3.16) were derived by using
special parity properties of the functions u, f and the operatorA. These
properties are also utilized when discussing the unique solvability of
(4.2). For this we introduce the Sobolev spaces Hλ

e and Hλ
o of the even
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and odd functions

Hλ
e = {u ∈ Hλ | u(−t) = u(t)}

= {u ∈ Hλ | û(−n) = û(n), n ∈ Z},
Hλ

o = {u ∈ Hλ | u(−t) = −u(t)}
= {u ∈ Hλ | û(−n) = −û(n), n ∈ Z}.

These spaces are closed subspaces of Hλ, and Hλ is represented as the
direct sum Hλ = Hλ

e + Hλ
o . Let Pe : Hλ → Hλ

e and Po : Hλ → Hλ
o

be the corresponding projections. For u ∈ Hλ we write ue = Peu,
uo = Pou. We say that the operator A is an even operator if A does not
change the parity of the function, i.e., if PeAuee = Aue, P0Au0 = Au0

holds. The operator A is an odd operator if A changes the parity,
i.e., we have PeAuo = Auo, PoAue = Aue. Equivalently, A is even
if APe = PeA and A is odd if APe = PoA. Consider the solution of
equation (4.2). If A is even, the equation (4.2) is equivalent to the
system

(4.7) Aue = fe, Auo = fo.

Similarly, if A is odd, the equation (4.2) is equivalent to the system

(4.8) Auo = fe, Aue = fo.

In our applications which arise from applying the cosine transform to
an equation on an open arc, we do not use the whole system (4.7) or
(4.8) but just one or other of the equations appearing in these systems.

Now we characterize the parity properties of an integral operator
through its kernel. Consider a general term Ap = A in the representa-
tion of A defined by

(Au)(t) =
∫ 1/2

−1/2

κ(t− s)a(t, s)u(s) ds,(4.9)

a ∈ C∞1,1(R
2), |Δkκ̂(l)| ≤ c|l|α−k, 0 �= l ∈ Z, k ∈ N0.(4.10)

Introduce the conditions

κ is even, i.e., κ̂(−l) = κ̂(l), l ∈ Z,(4.11)
κ is odd, i.e., κ̂(−l) = −κ̂(l), l ∈ Z,(4.12)

a is even, i.e., a(−t− s) = a(t, s), t, s ∈ R(4.13)
a is odd, i.e., a(−t,−s) = −a(t, s), t, s ∈ R.(4.14)



70 J. SARANEN AND G. VAINIKKO

Observe that (4.13) is equivalent to the condition â(−k,−j) = â(k, j),
k, j ∈ Z, and (4.14) is equivalent to â(−k,−j) = −â(k, j), k, j ∈ Z.

Lemma 4.1. (i) A is even if conditions {(4.11), (4.13)} or
{(4.12),(4.14)} are fulfilled.

(ii) A is odd if conditions {(4.11),(4.14)} or {(4.12),(4.13)} are
fulfilled.

Proof. By definition

A is even iff

{
û(−j) = û(j), j ∈ Z ⇒ (Âu)(−k) = (Âu)(k), k ∈ Z;

û(−j) = −û(j), j ∈ Z ⇒ (Âu)(−k) = −(Âu)(k), k ∈ Z

}

A is odd iff

{
û(−j) = û(j), j ∈ Z ⇒ Âu)(−k) = −(Âu)(k), k ∈ Z;

û(−j) = −û(j), j ∈ Z ⇒ (Âu)(−k) = (Âu)(k), k ∈ Z

}
.

We have, see, e.g., [33, p. 90],

(Âu)(k) =
∑

j,l∈Z
â(k − l, l − j)κ̂(l)û(j), k ∈ Z.

Respectively,

(Âu)(−k) =
∑

j,l∈Z
â(−k − l, l − j)κ̂(l)û(j)

=
∑

j,l∈Z
â(−(k − l),−(l − j))κ̂(−l)û(−j).

Now the assertions of the lemma easily follow.

Remark 4.1. Condition (4.13) holds true, if one of the following is
valid

a(−t, s) = a(t, s), a(t,−s) = a(t, s), t, s ∈ R,
(4.15a)

a(−t, s) = −a(t, s), a(t,−s) = −a(t, s), t, s ∈ R.
(4.15b)
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Similarly, (4.14) holds true if one of the following is valid

a(−t, s) = −a(t, s), a(t,−s) = a(t, s), t, s ∈ R,
(4.16a)

a(−t, s) = a(t, s), a(t,−s) = −a(t, s), t, s ∈ R.
(4.16b)

We introduce a linear functional Φ by

(4.17) Φu =
∫ 1/2

−1/2

u(s)φ(s) ds, where φ ∈ C∞1 (R) is even.

Furthermore, we define the operators A× Φ and A� Φ such that

(A× Φ)u = [Au,Φu], u ∈ Hλ
e ,(4.18)

(A� Φ)[u,w] = Au+ ωφ, [u,w] ∈ Hλ
o × C.(4.19)

Lemma 4.2. In addition to (4.10), assume that a(t, t) �= 0, t ∈ R
and

|κ̂(l)| ≥ c0|l|α, 0 �= l ∈ Z, c0 > 0.

Then, for any λ ∈ R, the following holds true

(i) Under conditions (4.11) and (4.13), A ∈ L(Hλ
e , H

λ−α
e ) and

A ∈ L(Hλ
o , H

λ−α
o ) are Fredholm operators of index 0,

(ii) Under conditions (4.12) and (4.13), A ∈ L(Hλ
e , H

λ−α
o ) and A ∈

L(Hλ
o , H

λ−α
e ) are Fredholm operators of index 1 and −1, respectively.

Consequently, we have A × Φ ∈ L(Hλ
e , H

λ−α
o × C) and A � Φ ∈

L(Hλ
o × C, Hλ−α

e ), and these are Fredholm operators of index 0.

Proof. Represent A = A0 + A1 with A0 = MbB, where Mb denotes
multiplication by b(t) = a(t, t) and B is defined by

(Bu)(t) =
∫ 1/2

−1/2

κ(t− s)u(s) ds =
∑
l∈Z

û(l)κ̂(l)eil2πt.

Clearly, under condition (4.11), B ∈ L(Hλ
e , H

λ−α
e ) and B ∈ L(Hλ

o ,
Hλ−α

o ) are Fredholm operators of index 0, and under condition (4.12),
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B ∈ L(Hλ
e , H

λ−α
o ) and B ∈ L(Hλ

o , H
λ−α
e ) are Fredholm of index 1

and −1, respectively. The same property has A0 = MbB, since b is
even under condition (4.13), and, therefore, Mb ∈ L(Hλ−α

e , Hλ−α
e ) and

Mb ∈ L(Hλ−α
o , Hλ−α

o ) are isomorphisms. Finally, A1 = A − A0 ∈
L(Hλ, Hλ−α+1), see, e.g., [28] or [33]; therefore, A1 ∈ L(Hλ, Hλ−α)
is compact. Of course, it has the same parity properties as A and
A0. From this we obtain the assertions of the lemma concerning the
Fredholmness and index of A. The last assertion in (ii) concerning
A× Φ and A� Φ follows from properties of A.

Notice that the condition a(t, t) �= 0, t ∈ R, cannot be fulfilled if
a(t, s) is an odd function.

5. Analysis of the periodic problem. In this section we analyze
the solvability of the periodic problem for even and odd operators. As
an application we obtain solutions of the periodic problems derived
in Section 3. Consider first the case of even operators. Assuming
the general conditions (4.3) (4.5), an even operator A defines bounded
mappings A ∈ L(Hλ

e , H
λ−α
e ), A ∈ L(Hλ

o , H
λ−α
o ). For our applications

we need to specify the main part further. For this, let C∞1e (R) and
C∞1o (R) be the space of all even, respectively, odd, functions in C∞1 (R).
We require on the main part the following properties:

κ̂0(−l) = κ̂0(l), 0 �= l ∈ Z,(5.1a)
a0(−t,−s) = a0(t, s), t, s ∈ R,(5.1b)

a0(t, t) �= 0, t ∈ R.(5.1c)

Moreover, we impose the conditions

u ∈ C∞1e (R), Au = 0 ⇒ u = 0,(5.2a)
u ∈ C∞1o (R), Au = 0 ⇒ u = 0.(5.2b)

Theorem 5.1. Let λ ∈ R be given. Assume that A is an even
operator with the conditions (4.3) (4.5) and (5.1). If (5.2a) is valid,
then A : Hλ

e → Hλ−α
e is an isomorphism. Moreover, if (5.2b) is valid,

then A : Hλ
o → Hλ−α

o is an isomorphism.
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Proof. The main part of the operator A satisfies the conditions of
Lemma 4.2 part (i), and A is a compact perturbation of the main part.
This with (5.2) yields the assertions.

Consider the solvability of the equations (3.5) and (3.16). For these
we set

v ∈ L2
σ(I), BLv = 0 ⇒ v = 0,(5.3a)

v ∈
◦
H1

σ(I), BHv = 0 ⇒ v = 0.(5.3b)

Lemma 5.1. The following assertions are valid:

(i) The mapping v �→ u with u(t) = v(x(t)), t ∈ R, defines a linear
isomorphism between L2

1/σ(I) and H0
e as well as between H1

σ(I) and
H1

e .

(ii) The mapping v �→ u with u(t) = v(x(t))sign t, |t| ≤ 1/2, extended
to a 1-periodic function, defines a linear isomorphism between L2

1/σ(I)

and H0
o as well as between

◦
H1

σ(I) and H1
o .

(iii) The mapping v �→ u with u(t) = v(x(t))x′(t), t ∈ R, defines a
linear isomorphism between L2

σ(I) and H0
o .

(iv) The mapping v �→ u with u(t) = v(x(t))|x′(t)|, t ∈ R, defines a
linear isomorphism between L2

σ(I) and H0
e .

Proof. For u(t) = v(x(t)) and u(t) = v(x(t))sign t, we have

‖u‖2
0 =

∫ 1/2

−1/2

|u(t)|2 dt = 2
∫ 1/2

0

|u(t)|2 dt

= 2
∫ 1/2

0

|v(x(t))|2
x′(t)

x′(t) dt = 2
∫ 1

0

|v(x)|2
x′(t(x))

dx

=
1
π

∫ 1

0

|v(x)|2
x1/2(1 − x)1/2

dx =
1
π
‖v‖2

1/σ,

where t(x) = (1/(2π)) arccos(1 − 2x) is the inverse function of x =
x(t) = [(1− cos 2πt)/2], 0 ≤ t ≤ 1/2. A similar calculation shows that,
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for u(t) = v(x(t))x′(t) as well as for u(t) = v(x(t))|x′(t)|, t ∈ R, we
have ‖u‖2

0 = 4π‖v‖2
σ. Hence, for u(t) = v(x(t)), we also have

(5.4) (‖u‖2
0 + ‖u′‖2

0)
1/2 = ((1/π)‖v‖2

1/σ + 4π‖v′‖2
σ)1/2.

On the lefthand side there is a norm equivalent to ‖u‖1 and on the
righthand side there is a norm equivalent to ‖v‖1,σ. Now assertions (i),
(iii), (iv) and the first part of (ii) easily follow. To obtain the second
part of (ii), notice that (5.4) remains true also for u(t) = v(x(t))sign t
provided that this function is continuous at t = 0, i.e., v(0) = 0.
The continuity of the 1-periodic extension of u means that u(1/2) =
u(−1/2) or v(1) = 0.

Thus, u ∈ H1
o if and only if v ∈

◦
H1

σ(I), and inequality (5.4) holds
true for those functions. Hence the second part of (ii) is also proved.

Now we obtain

Theorem 5.2. Assume (5.3). Then the operators BL : L2
σ(I) →

H1
σ(I), BH :

◦
H1

σ(I) → L2
σ(I) and AL : Hλ

e → Hλ+1
e , AH : Hλ

o → Hλ−1
o

are isomorphic for all λ ∈ R.

Remark 5.1. Assume that v ∈ L2
σ(I) is the solution of BLv = g such

that g ∈ C∞(Ī). Then it follows from Theorem 5.2 that v is of the form
v(x) = x−1/2(1 − x)−1/2ψ(x), ψ ∈ C(Ī). For this regularity result, the

condition on g can be considerably relaxed. Similarly, if v ∈
◦
H1

σ(I) is
the solution of BHv = g where g ∈ C∞(Ī), it follows from Theorem 5.2
that v is of the form v(x) = x1/2(1 − x)1/2ψ(x), ψ ∈ C(Ī). In fact, for
the latter case, one can show sharper result ψ ∈ C∞(Ī). For the case
of the basic hypersingular equation, see [7, 6].

Consider now the case of an odd operator A together with the
operators A × Φ and A � Φ. We require on the main part A0 the
properties

κ̂0(−l) = −κ̂0(l), 0 �= l ∈ Z,(5.5a)
a0(−t,−s) = a0(t, s), t, s ∈ R,(5.5b)

a0(t, t) �= 0, t ∈ R.(5.5c)
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Moreover, for the linear functional Φ : Hλ
e → C we additionally impose

(5.6) Φ1 =
∫ 1/2

−1/2

φ(s) ds �= 0.

We consider the solution of the equation

(5.7) u ∈ Hλ
e : Au = f, Φu = γ, f ∈ Hλ−α

o , γ ∈ C

and assume uniqueness for the homogeneous problem in the form

(5.8) u ∈ C∞1e (R), Au = 0, Φu = 0 ⇒ u = 0.

Theorem 5.3. Assume (4.3) (4.5), (4.17), (5.5), (5.6) and (5.8).
Then, for any λ ∈ R, the operator A × Φ : Hλ

e → Hλ−α
o × C is an

isomorphism.

We apply this result to the solution of the Cauchy singular integral
equations on the interval I in the case where the periodization is carried
out by the first method described in Section 3.2. The corresponding
operator A1C is given in (3.9a). We set the condition

(5.9) v ∈ L2
σ(I), BCv = 0, ΦIv = 0 ⇒ v = 0.

Theorem 5.4. Assume (5.9) and define Φu = (1/2)
∫ 1/2

−1/2
u(s) ds.

Then the mapping BC ×ΦI : L2
σ(I) → L2

σ(I)×C and A1C ×Φ : Hλ
e →

Hλ
o × C are isomorphic for all λ ∈ R.

Proof. It suffices to show that any function u ∈ C∞1e (R) satis-
fying A1Cu = 0, Φu = 0 vanishes identically on R. We define
v(x) = (u(t(x))/(2π

√
x(1 − x))). Since u(t(x)) is continuous, one eas-

ily verifies that v ∈ L2
σ(I). Moreover, BCv = 0, ΦIv = 0, which implies

v = 0 and u = 0.

Remark 5.2. Consider the equation of the special form, b0 is constant,

(5.10)
(BCv)(x) :=

∫ 1

0

(
b0

x− y
+ b1(x) log |x− y| + b2(x, y)

)
v(y) dy

= g(x), x ∈ I,
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where bk, k = 0, 1, 2, are real and b1 ∈ L2
σ(I). Applying the results of

[23, p. 86], one finds conditions on the functions bk which guarantee
that the problem BCv = g, ΦIv = γ, v ∈ L2

σ(I) is uniquely solvable.
Then (5.9) is valid, in particular.

Remark 5.3. Assume that g is sufficiently smooth and v ∈ L2
σ(I) such

that BCv = g. Then v is of the form v(x) = x−1/2(1 − x)−1/2ψ(x),
ψ ∈ C(Ī).

We now turn to describe how the second periodization in Section 3.2
can be utilized for solution of Cauchy singular equations on an interval.
This leads to a problem of the general form

(5.11) u ∈ Hλ
o , ω ∈ C : Au+ ωφ = f, f ∈ Hλ−α

e .

Problem (5.11) can be viewed as a “dual” problem of (5.7). As in the
previous cases, the uniqueness for homogeneous equation is sufficient
(and necessary) to solve the general equation (5.11) completely. We
put the condition

(5.12) Au+ ωφ = 0, u ∈ C∞1o (R), ω ∈ C ⇒ u = 0, ω = 0,

and have a solvability result for (5.11) given by the operator as A � Φ
as follows.

Theorem 5.5. Assume (4.3) (4.5), (5.5), (5.6) and (5.12). Then, for
any λ ∈ R, the operator A � Φ : Hλ

o ×C → Hλ−α
e is an isomorphism.

For the Cauchy singular operator we impose the condition in terms
of functions on I,

(5.13) v ∈ L2
1/σ(I), ω ∈ C, BCv + ω = 0 ⇒ v = 0, ω = 0.

Theorem 5.6. Assume (5.13). Then BC � ΦI : L2
1/σ(I) × C →

L2
1/σ(I) is an isomorphism and A2C � Φ : Hλ

o × C → Hλ
e is an

isomorphism for all λ ∈ R.
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In real applications one has to check that (5.12) or (5.13) holds, and
it may not be easy. In the following we introduce an alternative way
to discuss the solvability properties of (5.11). The idea is to make
an effective use of the “duality” between (5.11) and (5.7). To be more
precise, we first show that (5.11) is an adjoint problem, in a strict sense,
of another problem of the general form (5.7).

For given A ∈ L(Hλ, Hλ−α), we have the adjoint A∗∈L(Hα−λ, H−λ)
defined by

(5.14) (Au, v) = (u,A∗v), u ∈ Hλ, v ∈ Hα−λ.

If A is an odd operator additionally, the operator A∗ is an odd operator,
too. Moreover, the restriction operator A : Hλ

o → Hλ−α
e has the

adjoint A∗ : Hα−λ
e → H−λ

o and A : Hλ
e → Hλ−α

o has the adjoint
A∗ : Hα−λ

o → H−λ
e . Furthermore, if A is a pseudodifferential operator

satisfying the general conditions (4.3) (4.5) and (5.5) for given α ∈ R,
then the operator A∗ also satisfies these conditions for the same number
α. We introduce the duality pairing

〈[u,w], [v, μ]〉 := (u, v) + ωμ̄,

[u, ω] ∈ Hλ × C, [v, μ] ∈ H−λ × C.

Now we have

〈(A∗ × Φ)u, [v, ω]〉 = (u, (A � Φ)[v, ω]), u ∈ Hα−λ
e , v ∈ Hλ

o , ω ∈ C,

and therefore, A�Φ = (A∗×Φ)∗. By the general results for Fredholm
operators, we have

Theorem 5.7. Assume (4.3) (4.5) and (5.1). Then the operator
A � Φ : Hλ

o ×C → Hλ−α
e is an isomorphism for all λ ∈ R if and only

if A∗ × Φ : Hλ
e → Hλ−α

o × C is an isomorphism for all λ ∈ R.

As an application of Theorem 5.7, we recall the second periodization
method described for Cauchy singular equations in Section 3.2. We
consider the equation

(5.15) u ∈ Hλ
o , ω ∈ C : A2Cu+ (1/2)ω = f, f ∈ Hλ

e .
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In order to apply Theorem 5.7, we need the adjoint problem
(5.16)

u ∈ Hλ
e : A∗2Cu = f,

1
2

∫ 1/2

−1/2

u(s) ds = γ, f ∈ Hλ
o , γ ∈ C.

Now operator A∗2C has the kernel a∗2c(t, s) = a2C(s, t) which becomes

(5.17)

a∗2C(t, s) = −πb0(x(s), x(t))κ0(t− s)
+ b1(x(s), x(t))x′(t)κ1(t− s)

+
1
2
b2(x(s), x(t))x′(t).

Comparing (5.17) with the formula (3.9b) we find that the kernel a∗2C

coincides with the kernel obtained by the first method, if applied to the
operator
(5.18)

(B∗Cv)(x) :=
∫ 1

0

(
b0(y, x)
y − x

+ b1(y, x) log |x− y| + b2(y, x)
)
v(y) dy.

We impose the condition

(5.19) B∗Cv = 0, ΦIv = 0, v ∈ L2
σ(I) ⇒ v = 0.

Theorem 5.8. Assume (5.19). Then the mapping A2C � Φ :
Hλ

o × C → Hλ
e is an isomorphism for all λ ∈ R.

Remark 5.4. Recalling the operator in Remark 5.2, we have

(5.20) (B∗Cv)(x) =
∫ 1

0

(
b0

y − x
+ b1(y) log |x− y| + b2(y, x)

)
v(y) dy.

Now we can directly apply the results of [23] if b1 is constant. Then we
have the property (5.19) under a condition concerning b0, b1 and b2.

Remark 5.5. The second periodization method for the singular
integral equation gives a solution of the original equation BCv = g if the
unknown parameter ω in (5.15) turns out to be zero. If, additionally,
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f is sufficiently smooth, the function v(x) = u(t(x)) vanishes at the
endpoints of I. Solutions which vanish at a given endpoint are of
particular interest in physical applications. This condition is known
as the Kutta condition, see, e.g., [10].

6. Asymptotic approximation of integral operators. For the
following two lemmas, see [33, 32].

Lemma 6.1. For d ∈ N, approximate the operator A defined in
(4.9) (4.10) by Ad,

(6.1) (Adu)(t) =
d−1∑
j=0

aj(t)
∫ 1/2

−1/2

κj(t− s)u(s) ds

with

aj(t) = ∂(j)
s a(t, s)|s=t, ∂(0)

s = 1,

∂(j)
s =

j−1∏
k=0

(
1

2πi
∂

∂s
− k

)
, j ≥ 1,(6.2)

κ̂j(l) =
1
j!

Δj κ̂(l), l ∈ Z, j ∈ N0.(6.3)

Then Ad −A ∈ Op
∑α−d.

Lemma 6.2. Assume that κ̂ : Z → C is extended to κ̂ : R → C such
that κ̂ is C∞-smooth and

(6.4)
∣∣∣∣( d

dξ

)k

κ̂(ξ)
∣∣∣∣ ≤ C|ξ|α−k, |ξ| ≥ 1, k ∈ N0.

Define the operator Ad by (6.1) with

(6.5)
aj(t) =

(
1

2πi
∂

∂s

)j

a(t, s)
∣∣∣∣
s=t

,

κ̂j(l) =
1
j!

(
d

dξ

)j

κ̂(ξ)
∣∣∣∣
ξ=l

, l ∈ Z, j ∈ N0.
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Then Ad −A ∈ Op
∑α−d.

There is a standard linear procedure of extension of functions κ̂ :
Z → C to κ̂ ∈ C∞(R) such that (4.10) implies (6.4), see [33]. In
problems from practice, κ̂(l) is usually of a form where the extension
is obvious. We present the asymptotic expansions (6.1) and (6.4)
for integral operators from Section 3. Actually we have to write the
formulae for κ̂j(l), l ∈ Z, only.

(i) For (Au)(t) =
∫ 1/2

−1/2
a(t, s) log | sinπ(t− s)|u(s) ds we have

α = −1, κ̂(l) =
{− log 2, l = 0
−1/(2|l|), 0 �= l ∈ Z.

The extension κ̂ : R → R can be defined so that κ̂(ξ) = −(2|ξ|)−1

for |ξ| ≥ 1; the form of the extension for −1 ≤ ξ ≤ 1 has no influence
on the validity of the property Ad −A ∈ Op

∑−1−d, and we may put,
e.g., κ̂j(0) = 0, j ≥ 1. For |l| ≥ 1, j ≥ 1, we have

κ̂j(l) = − 1
j!

(
d

dξ

)j

(2|ξ|)−1

∣∣∣∣
ξ=l

= −1
2
|l|−j−1 ·

{
(−1)j l ≥ 1,

1 l ≤ −1.

(ii) For (Au)(t) = (1/i)
∫ 1/2

−1/2
a(t, s) cotπ(s− t)u(s) ds, we have

α = 0, κ̂(l) =

⎧⎨⎩
−1, l < 0
0, l = 0
1, l > 0

, l ∈ Z.

The extension κ̂ : R → R can be defined so that

κ̂(ξ) = sign ξ =
{

1, ξ ≥ 1
−1, ξ ≤ −1.

Respectively, κ̂j(l) = 0, l ∈ Z, j ≥ 1. This means that already for
d = 1 we have A1 −A ∈ Op

∑−∞ where

(A1u)(t) = (1/i)a(t, t)
∫ 1/2

−1/2

κ0(t− s)u(s) ds, κ̂0(l) = κ̂(l),

l ∈ Z.
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(iii) For (Au)(t) =
∫ 1/2

−1/2
(a(t, s)u(s))/(sin2 π(t−s)) ds we have α = 1,

κ̂(l) =
{

0, l = 0
−2|l|, 0 �= l ∈ Z.

Now, already with d = 2, A2 −A ∈ Op
∑−∞, where

(A2u)(t) = a(t, t)
∫ 1/2

−1/2

κ0(t− s)u(s) ds

+
1

2πi
∂a(t, s)
∂s

∣∣∣∣
s=t

∫ 1/2

−1/2

κ1(t− s)u(s) ds,

κ̂0(l) = κ̂(l), κ̂1(l) = −2sign l, l ∈ Z.

Remark 6.1. If A is an even (odd) operator, then so is Ad defined by
(6.1) and (6.4). The approximation (6.1), (6.2) does not preserve this
property.

7. Trigonometric interpolation.

7.1 Interpolation of functions u ∈ Hμ. For n ∈ N, denote

Zn =
{
k ∈ Z : −n

2
< k ≤ n

2

}
,

Tn =
{ ∑

k∈Zn

cke
ik2πt : ck ∈ C, k ∈ Zn

}
.

Thus Tn consists of trigonometric polynomials, dim Tn = n. Further,

(Pnu)(t) =
∑

k∈Zn

û(k)eik2πt

is the orthogonal projection of u ∈ Hμ, μ ∈ R, onto Tn. Clearly,

(7.1) ‖u− Pnu‖λ ≤
(
n

2

)λ−μ

‖u‖μ, λ ≤ μ.
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The interpolation projection Qnu, u ∈ Hμ, μ > 1/2, is defined by the
conditions

Qnu ∈ Tn, (Qnu)(jn−1) = u(jn−1), j = 0, 1, . . . , n− 1.

An explicit formula is given by

Qnu =
n−1∑
j=0

u(jn−1)ϕn,j =
∑

j∈Zn

u(jn−1)ϕn,j ,

ϕn,j(t) =
1
n

∑
k∈Zn

eik2π(t−jn−1);

the Lagrange polynomials ϕn,j ∈ Tn satisfy ϕn,j(kn−1) = δjk. The
error of trigonometric interpolations can be estimated by, see [33, 29]
or, without a characterization of the constant, [1, 26],

(7.2) ‖u−Qnu‖λ ≤ γμ

(
n

2

)λ−μ

‖u‖μ, 0 ≤ λ ≤ μ, μ >
1
2
,

where γμ = (1 + 2
∑∞

j=1 j
−2μ)1/2.

7.2 Interpolation of even and odd functions. Denote

T e
n =

{
c0 +

n∑
k=1

ck cos k2πt : ck ∈ C, k = 0, . . . , n
}
,

T o
n =

{ n∑
k=1

ck sin k2πt : ck ∈ C, k = 1, . . . , n
}
.

Thus, T e
n ⊕ T o

n = T2n+1. For u ∈ Hμ
e , respectively v ∈ Hμ

o , μ > 1/2,
the even and odd interpolations are defined by

Qe
nu ∈ T e

n , (Q
e
nu)(jh) = u(jh),

j = 0, . . . , n, h = 1/(2n+ 1),

Qo
nv ∈ T o

n , (Q
o
nv)(jh) = v(jh),

j = 1, . . . , n, h = 1/(2n+ 1).
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It is very easy to see that

Qe
nu = Q2n+1u for u ∈ Hμ

e , μ > 1/2,
Qo

nv = Q2n+1v for v ∈ Hμ
o , μ > 1/2.

Therefore, the estimate (7.2) implies

(7.3)
‖u−Qe

nu‖λ ≤ γμ

(
n+

1
2

)λ−μ

‖u‖μ

(0 ≤ λ ≤ μ) for u ∈ Hμ
e , μ > 1/2,

(7.4)
‖v −Qo

nv‖λ ≤ γμ

(
n+

1
2

)λ−μ

‖v‖μ

(0 ≤ λ ≤ μ) for v ∈ Hμ
o , μ > 1/2.

Implicit formulae for the even and odd interpolations are given by

Qe
nu =

n∑
j=0

u(jh)ϕe
n,j, Qo

nv =
n∑

j=1

v(jh)ϕo
n,j ,

h = 1/(2n+ 1),

where

ϕe
n,j(t) =

⎧⎪⎪⎨⎪⎪⎩
ϕn,0(t) = h(1 + 2

∑n
k=1 cos k2πt), j = 0

ϕn,j(t) + ϕn,−j(t)

= 2h(1 + 2
∑n

k=1 cos(k2πjh) cos(k2πt)), j = 1 . . . , n,

ϕo
n,j(t) = ϕn,j(t) − ϕn,−j(t) = 4h

n∑
k=1

sin(k2πjh) sin(k2πt),

j = 1, . . . , n.

7.3 Discrete Fourier transform. There are two possible representa-
tions of vn ∈ Tn: through its Fourier coefficients and through its nodal
values,

vn(t) =
∑

k∈Zn

cke
ik2πt =

∑
j∈Zn

djϕn,j(t),

ck = v̂n(k), dj = vn(jn−1), k, j ∈ Zn.
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The vectors cn = {ck : k ∈ Zn} and dn = {dj : j ∈ Zn} are related by
the discrete Fourier transforms cn = Fndn, dn = F−1

n cn:

ck =
1
n

∑
j∈Zn

e−ikj2πn−1
dj , k ∈ Zn,

dj =
∑

k∈Zn

eijk2πn−1
ck, j ∈ Zn.

For vn ∈ T e
n we have the representations

vn = c0 +
n∑

k=1

ck cos k2πt =
n∑

j=0

djϕ
e
n,j .

The vectors cn = (c0, . . . , cn) and dn = (d0, . . . , dn) are related by
discrete cosine Fourier transforms cn = Cndn, dn = C−1

n cn:

c0 = h

(
d0 + 2

n∑
j=1

dj

)
,

ck = 2h
(
d0 + 2

n∑
j=1

cos(kj2πh)dj

)
,

k = 1, . . . , n,

dj = c0 +
n∑

k=1

cos(jk2πh)ck,

j = 0, . . . , n, h = 1/(2n+ 1).

For vn ∈ T 0
n we have the representations

vn =
n∑

k=1

ck sin k2πt =
n∑

j=1

djϕ
o
n,j .

The vectors cn = (c1, . . . , cn) and dn = (d1, . . . , dn) are related by
discrete sine Fourier transforms cn = Sndn, dn = S−1

n cn:

ck = 4h
n∑

j=1

sin(2πkjh)dj , k = 1, . . . , n,

dj =
n∑

k=1

sin(2πjkh)ck,

j = 1, . . . , n, h = 1/(2n+ 1).
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By FFT, an application of Fn,F−1
n , Cn, C−1

n ,Sn and S−1
n costs

O(n logn) arithmetical operations instead of O(n2) operations by the
usual matrix-to-vector multiplications.

8. Some discrete versions of trigonometric collocation. Con-
sider the problem

(8.1) Au :=
q∑

p=0

Apu = f,

where the operator A satisfies the conditions (4.3) (4.6). Then A ∈
L(Hλ, Hλ−α) is an isomorphism for any λ ∈ R. We also assume that

(8.2) f ∈ Hμ−α, μ− α >
1
2
,

then f is continuous and (8.1) may be solved by the trigonometric
collocation method

(8.3) un ∈ Tn, QnAun = Qnf.

The following result is proved in [28] and actually is elementary in the
situation examined here.

Theorem 8.1. Under conditions (4.3) (4.6), and (8.2), QnA ∈
L(Tn) is for sufficiently large n invertible,

‖(QnA)−1‖L(Hλ−α,Hλ) ≤ cλ, n ≥ n0, λ ∈ R,(8.4)

‖uc
n − u‖λ ≤ cnλ−μ‖u‖μ, α ≤ λ ≤ μ,(8.5)

where uc
n = (QnA)−1Qnf is the collocation approximation for u =

A−1f ∈ Hμ.

To obtain fully discrete versions of the collocation method, we intro-
duce some further approximations of A. Let l,m, n ∈ N satisfy

(8.6) 2l ≤ m ≤ n, l ∼ nρ, m ∼ nσ, 0 < ρ ≤ σ ≤ 1.



86 J. SARANEN AND G. VAINIKKO

For u ∈ Tl we approximate Au by QmA(m)u with

(8.7)

A(m) =
q∑

p=0

A(m)
p ,

(A(m)
p u)(t) =

∫ 1/2

−1/2

κp(t− s)Qm,s[ap(t, s)u(s)] ds

where subindex s stands for the interpolation with respect to argument
s only. For u ∈ Tn � Tl we use asymptotic approximations QnAdu,
d ∈ N, of Au where Ad is of the form

(8.8)

Ad =
q∑

p=0

Ap,d,

(Ap,du)(t) =
d−p−1∑

j=0

ap,j(t)
∫ 1/2

−1/2

κp,j(t− s)u(s) ds

for p+ 1 ≤ d,

Ap,d = 0 for p+ 1 > d.

The only condition we put on the approximation is

(8.9) A−Ad ∈ Op
∑α−d

.

We refer to Lemmas 6.1 and 6.2 for two different possible constructions
of ap,j and κp,j . In both cases κp,0 = κp, ap,0(t) = ap(t, t). Introduce
the following modifications of the basic collocation method (8.3):

(8.10)
un ∈ Tn, Al,m,n,dun = Qnf

where Al,m,n,d = QmA(m)Pl +QnAd(I − Pl),

(8.11)
un ∈ Tn, Ãl,m,n,dun = Qnf

where Ãl,m,n,d = QnMbQmM1/bQmA(m)Pl +QnAd(I − Pl).

Here b(t) := a0(t, t) and

(Mbu)(t) = b(t)u(t), (M1/bu)(t) = u(t)/b(t).
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At first look, approximation (8.11) seems to be more complicated than
(8.10), but actually it leads to more simple matrix schemes as we will
see later.

Lemma 8.1. For vl ∈ Tl, 2l ≤ m ≤ n and any r > 0, we have

(8.12) ‖(QmA(m) −QnA)vl‖λ−α ≤ cλ,rl
−r‖vl‖λ, λ ∈ R.

Proof. It is sufficient to prove (8.12) for large λ, say λ > α + 1/2,
λ > 1/2. We have

QmA(m) −QnA = Qm(A(m) −A) − (I −Qm)A + (I −Qn)A.

(i) Notice that, due to the inequality l ≤ m/2,

(A(m) −A)vl

= −
q∑

p=0

∫ 1/2

−1/2

κp(t− s)(I −Qm,s)[(ap − Pl,sap)(t, s)vl(s)] ds.

Due to estimates (5.3) and (4.2) of [13],

‖(A(m) −A)vl‖λ−α ≤ c

q∑
p=0

‖(I −Qm,s)(ap − Pl,sap)vl‖λ−α,λ

≤ c′
q∑

p=0

‖(ap − Pl,sap)vl‖λ−α,λ

≤ c′′
q∑

p=0

‖(ap − Pl,sap)‖λ−α,λ‖vl‖λ

≤ c′′′
q∑

p=0

‖ap‖λ−α,λ+rl
−r‖vl‖λ

with any r > 0, where

‖a‖λ1,λ2 =
( ∑

k1,k2∈Z
[max{1, |k1|}]2λ1 [max{1, |k2|}]2λ2 |â(k1, k2)|2

)1/2

.
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Since ‖Qm‖L(Hλ−α,Hλ−α) ≤ const for λ − α > 1/2, we also have with
any r > 0,

‖Qm(A(m) −A)vl‖λ−α ≤ cλ,rl
−r‖vl‖λ.

(ii) Notice that, with l′ = [(m− l)/2],

(I −Qm)Avl =
q∑

p=0

(I −Qm)

·
∫ 1/2

−1/2

κp(t− s)[ap(t, s) − (Pl′,l′ap)(t, s)]vl(s) ds

where Pl,l denotes the orthogonal projection of order l with respect to
both arguments t and s. Estimating as in (i) we obtain

‖(I −Qm)Avl‖λ−α ≤ cλ,rl
−r‖vl‖λ with any r > 0.

(iii) The treatment of the term (I −Qn)Avl is similar to (ii).

Lemma 8.2. For vl ∈ Tl, 2l ≤ m ≤ n and any r > 0, we have

‖(QnMbQmM1/b − I)QmA(m)vl‖λ−α ≤ cλ,rl
−r‖vl‖λ, λ ∈ R.

Proof. Due to Lemma 8.1, we have, with m′ = [(m+ l)/2],

‖(QmA(m) −Qm′A(m′))vl‖λ−α ≤ cλ,rl
−r‖vl‖λ,

therefore it is sufficient to show that

‖(QnMbQmM1/b − I)Qm′A(m′)vl‖λ−α ≤ cλ,rl
−r‖vl‖λ.

Notice that QnMbQnM1/b = Qn, therefore, with wm′ = Qm′A(m′)vl,

(QnMbQmM1/b − I)wm′ = QnMb(Qm −Qn)M1/bwm′

= QnMb(Qm −Qn)M(1/b)−Pm−m′(1/b)wm′
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and, for λ− α > 1/2,

‖(QnMbQmM1/b − I)Qm′A(m′)vl‖λ−α

≤ c‖(1/b) − Pm−m′(1/b)‖λ−α‖wm′‖λ−α

≤ cλ(m−m′)−r‖1/b‖λ−α+r‖vl‖λ

≤ cλ,rl
−r‖vl‖λ.

Lemma 8.3. For vn ∈ Tn, l ≤ n, we have

(8.13) ‖Qn(Ad −A)(I − Pl)vn‖λ−α ≤ cλl
−d‖(I − Pl)vn‖λ, λ ≥ α.

Proof. Due to (8.9), Ad −A ∈ L(Hλ, Hλ−α+d), therefore

‖(Ad −A)(I − Pl)‖L(Hλ,Hλ−α) ≤ cλl
−d.

From this (8.13) follows immediately for λ−α > 1/2. For 0 ≤ λ−α ≤
1/2, we estimate

‖Qn(Ad −A)(I − Pl)vn‖λ−α ≤ ‖(Ad −A)(I − Pl)vn‖λ−α

+ ‖(I −Qn)(Ad −A)(I − Pl)vn‖λ−α

and

‖(I−Qn)(Ad −A)(I− Pl)vn‖λ−α ≤ cn−1‖(Ad −A)(I − Pl)vn‖λ−α+1

≤ cλn
−1n−d‖(I − Pl)vn‖λ+1

≤ cλn
−d‖(I − Pl)vn‖λ,

and this results in (8.13) again.

Theorem 8.2. Assume (4.3) (4.6), (8.2) and (8.6). Then the
operators Al,m,n,d ∈ L(Tn) and Ãl,m,n,d ∈ L(Tn) are invertible for
n ≥ n0 with some n0 ∈ N,

(8.14)
‖A−1

l,m,n,d‖L(Hλ−α,Hλ) ≤ cλ, ‖Ã−1
l,m,n,d‖L(Hλ−α,Hλ) ≤ cλ,

λ ≥ α,



90 J. SARANEN AND G. VAINIKKO

and for the solution un of equation (8.10) or (8.11), we have with any
r ≥ μ− α+ d,

(8.15)
‖un − uc

n‖λ ≤ cλl
−d‖(I − Pl)uc

n‖λ + cλ,rl
−r‖Plu

c
n‖λ

≤ c′λl
λ−μ−d‖u‖μ, α ≤ λ ≤ μ,

where uc
n = (QnA)−1Qnf is the collocation solution and u = A−1f ∈

Hμ is the exact solution of (8.1). If d ≥ ((1 − ρ)/ρ)(μ− α), then

(8.16) ‖un − u‖λ ≤ cnλ−μ‖u‖μ, α ≤ λ ≤ μ.

Proof. We have

Al,m,n,d −QnA = (QmA(m) −QnA)Pl +Qn(Ad −A)(I − Pl),

Ãl,m,n,d −Al,m,n,d = (QnMbQmM1/b − I)QmA(m)Pl.

With the help of Lemmas 8.1 8.3, we find, for vn ∈ Tn, r ≥ d,

‖(Al,m,n,d −QnA)vn‖λ−α ≤ cλ,rl
−r‖Plvn‖λ + cλl

−d‖(I − Pl)vn‖λ

≤ c′λl
−d‖vn‖λ,

‖(Ãl,m,n,d −Al,n,n,d)vn‖λ−α ≤ cλ,rl
−r‖Plvn‖λ

≤ cλ,rl
−r‖vn‖λ.

Together with (8.4), this implies (8.14). For un = A−1
l,m,n,dQnf , we

have
Al,m,n,d(uc

n − un) = (Al,m,n,d −QnA)uc
n

and
‖uc

n − u‖λ ≤ cλ‖(Al,m,n,d −QnA)uc
n‖λ−α

≤ cλ,rl
−r‖Plu

c
n‖λ + c′λl

−d‖(I − Pl)uc
n‖λ

≤ c′′λl
−d+λ−μ‖uc

n‖μ

≤ c′′′λ l
λ−μ−d‖u‖μ

(on the last step we used (8.5) with λ = μ). We obtained estimates
(8.15) for method (8.10). An obvious argument extends the result for
method (8.11). Estimate (8.16) follows from (8.5) and (8.15).
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9. Matrix form of the method (8.10). Here we show that under
conditions, cf. (8.6),

(9.1) 2l ≤ m ≤ n, l ∼ nρ, m ∼ nσ, 0 < ρ ≤ σ ≤ 1/2,

the computation of Al,m,n,dvn ∈ Tn for vn ∈ Tn costs O(n logn) arith-
metical operations. Consequently, iteration methods such as conjugate
gradients or GMRES can be recommended to solve the corresponding
n-system.

(i) Computation of QmA(m)Plvn =
∑q

p=0QmA
(m)
p Plvn, vn ∈ Tn.

For w ∈ Hν , ν > 1/2, we have

Qnw =
n−1∑
j=0

w(jn−1)ϕn,j , ϕn,j(t) =
1
n

∑
k∈Zn

eik2π(t−jn−1).

Thus,

Qm,s(ap(t, s)vl(s)) =
m−1∑
j=0

ap(t, jm−1)vl(jm−1)ϕm,j(s),

(A(m)
p vl)(t)

=
∫ 1/2

−1/2

κp(t− s)Qm,s(ap(t, s)vl(s)) ds

=
m−1∑
j=0

ap(t, jm−1)vl(jm−1)
∫ 1/2

−1/2

κp(t− s)ϕm,j(s) ds

=
m−1∑
j=0

ap(t, jm−1)vl(jm−1)
1
m

∑
k∈Zm

κ̂p(k)eik2π(t−jm−1)

and

(QmA
(m)
p vl)(j′m−1) =

m−1∑
j=0

ap(j′m−1, jm−1)

· 1
m

( ∑
k∈Zm

eik2π(j′−j)m−1
κ̂p(k)

)
vl(jm−1),

�
�
�
�
�
�

QmA
(m)
p Plvn = FmAp,mF−1

m P(l)
m,nv̂n
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where

(P(l)
m,nv̂n)(k) =

{
v̂n(k), k ∈ Zl,
0, k ∈ Zm\Zl,

and Ap,m is an m×m matrix with the entries

ap,j′,j = ap(j′m−1, jm−1)
1
m

∑
k∈Zm

eik2π(j′−j)m−1
κ̂p(k),

j′, j = 0, . . . ,m− 1.

Clearly the computation of the entries of Ap,m costs O(m2) arithmeti-
cal operations. Application of F−1

m , Ap,m and Fm also costs O(m2)
arithmetical operations (for F−1

m , Fm here the usual matrix applica-
tion may be used).

(ii) Computation of QnAd(I − Pl)vn, vn ∈ Tn. Recall that

Ad =
q∑

p=0

Ap,d,

Ap,d = Map,j
Bp,j for p+ 1 ≤ d,

Ap,d = 0 for p+ 1 > d,

(Bp,ju)(t) =
∫ 1/2

−1/2

κp,j(t− s)u(s) ds.

For a ∈ C∞1 (R), wn ∈ Tn, we have
�
�
�
�

QnMawn = FnMa,nF−1
n ŵn with

the diagonal n×n-matrix Ma,n = diag (a(jn−1), j = 0, . . . , n−1). We
see that

�
�
�
�
�
�
�
�
�
�

QnMap,j
Bp,j(I − Pl)vn = FnMap,j ,nF−1

n Bp,j,nR(l)
n v̂n, p+ 1 ≤ d,

where

(R(l)
n v̂n)(k) =

{ 0, k ∈ Zl

v̂n(k), k ∈ Zn\Zl,
Bp,j,n = diag (κ̂p,j(k), k ∈ Zn).

The computation of QnAd(I − Pl)vn costs O(n logn) arithmetical
operations provided that FFT is used for the application of F−1

n and
Fn. Thus, under condition (9.1), Al,m,n,d can be applied to vn ∈ Tn
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in O(n logn) arithmetical operations. The matrix form of the modified
collocation method (8.10) is

(9.2) Pn,mFm

q∑
p=0

Ap,mF−1
m P(l)

m,nv̂n

+ Fn

q∑
p=0

d−p−1∑
j=0

Map,j ,nF−1
n Bp,j,nR(l)

n v̂n = Fnfn

where f
n

= (f(jn−1), j = 0, 1, . . . , n− 1).

(Pn,mŵm)(k) =
{
ŵm(k), k ∈ Zm

0, k ∈ Zn\Zm,
m ≤ n,

and the convention
∑h

j=0 = 0 for h < 0 is used. The iteration
methods such as GMRES or conjugate gradients, can be recommended
to solve the m-system (9.2). The number of iterations for these
methods to obtain the accuracy comparable with the approximation
accuracy (8.16) seems to be O(log n), see [34] for a more simple but
multidimensional problem. We do not go into details. Instead, we
propose an iteration method which needs a finite number of iterations
which is independent of n. This method is based on the preconditioning
of (8.11) by Ã−1

l,m,n,1.

Remark 9.1. Theorem 8.2 remains true for the further modification
where, on construction of Ad, we first approximate the coefficients
ap(t, s), p = 0, . . . , q, by their two-dimensional interpolations Qm,map

and then differentiate these functions, cf. (6.2) and (6.5). Under con-
dition (9.1), the computation of ̂Qm,map by FFT from the grid values
ap(jm−1, j′m−1), j, j′ = 0, . . . ,m − 1, costs O(n logn) arithmetical
operations.

10. Preconditioning of (8.11) and iteration method. Equation
(8.11) is equivalent to

un ∈ Tn, Ã−1
l,m,n,1(Ãl,m,n,dun −Qnf) = 0,

or

(10.1) un = Snun + gn,
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where
Sn = Sl,m,n,d = Ã−1

l,m,n,1(Ãl,m,n,1 − Ãl,m,n,d)

= Ã−1
l,m,n,1Qn(A1 −Ad)(I − Pl) ∈ L(Tn),

gn = Ã−1
l,m,n,1Qnf ∈ Tn.

Due to (8.13) and (8.14), ‖Snvn‖λ ≤ cl−1‖(I−Pl)vn‖λ, λ ≥ α, vn ∈ Tn.
Consequently, solving (10.1) by the iteration method

(10.2) u0
n = gn, uk

n = Snu
k−1
n + gn, k = 1, 2, . . . ,

we have with the solution un of (8.11) and (10.1), d ≥ ((1−ρ)/ρ)(μ−α),

uk
n − un = Sk

n(u0
n − un),

‖uk
n − un‖λ ≤ (cl−1)k‖(I − Pl)(u0

n − un)‖λ

≤ (cl−1)k(l/2)λ−μ‖u0
n − un‖μ

≤ c′(cl−1)k+1lλ−μ‖u‖μ,

α ≤ λ ≤ μ, u = A−1f,

see (8.16). For k + 1 ≥ ((1 − ρ)/ρ)(μ− λ), this provides

‖uk
n − un‖λ ≤ cnλ−μ‖u‖μ, 0 ≤ λ ≤ μ.

Consequently, the following result holds true.

Theorem 10.1. Fix d ≥ ((1 − ρ)/ρ)(μ − α). Then, under con-
ditions of Theorem 8.2, for k ≥ ((1 − ρ)/ρ)(μ − α)−1, the iteration
approximations uk

n are of optimal accuracy order

(10.3) ‖uk
n − u‖λ ≤ cnλ−μ‖u‖μ, 0 ≤ λ ≤ μ

where u = A−1f ∈ Hμ.

To present a matrix form of iteration method (10.2), we have to
analyze the computation of vn = Ã−1

l,m,n,1wn ∈ Tn for a given wn ∈ Tn,
i.e., the solution of equation Ãl,m,n,1vn = wn. Notice that A1 = A0,0 =
MbB with b(t) = a0,0(t) = a0(t, t), B = B0,0 introduced in the previous
section. Thus vn satisfies

QnMbQmM1/bQmA(m)Plvn +QnMbB(I − Pl)vn = wn.
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Since (QnM1/b)(QnMb) = Qn, the equation takes the form

QmM1/bQmA(m)Plvn +B(I − Pl)vn = QnM1/bwn.

Applying to both sides Pl and taking into account that PlB = BPl we
obtain

PlQmM1/bQmA(m)Plvn = PlQnM1/bwn.

Under conditions (4.3) (4.6), the operator PlM1/bA ∈ L(Tl) is invert-
ible for all sufficiently large l, and ‖(PlM1/bA)−1‖L(Hλ−α,Hλ) ≤ const,
see [13]. Using Lemma 8.1 it is easy to see that

‖Pl(QmM1/bQmA(m) −M1/bA)Pl‖L(Hλ,Hλ−α) → 0 as l → ∞;

therefore, the operator PlQmM1/bQmA(m) ∈ L(Tl) is also invertible for
sufficiently large l, and

‖(PlQmM1/bQmA(m))−1‖L(Hλ−α,Hλ) ≤ const, l ≥ l0.

From this, we find for vn = Pnvl + (I − Pl)vn, the representation

vn = B−1(I − Pl)QnM1/bwn

+ (I −B−1(I − Pl)QmM1/bQmA(m))

· (PlQmM1/bQmA(m)Pl)−1PlQnM1/bwn.

The matrix form of this formula is given by

v̂n = C(l)
n FnM1/b,nF−1

n ŵn

+ Pn,m

(
Im − C(l)

m FmM1/b,m

q∑
p=0

Ap,mF−1
m

)
· Pm,lD−1

l Pl,nFnM1/b,nF−1
n ŵn

=: Enŵn

where Im is the identity matrix of dimension m×m,

Dl = Pl,mFmM1/b,m

q∑
p=0

Ap,mF−1
m Pm,l
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is an l × l matrix,

(Pl,nv̂n)(k) = v̂n(k), k ∈ Zl, l ≤ n,

(C(l)
n v̂n)(k) =

{
v̂n(k)/κ̂0(k), k ∈ Zn\Zl

0, k ∈ Zl

and other matrices are introduced in the previous section. Clearly,
under condition (9.1), the computation of v̂n = Enŵn costs O(n logn)
arithmetical operations, if the application of D−1

l can be done in
this limitation. Using FFT, the matrix products defining Dl need
O(m2 logm) ≤ O(n logn) arithmetical operations. On the other hand,
an application of D−1

l to an l-vector by a Gauss-type method costs
O(l3) operations; therefore, we now strengthen the condition on l:

(10.4) 2l ≤ m ≤ n, l ∼ nρ, n ∼ nσ, 0 < ρ ≤ 1/3, ρ ≤ σ ≤ 1/2.

The matrix form of the iteration method (10.2) reads as follows:

û0
n = ĝn = EnFnfn

,

ûk
n = −EnFn

( d−1∑
j=1

Ma0,j ,nF−1
n Bp,j,n

+
q∑

p=1

d−p−1∑
j=0

Map,j ,nF−1
n Bp,j,n

)
R(l)

n ûk−1
n + ĝn.

Under condition (10.4), an iteration costs O(n logn) arithmetical op-
erations and, since the number k = [((1− ρ)/ρ)(μ−α)] of iterations is
sufficient to achieve the optimal accuracy order (10.3), the total work
remains in the amount of O(n logn) arithmetical operations.

11. Modification for even/odd A and f . Now we modify the
methods (8.10) and (8.11) for different cases where the solution of (8.1)
belongs to Hμ

e or Hμ
o .

(a) A and f are even, e.g., problem (3.5). Here we assume that κ0 and
a0 are even, whereas κp and ap, 1 ≤ p ≤ q, may be both even or both
odd. More precisely, κ0 and a0 satisfy (4.11) and (4.13) whereas κp

and ap, 1 ≤ p ≤ q satisfy {(4.11),(4.13)} or {(4.12),(4.14)}. According
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to Lemmas 4.1 and 4.2, under these supplementary conditions together
with (4.3) (4.5), A =

∑q
p=0Ap ∈ L(Hλ

e , H
λ−α
e ) is a Fredholm operator

of index 0 for any λ ∈ R. We assume that

(11.1) u ∈ C∞1e (R), Au = 0 ⇒ u = 0,

then A ∈ L(Hλ
e , H

λ−α
e ) is isomorphic, and for

(11.2) f ∈ Hμ−α
e , μ− α >

1
2
,

equation (8.1) has a unique solution u ∈ Hμ
e which can be determined

by the even trigonometric collocation method

(11.3) un ∈ T e
n , Qe

nAun = Qe
nf.

The counterpart of (8.10) now reads as follows:

(11.4)
un ∈ T e

n , Ae←e
l,m,n,dun = Qe

nf,

Ae←e
l,m,n,d = Qe

mA(m)
e P e

l +Qe
nAd(I − P e

l ).

Here A(m)
e =

∑q
p=0A

(m)
p,e with

(A(m)
p,e vl)(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ 1/2

−1/2
κp(t− s)Qe

m,s(ap(t, s)vl(s)) ds
if ap is even in s,∫ 1/2

−1/2
κp(t− s)Qo

m,s(ap(t, s)vl(s)) ds
if ap is odd in s,

, vl ∈ T e
l

remains to be even. The approximation Ad is constructed following
Lemma 6.2. Thus, Ad preserves the parity properties of A, is of the
form (8.8) and satisfies (8.9). The counterpart of (8.11) which reads as
follows:

(11.5)
un ∈ T e

n , Ãe←e
l,m,n,dun = Qe

nf,

Ãe←e
l,m,n,d = Qe

nMbQ
e
mM1/bQ

e
mA(m)

e P e
l +Qe

nAd(I − P e
l ).

This equation is equivalent to (10.1) and can be solved by the iteration
method (10.2) where now

Sn = (Ãe←e
l,m,n,1)

−1Qe
n(A1 −Ad)(I − P e

l ), gn = (Ãe←e
l,m,n,1)

−1Qe
nf.
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With obvious modifications, the results and analysis of previous sec-
tions holds for methods (11.3), (11.4), (11.5) and the iteration solution
of (11.5). In the matrix form of the methods, sine and cosine transforms
are used instead of Fn.

(b) A is even and f is odd, e.g., problem (3.16). About κp and ap,
we make again the assumptions introduced in (a) but instead of (11.1)
and (11.2) we assume

(11.6) u ∈ C∞1o (R), Au = 0 ⇒ u = 0,

(11.7) f ∈ Hμ−α
o , μ− α > 1/2.

Then A ∈ L(Hλ
o , H

λ−α
o ) is isomorphic, and u = A−1f ∈ Hμ

o can be
determined by the odd trigonometric collocation method

(11.8) un ∈ T o
n , Qo

nAun = Qo
nf.

Its fully discrete modifications are

(11.9)
un ∈ T o

n , Ao←o
l,m,n,dun = Qo

nf,

Ao←o
l,m,n,d = Qo

mA(m)
o P o

l +Qo
nAd(I − P o

l ),

(11.10)
un ∈ T o

n , Ão←o
l,m,n,dun = Qo

nf,

Ão←o
l,m,n,d = Qo

nMbQ
o
mM1/bQ

o
mA(m)

o P o
l +Qo

nAd(I − P o
l )

where A(m)
o =

∑q
p=0A

(m)
p,o with

(A(m)
p,o vl)(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ 1/2

−1/2
κp(t− s)Qo

m,s(ap(t, s)vl(s)) ds

if ap is even in s,∫ 1/2

−1/2
κp(t− s)Qe

m,s(ap(t, s)vl(s)) ds
if ap is odd in s,

, vl ∈ T o
l .

Again, the results and analysis of the previous sections remains true
for the methods (11.8), (11.9), (11.10) and the iterations (10.2) with

Sn = (Ão←o
l,m,n,1)

−1Qo
n(A1 −Ad)(I − P o

l ),

gn = (Ão←o
l,m,n,1)

−1Qo
nf.
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(c) A and f are odd, e.g., problem (3.10). Here we assume that a0

is even and κ0 is odd, whereas κp, 1 ≤ p ≤ q are even or odd with ap,
respectively, odd or even. Further we assume that

(11.1) u ∈ C∞1e (R), û(0) = 0, Au = 0 ⇒ u = 0,

(11.12) f ∈ Hμ−α
o , μ− α > 1/2.

Then A× Φ ∈ L(Hλ
e , H

λ−α
o ×C) is an isomorphism, see Theorem 5.3,

where (A× Φ)u = [Au, û(0)], u ∈ Hλ
e , and the problem

Au = f, û(0) = γ,

has a unique solution u = (A × Φ)−1[f, γ] ∈ Hλ
e which can be

determined by the even-to-odd trigonometric collocation method

(11.13) un ∈ T e
n , Qo

nAun = Qo
nf, ûn(0) = γ.

Its fully discrete modifications are given by

(11.14)
un ∈ T e

n , Ao←e
l,m,n,dun = Qo

nf, ûn(0) = γ,

Ao←e
l,m,n,d = Qo

mA(m)
e P e

l +Qo
nAd(I − P e

l ),

(11.15)
un ∈ T e

n , Ão←e
l,m,n,dun = Qo

nf, ûn(0) = γ,

Ão←e
l,m,n,d = Qo

nMbQ
o
mM1/bQ

o
mA(m)

e P e
l +Qo

nAd(I − P e
l ).

The results of the previous sections hold true for the methods (11.13),
(11.14), (11.15) and the iteration solution of (11.15).

(d) A is odd and f is even, e.g., problem (3.12). Here we put on A
the same assumptions as in (c) but instead of (11.11) and (11.12),

(11.16) u ∈ C∞1o (R), ω ∈ C, Au+ ω = 0 ⇒ u = 0, ω = 0,

(11.17) f ∈ Hμ−α
e , μ− α > 1/2.
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Then A � Φ ∈ L(Hλ
o × C, Hλ−α

e ) defined by (A � Φ)[u, ω] = Au + ω
is isomorphic, see Theorem 5.5, and the unique solution [u, ω] =
(A � Φ)−1f ∈ Hλ

o × C of the problem

Au+ ω = f

can be determined by the odd-to-even trigonometric collocation method

(11.18) un ∈ T o
n , ω ∈ C, Qe

n(Aun + ω) = Qe
nf,

and its fully discrete modifications

(11.19)
un ∈ T o

n , ω ∈ C, Ae←o
l,m,n,dun + ω = Qe

nf,

Ae←o
l,m,n,d = Qe

mA(m)
o P o

l +Qe
nAd(I − P o

l ),

and

(11.20)
un ∈ T o

n , ω ∈ C, Ãe←o
l,m,n,dun + ω = Qe

nf,

Ãe←o
l,m,n,d = Qe

nMbQ
e
mM1/bQ

e
mA(m)

o P o
l +Qe

nAd(I − P o
l ),

with A(m)
o as in case (b). The results of previous sections hold true

for the methods (11.18), (11.19), (11.20) and the iteration solution of
(11.20).
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Verh. Sächs. Akad. Wiss. Leipzig, Math.-Nat. Klasse. 97 (1950).
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