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STABILITY AND NUMERICAL STABILITY OF θ-METHODS

NEVILLE J. FORD, CHRISTOPHER T.H. BAKER AND J.A. ROBERTS

Dedicated to P.M. Anselone

ABSTRACT. In this work we consider equations of the
form

(†) y′(t) = −
∫ t

0

k(t − s)g(y(s)) ds, t ∈ R+,

and corresponding discretized equations of the form

(‡) yn+1 − yn = −h2

n+1∑
j=0

w
(n+1)
j kn+1−jg(yj), j ∈ N.

Levin and Nohel gave an analysis of the qualitative behavior of
solutions to (†) by means of methods based on deriving a Lya-
punov function for the solution. We analyze the qualitative
behavior of solutions to (‡), basing our analysis on the earlier
work by Levin and Nohel. We give a theorem on the quali-
tative behavior of solutions to (‡) and we are able to extend
the analysis of both the continuous and discrete equations to a
wider class of equations. We consider what conditions it would
be natural to impose on the numerical method to guarantee
that the qualitative behavior of solutions of (†) will be pre-
served in the solutions of the discrete scheme. We give a the-
orem in which we show that, under additional conditions on g
and k, the qualitative behavior of solutions may be preserved
in the discrete case, and we conclude with some numerical
examples to illustrate our analytical results and demonstrate
that a complete discrete analogue of the theory developed for
(†) requires further investigation.
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1. Background. The stability and asymptotic stability of solu-
tions to the types of problems we consider in this paper have been
analyzed using two main approaches. Frequency domain methods were
introduced by Popov, see [9, 25, 23]. These methods may be applied
directly to analyze integral equations and integro-differential equations
of Volterra type. Lyapunov’s second method, see, for example, [14, 21,
26], is often used as a tool for the stability analysis and the prediction of
qualitative behavior of solutions of differential equations. The method
of Lyapunov may be applied to integro-differential equations [2, 15,
23]. Some authors, see, for example, [9], consider hybrid approaches
that combine Lyapunov methods with frequency domain methods.

In this paper we have chosen to concentrate on Lyapunov approaches
to the stability analysis. Frequency domain and hybrid methods will
be considered in a sequel.

In their paper [17], Nohel and Levin applied a Lyapunov stability
analysis to the Volterra integro-differential equation

(1.1) y′(t) = −
∫ t

0

k(t − s)g(y(s)) ds, t ∈ R+.

The Lyapunov direct method has also been adapted for solutions
of difference equations, see [16], and the work has recently been
extended [3, 11] to include difference equations of Volterra type (and
of unbounded order) such as, for example,

(1.2)

yn+1 − yn = −h2
n+1∑
j=0

w
(n+1)
j kn+1−jg(yj),

n+1∑
j=0

w
(n+1)
j = n + 1, n ∈ N.

Throughout our paper we use the notation kj = k(jh) where h is the
(fixed) step length for our discrete scheme. We shall use the quadrature
rules known as the θ methods. These methods include the implicit
Euler formula for which

(1.3) {w(n)
0 , w

(n)
1 , . . . , w

(n)
n−1, w

(n)
n } = {0, 1, . . . , 1},
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the explicit Euler formula

(1.4) {w(n)
0 , w

(n)
1 , . . . , w

(n)
n−1, w

(n)
n } = {1, . . . , 1, 0}

and the trapezium rule for which

(1.5) {w(n)
0 , w

(n)
1 , . . . , w

(n)
n−1, w

(n)
n } = {0.5, 1, . . . , 1, 0.5}.

A general θ-rule has the form {w(n)
0 , w

(n)
1 , . . . , w

(n)
n−1, w

(n)
n } = {θ, 1, . . . ,

1, 1 − θ}.
As one can easily observe, methods of this type have weights that

are almost constant. This property was used in recent work by Vec-
chio [29] to enable the analysis of certain linear systems of Volterra
integro-differential equations. We remark that the use of methods with
repetition factor one can yield a similar analysis, see, for example, [7].
The methods we describe here have been widely studied in other con-
texts. We direct the interested reader to the references [1, 10, 19, 22
and 28].

Further recent analysis has considered some applications of the results
in the paper [3] to numerical methods, see [4]. Our work, in this
paper, is rather different from the other recent papers, since we aim to
mimic existing analysis for the equation (1.1) rather than to develop
an independent analysis of equation (1.2). A distinctive feature of
our paper, when compared to the earlier work, is that we give concrete
results for a class of nonlinear problems. An alternative approach to the
work presented in this paper, based on the general method of Lyapunov
functional construction, is described in the report [8].

Lyapunov-type methods are attractive, particularly for the analysis
of nonlinear problems such as (1.1) and (1.2), because in principle they
allow the investigation of stability concepts directly without the need
to find an expression for the solution.

2. Lyapunov functions and a stability result for (1.1). In
[17] the stability of the equation (1.1) is discussed essentially using
Lyapunov’s second method. We shall describe their discussion here to
set the scene for our investigation of the stability of (1.2).

Consider the equation

y′(t) = −
∫ t

0

k(t − s)g(y(s)) ds,
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subject to the following conditions:

H1. k ∈ L1[0,∞) is completely monotone.

H2. g(x) ∈ C(−∞,∞), xg(x) > 0, x �= 0, and hence x and g(x)
always have the same sign and g(0) = 0.

H3. G(x) :=
∫ x

0
g(ξ) dξ → ∞ as |x| → ∞.

Levin and Nohel [17] give the following theorem.

Theorem 2.1 (Levin and Nohel). Any solution u(t) of (1.1) subject
to H1, H2, H3 satisfies u(t) → 0 as t → ∞ providing the L1-function
k(t) is non-null.

Remarks. 1. If k(t) ≡ 0, then u(t) is constant and therefore stable.
If k(t) ≡ k(0) �= 0, then the solution u(t) may be stable but not
asymptotically stable. For example, the equation y′(t) = − ∫ t

0
y(s) ds

is equivalent to the equation of simple harmonic motion y′′(t) = −y(t),
whose solution is stable but not asymptotically stable.

2. The completely monotone kernel k ∈ L1 has fading mem-
ory. It follows that y′(t) = 0 can only be satisfied as t → ∞ if
lims→∞ g(y(s)) = 0. This situation can arise only if y(s) → 0 as
s → ∞. The ω-limit set of y thus consists of the single value zero.

3. While it may be convenient to assume that k is completely
monotone, in fact the results we give can be shown to depend only
on the assumption that (−1)jk(j)(t) ≥ 0 for j = 0, 1, 2 and k is not
constant. (This implies that k is a function of strong positive type, see
[24].)

4. The assumption that k is differentiable guarantees that the
evaluation (used later) of the sequence kn = k(nh) for fixed h > 0
is well-defined.

5. In this paper, stability is defined with respect to perturbations in
the initial value y(0). Theorem 2.1 implies that every solution to (1.1)
is asymptotically stable and that perturbations in the initial value may
be arbitrarily large. Our examples in the final section of this paper
illustrate that this property is certainly not preserved in some of our
discrete schemes.

6. The analysis of Levin and Nohel extends beyond the use of a
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Lyapunov function. For the purposes of this paper, we will derive
a discrete version of the following preliminary result, which is also
contained in the paper [17].

Theorem 2.2 (Levin and Nohel [17]). The zero solution of (1.1)
subject to H1, H2 and H3 is asymptotically stable providing that k(t) ∈
L1 is non-null.

Proof. For comparison with the discrete version, we reproduce the
main stages in the proof given by [17]. The proof is based around the
derivation of a Lyapunov function V for a solution of (1.1) satisfying
V (t) ≥ 0, V ′(t) < 0. The function

V (t) = G(u(t)) +
1
2

∫ t

0

∫ t

0

k(τ + s)g(u(t − τ ))g(u(t − s)) dτ ds,

is shown to be such a Lyapunov function. First we show that V is
positive. This follows since, by condition (2) above, G(u(t)) is positive
and K(τ, s) = k(τ + s) is a kernel of positive type since k is completely
monotone and a fortiori of positive type. The second term in the
expression for V is therefore nonnegative.

To complete the proof, we show that dV/dt is negative.

We observe that an equivalent expression for V is

V (t) = G(u(t)) +
1
2

∫ t

0

∫ t

0

k(2t − τ − s)g(u(τ ))g(u(s)) dτ ds.

It follows from this observation that

V ′(t) = G′(u(t))u′(t) +
∫ t

0

∫ t

0

k′(2t − τ − s)g(u(τ ))g(u(s)) dτ ds

+
∫ t

0

k(t − s)g(u(t))g(u(s)) ds.

Now

(2.1) G′(u(t))u′(t) = −g(u(t))
∫ t

0

k(t − s)g(u(s)) ds
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by (1.1). Hence, by substitution,

V ′(t) =
∫ t

0

∫ t

0

k′(τ + s)g(u(t − τ ))g(u(t − s)) dτ ds.

Complete monotonicity of k implies that the map (τ, s) → −k′(τ + s)
is of positive type. Hence V ′(t) ≤ 0 with equality only for t = 0.

The work considered so far has been concerned with the equation
(1.1), which has no forcing term. Equations of the form

(2.2) y′(t) +
∫ t

0

k(t − s)g(y(s)) ds = f(t, y(t)), t ∈ R+

can also be analyzed. Indeed, Levin and Nohel give an analysis of
equations of this form in the paper [18]. We remark that the analysis
given in Theorem 2.2 can be extended simply to give a corresponding
result for (2.2).

Corollary 2.3. The conclusions of Theorem 2.1 are also valid for the
equation (2.2) subject to the additional condition that f(t, ξ) satisfies
f(t, 0) = 0 and ξf(t, ξ) ≤ 0 whenever ξ �= 0.

Proof. Corollary 2.3 follows by the same argument as in the proof of
Theorem 2.2. We adapt the expression in (2.1)

(2.3) G′(u(t))u′(t) = g(u(t))
(

f(t, u(t)) −
∫ t

0

k(t − s)g(u(s)) ds

)
.

It follows that the expression for V ′(t) includes the additional term
g(u(t))f(t, u(t)).

Since ξf(t, ξ) ≤ 0 and x and g(x) always have the same sign with
g(0) = 0, we can conclude that g(u(t))f(t, u(t)) ≤ 0. The final
conclusion then follows as before.

3. Discretization of equations of the form (1.1). A natural
approach to the numerical solution of equations of the form (1.1)
would be the combination of a differential equation method with a
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quadrature rule for the integral. We consider a simple approach of this
type. Further discussion for a variety of approaches can be found, for
example, in [1].

With a θ-rule as a quadrature method, we analyze

(3.1) yn+1 − yn = −h2
n+1∑
j=0

w
(n+1)
j kn+1−jg(yj), w

(n)
j ≥ 0,

where {w(n)
0 , w

(n)
1 , . . . , w

(n)
n−1, w

(n)
n } = {θ, 1, . . . , 1, 1 − θ}, y0 = y(0).

Following on from Corollary 2.3, we remark here that our analysis
can also be applied to equations of the form

(3.2) yn+1 − yn = −h2
n+1∑
j=0

w
(n+1)
j kn+1−jg(yj) + f(n, yn).

4. Lyapunov functions and theorems on qualitative behavior
for the discrete equation. The construction of a Lyapunov function
for the discrete equation is less straightforward than one might hope.
In particular, we need to be very careful that the function V (n, {yj})
that we define does not depend on future values of the solution sequence
{yj}. In other words, we require that V (n, {yj}) does not depend on
any yi with i > n. As we shall see, it proves to be impossible to give a
complete discrete analogue of the continuous theory.

To begin with, we give a proof of asymptotic stability of the zero
solution of equation (3.1) when only positive perturbations are per-
mitted. This may seem rather restrictive, but nevertheless can be a
useful result when the function y has a particular physical or biological
meaning which implies that only nonnegative values of yn are possi-
ble. (This situation covers, for example, models of population size or
of concentration of a drug in the bloodstream.) Furthermore, it is our
conjecture (supported by experimental evidence) that, for a wide class
of kernels k and for suitable choice of initial value y0 and h > 0, yn ≥ 0
for every n.

We require a discrete Lyapunov theorem of the type introduced in
the recent papers [3, 4].
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Theorem 4.1. Let the sequence {yn} be a solution of a discrete
Volterra equation, and let Vi(y0, y1, . . . , yi) be, for each natural number
i, a scalar function continuous with respect to all its arguments, which
satisfies:

1. V0(0) = 0,

2. Vi(y0, y1, . . . , yi) ≥ ωi(‖yi‖),
3. ΔVi = Vi+1(y0, y1, . . . , yi, yi+1) − Vi(y0, y1, . . . , yi) ≤ 0, then the

given solution of the equation is stable.

4. If, in addition, ΔVi ≤ −ω2(‖yi‖), then the solution of the equation
is asymptotically stable.

Here the functions ωi are assumed to be scalar increasing functions
that satisfy ωi(0) = 0.

We can now give our first theorem on qualitative behavior of solutions
to (3.1). The proof of the theorem is followed by an example and some
remarks.

Theorem 4.2. For the equation (3.1), we make the following
assumptions:

H4. For each natural number n, the matrix A(n) := (A(n)i,j =
k2n−i−j), of order n, is a positive definite matrix and that the matrix
A‡(n) := (A‡(n)i,j = k2n+2−i−j − k2n−i−j), of order n, is a negative
semi-definite matrix.

H5. The function g(u) satisfies conditions H2 and H3 of Theorem 2.1
and is also nondecreasing.

H6. The solution values satisfy yj ≥ 0 for each j ≥ 0.

H7. The weights w
(n)
j are given by a θ-method with 0 ≤ θ ≤ 1/2.

Thus we insist that the θ-method is A-stable.

Then, for every ε > 0 there is a corresponding δε > 0 and a natural
number Nε for which |y0| < δε implies |yn| < ε for each n > Nε. If,
in addition to H4 H7 above, A‡(n) is, for each n, a negative definite
matrix, then yn → 0 as n → ∞.

In other words, the stability, respectively asymptotic stability, of the
zero solution (subject to H6) is preserved under discretization by a θ-
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method with 0 ≤ θ ≤ 1/2 provided the admissible perturbations produce
a solution satisfying H6.

Proof. Following a similar approach to the one used in the proof of
Theorem 2.2, we shall exhibit a Lyapunov function, this time for the
sequence {yn} which satisfies the equation (3.1). The conclusions given
in the statement of Theorem 4.2 then follow by Theorem 4.1.

Define

V (n, {yj}n
0 ) :=

h2

2

n∑
j=0

n∑
i=0

w
(n)
i w

(n)
j k2n−i−jg(yi)g(yj) + G(n, {yj})

where G(n, {yj}n
0 )(≥ 0), G(n, 0) = 0 will be defined later. As in the

previous proof, we shall show that V (n, {yj}) defined in this way has
the properties required of a Lyapunov function for {yj}.

Clearly, V (n, 0) = 0 and V (n, {yj}) ≥ 0 because, by hypothesis, A(n)
is a positive definite matrix for each n and G(n, {yj}) ≥ 0, G(n, 0) = 0.

Next we demonstrate that V (n + 1, {yj}) − V (n, {yj}) ≤ 0.

V (n + 1, {yj}) − V (n, {yj})

=
h2

2

n∑
j=0

n∑
i=0

(w(n+1)
i w

(n+1)
j k2n+2−i−jg(yi)g(yj)

− w
(n)
i w

(n)
j k2n−i−jg(yi)g(yj))

+ h2(1 − θ)g(yn+1)
n∑

j=0

w
(n+1)
j kn+1−jg(yj)

+
h2

2
(1 − θ)2k0g(yn+1)2

+ G(n + 1, {yj}) − G(n, {yj}).

Now define

G(n, {yj}) :=
n∑

j=1

w
(n)
j g(yj)(yj − yj−1) + y0M,

G(0, {yj}) = y0M
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where M is some positive constant chosen to make G(n, {yj}) ≥ 0. For
example, with our hypotheses, we can choose M = maxt∈[0,y0] g(t) =
g(y0). Now

G(n + 1, {yj}) − G(n, {yj})
= (1 − θ)g(yn+1)(yn+1 − yn) + θg(yn)(yn − yn−1)

= −h2(1 − θ)g(yn+1)
n+1∑
j=0

w
(n+1)
j kn+1−jg(yj)

− h2θg(yn)
n∑

j=0

w
(n)
j kn−jg(yj).

It follows, taking into account the change in the weight index from
w

(n+1)
i to w

(n)
i , that

V (n + 1, {yj}) − V (n, {yj})

=
h2

2

( n∑
j=0

n∑
i=0

w
(n)
i w

(n)
j (k2n+2−i−j − k2n−i−j)g(yi)g(yj)

)

+ h2θg(yn)
n∑

j=0

w
(n)
j (kn+2−j − kn−j)g(yj)

+
h2

2
θ2k2g(yn)2 − h2

2
(1 − θ)2k0g(yn+1)2.

By hypothesis, the matrix of order n+1 with (i, j) entry (k2n+2−i−j −
k2n−i−j) is negative semi-definite, and so the first two terms in the
righthand side of this expression are less than or equal to 0. The
condition 0 ≤ θ ≤ 1/2 combines with the observation that k2 −
k0 ≤ 0 and the fact that g is nondecreasing to yield the result
that V (n + 1, {yj}) − V (n, {yj}) ≤ 0, as required. Moreover, if
(k2n+2−i−j − k2n−i−j) is negative definite, then it follows that V (n +
1, {yj}) − V (n, {yj}) < (h2/2)(k2θ

2g(yn)2 − k0(1 − θ)2g(yn+1)2) < 0.
The conclusions of the theorem follow from Theorem 4.1 by choosing
the function ω(s) to be an increasing function on the interval [0, y0]
bounded above by (h2/2)(k0 − k2)θ2g(s)2.

Example. In Section 5 we will consider the example equation

y′(t) = −
∫ t

0

e−λ(t−s)[y(s)]3 ds
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which satisfies conditions H1, H2 and H3, using θ-methods with θ =
0, 1/2, 1. For θ = 0, 1/2 the discrete equation satisfies H4, H5 and H7,
and we will see that, for small enough y0 > 0, H6 is also satisfied. For
θ = 1, the hypothesis H7 is violated and we are able to make some
interesting observations about the numerical solution in this case.

Remarks. 1. It is possible to undertake a similar analysis and to reach
a similar conclusion to that given in Theorem 4.2 by a direct argument
and without recourse to a discrete Lyapunov function. The direct
argument is based on showing that the sequence {yn} is a decreasing
sequence of nonnegative values. However, it is in the spirit of this paper
to proceed by Lyapunov methods.

2. The above analysis also applies to perturbations of the zero
solution that are restricted to taking negative values. This follows
since xg(x) > 0 for all nonzero x.

3. The sequence {kj} we have considered has fading memory, since
it is in l1 and is completely monotone. It follows from (3.1)that

(a) the only possible limit, λ, of the sequence {yj} must satisfy
g(λ) = 0 (and so λ = 0),

(b) if yn ≥ 0 for n ≥ N , then there is a J ≥ N for which yj+1−yj ≤ 0
for every j ≥ J ,

(c) if yn ≤ 0 for n ≥ N , then there is a J ≥ N for which yj+1−yj ≥ 0
for every j ≥ J .

4. In either of the last two cases, we can easily construct a Lyapunov
function for {yn} as we did in our proof of Theorem 4.2. The only
addition to the analysis we gave is that the constant M must be changed
to ensure that G > 0.

5. The above remarks demonstrate that the zero solution of (3.1)
is stable (asymptotically stable) under the conditions H4, H5 and H7
among the class of perturbed solutions that exhibit only finitely many
changes of sign. In addition, we remark that the existence of a finite
value of M > 0 for which G > 0 is sufficient (but not necessary) for
the conclusions of Theorem 4.2.

We summarize these remarks in the following theorem, whose proof
is identical to the proof of Theorem 4.2 apart from the choice of
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constant M .

Theorem 4.3. For the equation (3.1), assume H4, H5, H7 are
satisfied as in Theorem 4.2. Let y0 be given. Then either

(i) the sequence yn exhibits infinitely many changes of sign, or

(ii) for every ε > 0 there is a corresponding δε > 0 and a natural
number Nε for which |y0| < δε implies |yn| < ε for each n > Nε.

If, in addition to H4, H5 and H7 above, A‡(n) is a negative definite
matrix, then either yn changes sign infinitely often or yn → 0 as
n → ∞.

Note. All of the above analysis can be repeated with hardly any
additional work for equations of the form (3.2), under the conditions
f(t, 0) = 0, ξf(t, ξ) < 0. We obtain the following corollary.

Corollary 4.4. Under the additional hypothesis that the function
f(t, ξ) satisfies f(t, 0) = 0 and ξf(t, ξ) ≤ 0 for ξ �= 0, the conclusions
of Theorem 4.3 also apply to the equation (3.2).

It remains to consider whether the possibility of persistent oscillatory
solutions admitted by Theorem 4.3 can arise in practice. Based on
experimental evidence we believe that, for each choice of θ in [0, 1] and
for suitable choice of kernel, k, and step length, h, one can choose y0

sufficiently small that yn ≥ 0 for every n ≥ 1. In other words, we
believe that hypothesis H6 will apply in practical situations so long as
we choose a sufficiently small value for y0 (depending on the chosen
step length h). The proof is technical and complicated, and we have
only had success with a few simple examples. We make the following
observation. Whatever choice of k and θ, too large a combination of
h > 0 and y0 results in spurious oscillations in the solution. However,
we have observed oscillations that are persistent only in the case of
the explicit rule (θ = 1). In the next section we consider the behavior
of solutions of difference equations arising from a continuous equation
that satisfies the conditions of Theorem 2.1. We show that, for different
choices of h > 0 and for different initial perturbations from zero we can
produce solutions to the discrete equation exhibiting several types of
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behavior, including the possibility of infinitely many changes of sign.
It remains to be considered whether precise conditions can be imposed
that limit the size of the initial perturbation from zero for fixed h > 0
which guarantee that the solution does not exhibit oscillatory behavior.
In this context, we remark that, for k(t) ≡ k(0), an oscillatory solution
of the continuous problem does arise.

5. Conclusions and numerical experiments. In this section we
consider the particular integro-differential equation

(5.1) y′(t) = −
∫ t

0

e−λ(t−s)[y(s)]3 ds.

For λ real and positive, this equation satisfies the conditions of
Theorem 2.1 and Theorem 2.2. We can therefore conclude that the
zero solution of (5.2) is asymptotically stable and that every solution
satisfies y(t) → 0 as t → ∞ whatever initial value y(0) we choose.
Further, from our analysis, we can predict that the numerical solution
will either oscillate infinitely many times or will satisfy yn → 0. Our
conjecture in the previous section suggests that, for sufficiently small
starting value y0, the solution will satisfy yn ≥ 0.

We consider three discrete equations (θ = 0, 1/2, 1) and compare the
long term solutions obtained for different initial values y0.

First we consider the implicit Euler rule (θ = 0) which provides an
implicit scheme:

(5.2) yn+1 − yn = −h2
n+1∑
j=1

e−λ(n+1−j)h[yj ]3, n ≥ 1.

Previous experience with other types of problems lead us to expect a
highly stable scheme to result. (Indeed, one can derive a definite result
on qualitative behavior of the solution in this case by the method of
stability by first approximation, see, for example, [16].)

Second, we consider the use of the trapezium rule (θ = 1/2) to provide
an alternative implicit scheme:

(5.3) yn+1 − yn = −h2

( n∑
j=1

e−λ(n+1−j)h[yj ]3 +
y3

n+1 + y3
0

2

)
, n ≥ 1.
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FIGURE 1. θ = 0. With small initial value, the solution tends slowly to 0.
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FIGURE 2. θ = 0. With larger initial value, the solution tends to 0 after
several oscillations.
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Again we have reason to expect good stability behavior.

For our third scheme, we have used the explicit Euler rule (θ = 1) for
comparison:

(5.4) yn+1 − yn = −h2
n∑

j=0

e−λ(n−j)h[yj ]3, n ≥ 1.

Here we are using an explicit scheme for evaluating the sequence
{yn}. Previous experience leads us to suspect that the scheme may
exhibit poor stability properties. Indeed, this scheme does not satisfy
hypothesis H7.

Figures 1 and 2 show values of the solution yn of (5.2) for fixed
h = 0.1 when the initial value y0 takes different values. We observe
that, possibly after some initial oscillations, (according to the initial
value y0) yn → 0 as n → ∞. The diagrams indicate that the zero
solution to (5.2) is asymptotically stable for h = 0.1. In practice, when
one has a priori knowledge that y(t) ≥ 0, one would discard oscillatory
solutions {yn} as unrealistic.

When we repeat the experiment for the discrete equations (5.3) we
obtain similar results (Figures 3 and 4).

Finally, we give examples demonstrating where the use of an explicit
rule leads to problems. For sufficiently small values of y0, the solution
of (5.4) satisfies yn → 0 as n → ∞. However, we can observe that, for
a particular choice of y0, the numerical solution exhibits (spurious or
unrealistic) persistent oscillations.

In our example, for each of the discrete schemes we have considered,
when we choose our step length h sufficiently small, it appears from our
calculations that, for sufficiently small perturbations of the initial value
from zero, the solution tends to zero. For the two implicit schemes, we
have seen no evidence that persistent oscillations do, in fact, arise. For
the explicit scheme we considered, there is likely to be a relationship
between the choice of h and the size of perturbation of the initial
value from zero if persistent oscillations are to be avoided. However,
more analysis is needed to predict a precise relationship between the
numerical method, the step length and the stability of the zero solution
for different choices of perturbation y0.

We give this insight. We can seek (directly) solutions of equations
(5.2), (5.3) and (5.4) that exhibit stable oscillations of period two. It
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FIGURE 3. θ = 0.5. With small initial value, the solution tends slowly to 0.
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FIGURE 4. θ = 0.5. With larger initial value, the solution tends to 0 after
several oscillations.
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FIGURE 5. θ = 1. A particular choice of y0 yields persistent oscillations.
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FIGURE 6. θ = 1. Smaller choices of y0 lead to solutions that tend to 0.
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is easy to show that no solutions of this type arise for equations (5.2)
and (5.3) whatever choice of initial value y0 we make. However, for
equation (5.4), solutions of this type do exist and the amplitude of the
oscillations is

1
h

(2 + 2e−λh)1/2.

For fixed h, λ, there is one possible amplitude of oscillatory solution
of period 2. Persistent oscillations of period 2 can arise when the
initial perturbation of the zero solution is precisely (1/h)(2+2e−λh)1/2.
Further, as h → 0, the size of the necessary perturbation approaches
∞. One can adopt a similar approach to calculate the amplitude of
persistent oscillations of period greater than 2. The behavior we have
observed is consistent with our expectation that, for sufficiently small
perturbations of the zero solution (the size of perturbation depending
on h) the solution will not exhibit persistent oscillations of this type
even for the explicit scheme (5.4).

A further discussion of the relationship between the numerical
method chosen, the step size h > 0 and the maximum size of the
perturbation y0 > 0 for which the solution satisfies yn → 0 as n → ∞
will be the subject of a future report.
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