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ABSTRACT. On the basis of asymptotic expansions, we
study the Richardson extrapolation method and two defect
correction schemes by an interpolation post-processing tech-
nique, namely, interpolation correction and iterative correc-
tion for the numerical solution of a Volterra integral equa-
tion by iterated finite element methods. These schemes are
of higher accuracy than the postprocessing method and ana-
lyzed in a recent paper [5] by Brunner, Q. Lin and N. Yan.
Moreover, we give a positive answer to a conjecture in [5].

1. Introduction. In this paper we are concerned with finite element
methods for the Volterra integral equation of the second kind,

(1.1) y(t) = g(t) +
∫ t

0

K(t, s)y(s) ds, t ∈ I := [0, 1],

where g : I → R and K : D → R (with D := {(t, s) : 0 ≤ s ≤
t ≤ 1}) denote given (continuous) functions. It is well known that if
K ∈ Cm(D) and g ∈ Cm(I), the solution y of (1.1) is in Cm(I).

The study of (local) superconvergence properties of collocation meth-
ods for Volterra integral equations (1.1) (as well as for second-kind Fred-
holm integral equations) and of methods for accelerating the conver-
gence orders has received considerable attention since the early 1980s,
compare, for example, [1, 2, 4, 8, 9 and 13].

In this note we present two defect correction schemes, namely, inter-
polation correction and iterative correction, for the numerical solution
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of (1.1) by iterated finite element methods in certain piecewise poly-
nomial spaces. The main motivation derives from the results given in
[5]; we shall show that iterative correction of Galerkin finite element
(rather than collocation) solutions leads to a considerably higher global
rate of convergence, and we shall prove a conjecture (on the local or-
der of convergence at the mesh points) stated in [5]. In Section 2 we
derive the asymptotic expansion of the iterated finite element solution.
Section 3 deals with Richardson extrapolation in the case of piecewise
constant finite element spaces. The next two sections are concerned
with interpolation correction and iterative correction, again in the case
of piecewise constant elements; these investigations are partly moti-
vated by a recent study of iterative correction schemes for collocation
approximations to (1.1), see [5]. Finally, in Section 6, we describe some
ongoing and future work on high-order correction schemes for nonlinear
and weakly singular Volterra integral equations.

2. The asymptotic expansion. The weak form of (1.1) consists
in finding y ∈ L2(I) such that

(2.1) (y, v) = (g, v) + (Ky, v), ∀ v ∈ L2(I),

where (., .) denotes the usual inner product in L2(I); K : L2(I) → C(I)
is the Volterra integral operator

(Ky)(t) :=
∫ t

0

K(t, s)y(s) ds, t ∈ I.

Let Th : 0 = t0 < t1 < · · · < tN = 1 be a given mesh for the interval I,
and denote the finite element space by

S
(−1)
m−1(Th) := {u : u|σk

∈ Pm−1 (0 ≤ k ≤ N − 1)}.

Here Pr denotes the space of (real) polynomials of degree not exceeding
r, and we have set

σk :=
{

[t0, t1] if k = 0,
(tk, tk+1] if 1 ≤ k ≤ N − 1,

hk := tk+1 − tk, h := max(k){hk}.
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We use the superscript (−1) in the notation for the above finite
element space to emphasize that it is not a subspace of C(I). Note
that, for ease of notation, we have suppressed the dependence on N ,
the number of subintervals given by Th = T

(N)
h , in hk = h

(N)
k and

h = h(N).

Thus, the Galerkin equation for (2.1) reads: Find u ∈ S
(−1)
m−1(Th) such

that

(2.2) (u, v) = (g, v) + (Ku, v), ∀ v ∈ S
(−1)
m−1(Th).

Let Ph : L2(I) → S
(−1)
m−1(Th) be an L2-projection operator, defined by

(y, v) = (Phy, v), ∀ v ∈ S
(−1)
m−1(Th).

Then the problem (2.2) can be equivalently rewritten: Find u ∈
S

(−1)
m−1(Th) such that

(2.3) u = Phg + PhKu.

Therefore, the iterated finite element solution, uit, corresponding to
the above finite element solution u, is given by

uit := g(t) + (Ku)(t), t ∈ I

with

(2.4) Phuit = u.

We now define an interpolatory operator im−1
h : L2(I) → S

(−1)
m−1(Th) of

degree (m − 1) by
im−1
h u|σk

∈ Pm−1,

and ∫
σk

vim−1
h u dt =

∫
σk

vu dt, ∀ v ∈ Pm−1.

Since S
(−1)
m−1(Th) is a discontinuous piecewise polynomial space and Ph

possesses localization, we have

Ph = im−1
h
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with
‖im−1

h y − y‖0,∞ ≤ Chm‖y‖m,∞,

where, and elsewhere in this paper, we write, for a given nonnegative
integer r,

‖v‖r,∞ := max
0≤k≤r

{‖v(k)‖∞}.

Here C denotes a generic constant whose subsequent meanings will
become clear by the context in which it arises. In general, C will
depend on the length of the (compact) subinterval [0, b] on which (1.1)
is to be solved; without loss of generality, we have assumed that b = 1.
Note that, if the mesh is nonuniform, then C will also depend on the
parameter(s) characterizing the degree of nonuniformity. For example,
if we deal with graded meshes of the form

tn = (n/N)q, q = q(α) = m/(ν + 1 − α),

when the (continuous) kernel in (1.1) has the form K(t, s) = (t−s)ν−α

with 0 < α < 1, ν ∈ N, 1 ≤ ν < m, see [3], then C = C(q).

Let I and R(t, s) denote the identity operator and the resolvent kernel
associated with the given kernel K(t, s) in (1.1), respectively, and let
eit := y − uit be the error corresponding to the iterated finite element
solution uit. In addition, set

δ(t) := e(t) − (Ke)(t), t ∈ I,

where e := y − u is the finite element error. And thus, from (1.1) and
(2.3) we get that

e = y − u = (g + Ky) − (im−1
h g + im−1

h Ku)
= (I − im−1

h )g + K(y − u) + (Ku − im−1
h Ku)

= (I − im−1
h )g + Ke + (I − im−1

h )Ku

= (I − im−1
h )uit + Ke,

or
e − Ke = (I − im−1

h )uit,

that is,

(2.5) δ = (I − im−1
h )uit.
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Using the well-known resolvent equation (or Fredholm identity, see [4]),

R(t, s) = −K(t, s) +
∫ t

0

R(τ, s)K(t, τ ) dτ, (t, s) ∈ D,

it is easy to show, compare also [2, 4], that the iterated finite element
error may be expressed in terms of the resolvent kernel of (1.1) and the
defect δ

(2.6) eit(t) = −
∫ t

0

R(t, s)δ(s) ds, t ∈ I,

where R(t, s) inherits the smoothness of the given kernel K(t, s).

Set

(2.7) (Rhy)(t) :=
∫ t

0

R(t, s)(I − im−1
h )y(s) ds.

Then it follows from (3.1) and (3.2) that

(2.8)
eit(t) = −(Rhuit)(t) = −[Rh(uit − y + y)](t)

= (Rheit)(t) − (Rhy)(t),

which leads to a recurrence formula, see also [5],

(2.9) eit = −
n∑

k=1

Rk
hy + Rn

heit.

Lemma 2.1. In (1.1), assume that g ∈ Cm(I), K ∈ Cm(D) and
that the integral operator Rh is given by (2.7). Then, for the iterated
finite element error eit we have

‖eit‖1,∞ ≤ Chm‖y‖m,∞.

Proof. It follows from

‖Rhy‖1,∞ ≤ C‖(I − im−1
h )y‖0,∞ ≤ Chm‖y‖m,∞,
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that, for sufficiently small h > 0,

‖Rh‖C1→C1 := sup
y∈C1(I)

‖Rhy‖1,∞
‖y‖1,∞

≤ Ch ≤ σ < 1.

Thus, we know that (I − Rh)−1 exists and is uniformly bounded on
C1(I) for all h ∈ (0, τ ). Therefore, from (2.8) we get that

eit = −(I − Rh)−1Rhy,

which yields

‖eit‖1,∞ = ‖(I − Rh)−1Rhy‖1,∞ ≤ C‖Rhy‖1,∞ ≤ Chm‖y‖m,∞.

Theorem 2.1. Suppose that the conditions of Lemma 2.1 hold.
Then,

(2.10) ‖Rn
heit‖0,∞ ≤ Chn+m+1‖y‖m,∞, n ≥ 1.

Proof. For any t ∈ σk, 0 ≤ k ≤ N − 1, again from the definition of
the operator im−1

h and Schwarz’s inequality, we derive that

|(Rhy)(t)| ≤
∣∣∣∣

k−1∑
i=0

∫
σi

R(t, s)(I − im−1
h )y(s) ds

∣∣∣∣
+

∣∣∣∣
∫ t

tk

R(t, s)(I − im−1
h )y(s) ds

∣∣∣∣
=

∣∣∣∣
k−1∑
i=0

∫
σi

(I − im−1
h )R(t, s)(I − im−1

h )y(s) ds

∣∣∣∣
+

∣∣∣∣
∫ t

tk

R(t, s)(I − im−1)y(s) ds

∣∣∣∣
≤ ‖(I − im−1

h )R‖0,2‖(I − im−1
h )y‖0,2

+ Chm‖y‖m,∞(t − tk)
≤ Chm+1‖y‖m,∞,
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that is,

(2.11) ‖Rhy‖0,∞ ≤ Chm+1‖y‖m,∞.

Moreover,
‖Rhy‖1,∞ ≤ Ch‖y‖1,∞,

which, together with (2.11), yields that

‖Rn
heit‖0,∞ = ‖Rh(Rn−1

h eit)‖0,∞
≤ Ch2‖Rn−1

h eit‖1,∞
= Ch2‖Rh(Rn−2

h eit)‖1,∞
≤ Ch3‖Rn−2

h eit‖1,∞.

According to Lemma 2.1, this leads to

‖Rn
heit‖0,∞ ≤ Chn+1‖eit‖1,∞ ≤ Chn+m+1‖y‖m,∞.

From (2.10) we know that the order of the term Rn
heit in (2.9) can

be made arbitrarily large (provided we have sufficient regularity in the
data), by carrying out a suitable number of iterations.

Next we turn to discussing the main theorem in this section the
asymptotic expansion theorem.

Theorem 2.2. If u ∈ Cm+2(I) and v ∈ Cm+2(I), then there exists
a constant C̃ = C̃(m), independently of the mesh Th, such that

∫
σk

v(t)(u − im−1
h u)(t) dt = C̃h2m

k

∫
σk

u(m)(t)v(m)(t) dt + O(h2m+3
k )

0 ≤ k ≤ N − 1.

Proof. It follows from the definition of the interpolation operator im−1
h

and the Taylor expansion of v(t) at the mid-point of the subinterval σk,
tk+1/2 := (tk + tk+1)/2,

v(t) =
m+1∑
j=0

v(j)(tk+1/2)
j!

(t − tk+1/2)j + O(hm+2
k ),
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that

(2.12)
∫

σk

v(t)(u − im−1
h u)(t) dt

=
∫

σk

v(m)(tk+1/2)
m!

(t − tk+1/2)m(u − im−1
h u)(t) dt

+
∫

σk

v(m+1)(tk+1/2)
(m + 1)!

(t − tk+1/2)m+1

· (u − im−1
h u)(t) dt + O(h2m+3

k ).

Set

E(t) :=
1
2

[
(t − tk+1/2)2 −

(
hk

2

)2]
.

(Since E(t) reflects interpolation errors, it is referred to as the interpo-
lation error function.) It is readily verified that

(2.13)
1
m!

(t − tk+1/2)m =
2m

(2m)!
(Em)(m) + Fm−2(t)

holds, where Fm−2(t) ∈ Pm−2.

Note that (Em)(r) vanishes at the two endpoints of σk when r ≤ m−1.
Then by means of integration by parts with respect to t, from (2.12)
and (2.13), we further get that
∫

σk

v(t)(u − im−1
h u)(t) dt

=
2m

(2m)!
v(m)(tk+1/2)

∫
σk

(Em)(m)(t)(u − im−1
h u)(t) dt

+ O(h2m+3
k ) +

2m+1

(2m + 2)!
v(m+1)(tk+1/2)

·
∫

σk

(Em+1)(m+1)(t)(u − im−1
h u)(t) dt

= (−1)m 2m

(2m)!
v(m)(tk+1/2)

∫
σk

Emu(m)(t) dt

+ (−1)m+1 2m + 1
(2m + 2)!

v(m+1)(tk+1/2)
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·
∫

σk

Em+1u(m+1) dt + O(h2m+3
k )

= (−1)m 2m

(2m)!

∫
σk

Emv(m)(tk+1/2)u(m)(t) dt + O(h2m+3
k )

= (−1)m 2m

(2m)!

∫
σk

Emv(m)(t)u(m)(t) dt

+ (−1)m+1 2m

(2m)!

∫
σk

1
m + 1

(Em+1)′v(m+1)(t)u(m)(t) dt + O(h2m+3
k )

= (−1)m 2m

(2m)!

∫
σk

Emv(m)(t)u(m)(t) dt

+ (−1)m 2m

(2m)!(m + 1)

∫
σk

Em+1[v(m+1)(t)u(m)(t)]′ dt + O(h2m+3)

= (−1)m 2m

(2m)!

∫
σk

Emv(m)u(m) dt + O(h2m+3
k ).

Since

Em =
1

2m

m∑
i=0

(−1)m−iCi
m

(
hk

2

)2m−2i

(t − tk+1/2)2i,

with Ci
m := m!/(i!(m − i)!), from (2.14) we derive that

(2.15)
∫

σk

v(t)(u − im−1
h u)(t) dt

=
1

(2m)!

(
hk

2

)2m ∫
σk

v(m)(t)u(m)(t) dt − 1
2(2m − 2)!

(
hk

2

)2m−2

·
∫

σk

(t − tk+1/2)2v(m)u(m) dt

+
1

(2m)!

∫
σk

m∑
i=2

(−1)iCi
m

(
hk

2

)2m−2i

(t − tk+1/2)2iv(m)u(m) dt

=: I1 + I2 + I3,

where

(2.16) I1 :=
1

(2m)!

(
hk

2

)2m ∫
σk

v(m)(t)u(m)(t) dt.
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Due to

(t − tk+1/2)2 =
1
3
(E2)′′ +

1
3

(
hk

2

)2

,

again by virtue of integration by parts, we get that

(2.17)

∫
σk

(t − tk+1/2)2v(m)u(m) dt =
1
3

∫
σk

E2[v(m)u(m)]′′ dt

+
1
3

(
hk

2

)2 ∫
σk

v(m)u(m) dt,

and this leads to

(2.18)
I2 := − 1

2(2m − 2)!

(
hk

2

)2m−2 ∫
σk

(t − tk+1/2)2v(m)u(m) dt

= − 1
6(2m − 2)!

(
hk

2

)2m ∫
σk

v(m)u(m) dt + O(h2m+3
k ).

Using (2.13), (2.17) and repeated integration by parts, we find that

I3 :=
1

(2m)!

∫
σk

m∑
i=2

(−1)iCi
m

(
hk

2

)2m−2i

(t − tk+1/2)2iv(m)u(m) dt

is also of the form expected in Theorem 2.2 which, together with (2.15),
(2.16) and (2.18), completes the proof of Theorem 2.2.

Remark 1. Suppose that in Theorem 2.2 we have, for arbitrary
nonnegative integer p, u ∈ Cm+2(p+1)(I) and v ∈ Cm+2(p+1)(I). Then
the following holds:

(2.19)
∫

σk

v(t)(I − im−1
h )u(t) dt =

p∑
i=0

αih
2(m+i)
k + O(h2(m+p+1)

k ),

where αi, 0 ≤ i ≤ p, is invariable when the mesh is refined uniformly.

3. Global extrapolation. In the following discussion we only
consider the practically important case where u ∈ S

(−1)
0 (Th) is the

finite element solution defined by (2.2) or (2.3).



HIGHER ACCURACY METHODS 385

Lemma 3.1. In (1.1) assume that g ∈ C2p+1(I), K ∈ C2p+1(D) for
any positive integer p ≥ 1, and that the integral operator Rh is given
by (2.7). Then, for the solution y of (1.1), there exists the following
asymptotic expansion at the points of the mesh Th:

(3.1) (Rhy)(tn) =
p∑

i=1

βi(tn)h2i + O(h2(p+1)), 1 ≤ n ≤ N,

where βi(t) ∈ C2p+1(I) does not change when the mesh is refined
uniformly.

Proof. It follows from (2.19) and
∑n−1

k=0 hk ≤ 1 that

(Rhy)(tn) =
∫ tn

0

R(tn, s)(y − i0hy)(s) ds

=
n−1∑
k=0

∫
σk

R(tn, s)(y − i0hy)(s) ds

=
n−1∑
k=0

p∑
i=1

α̃i(tn)h2i
k +

n−1∑
k=0

O(h2p+3
k )

=
p∑

i=1

α̃i(tn)h2i

( n−1∑
k=0

(
hk

h

)2i)
+ O(h2p+2),

where α̃i(t) ∈ C2p+1(I) remains invariant when the mesh is refined
uniformly.

Letting

βi(t) := α̃i(t)
n−1∑
k=0

(
hk

h

)2i

,

we have

(Rhy)(tn) =
p∑

i=1

βi(tn)h2i + O(h2p+2),

where βi(t) ∈ C2p+1(I) does not change when the mesh is refined
uniformly.
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Lemma 3.2. If v ∈ C2p(I), u ∈ C2p+1(D) and y ∈ C2p+1(I) for
any nonnegative integer p, then

∫
σk

v(t)
∫ t

0
u(t, s)(I − i0h)y(s) ds has an

asymptotic expansion similar to (2.19).

Proof. Exchanging the order of integration for t and s, we find that
∫

σk

v(t)
∫ t

0

u(t, s)(I − i0h)y(s) ds =
∫ tk

0

(I − i0h)y(s) ds

·
∫

σk

v(t)u(t, s) dt

+
∫

σk

(I − i0h)y(s) ds

·
∫ tk+1

s

v(t)u(t, s) dt,

which, together with (2.19), yields the conclusion claimed in Lemma 3.2.

Observing that (i0hy)′ = 0 in σk, 0 ≤ k ≤ N − 1, we know from
(2.19) and Lemma 3.2 that (Rj

hy)(tn), j ≥ 2, is of order h2j , and the
asymptotic expansion analogous to the one in Lemma 3.1 holds, where
Rh is the integral operator defined by (2.7). Therefore, combining
Theorem 2.1 with Lemma 3.1, we have

Theorem 3.1. Assume that the conditions of Lemma 3.1 hold.
Then, choosing the number of iterations as n = 2p in (2.10) we
obtain, for the iterated finite element error eit, the following asymptotic
expansion at the points of the mesh Th:

(3.2) eit(tn) =
p∑

j=1

γj(tn)h2j + O(h2p+2), 1 ≤ n ≤ N,

where γj(t) ∈ C2p+1(I) does not vary when the mesh is refined uni-
formly.

To use Theorem 3.1 we employ, in addition to S−1
0 (Th), the piecewise-

constant finite element space gained by dividing each subinterval σk
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into two halves. Thus we define S−1
0 (Th/2) to be the piecewise-constant

finite element space with nodal points at the interior points of the
partition

Th/2 : 0 = t0 < t1/2 < t1 < t3/2 < · · · < tN−1/2 < tN = 1.

Here again, for 0 ≤ k ≤ N − 1, let tk+1/2 := (tk + tk+1)/2 be the
midpoint of σk. Denoting by u1/2 and u

1/2
it the finite element and

iterated finite element approximations, respectively, with respect to
this new partition, we derive, from Theorem 3.1,

y(tn) − u
1/2
it (tn) =

p∑
j=1

γj(tn)
(

h

2

)2j

+ O(h2p+2).

A first application of Richardson extrapolation yields a new approxi-
mation which is of higher accuracy:

(3.3)
4u

1/2
it (tn) − uit(tn)

3
= y(tn) + O(h4).

This process can obviously be continued to generate approximations of
higher and higher order. In fact, let

u
(e)
k :=

22ku
(e)/2
k−1 − u

(e)
k−1

22k − 1

with
u

(e)
0 := uit and u

(e)/2
0 := u

1/2
it .

Then

(3.4) y(tk) − u(e)
n (tk) = O(h2n+2), 1 ≤ k ≤ N.

Note that the extrapolation property (3.3) (or (3.4)) holds only at
the points of the mesh Th. Thus it is necessary for us to establish that
the global extrapolation approximation possesses a higher accuracy. By
virtue of (3.3), we can obtain the global extrapolation approximation
of order 4 by an interpolation post-processing method [10]. To this
end, we assume that Th has been gained from T3h with mesh size 3h
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by subdividing each element of T3h into three elements, so that the
elements number N for Th is a multiple of 3. Then, we need to define
a higher interpolation operator I3

3h of degree 3 associated with T3h

according to the following conditions:

I3
3hu|σk

∈ P3, k = 3l + 1, l = 0, 1, . . . , N/3 − 1

and

I3
3hu(ti) = u(ti), i = k − 1, k, k + 1, k + 2, 1 ≤ k ≤ N − 2.

Theorem 3.2. In (1.1), assume that g ∈ C4(I) and K ∈ C4(D).
Then there exists

‖I3
3hu

(e)
1 − y‖∞ ≤ Ch4.

Proof. Denoting the basis functions corresponding to {tj} by {ϕj},
1 ≤ j ≤ N , we have

I3
3h(y − u

(e)
1 )(t) =

N∑
j=1

(y − u
(e)
1 )(tj)ϕj(t),

which, by means of (3.3) and the uniform boundedness of {ϕj}N
1 , leads

to

‖I3
3h(y − u

(e)
1 )‖∞ ≤

N∑
j=1

Ch4‖ϕj‖∞ ≤ Ch4.

Using the result
‖I3

3hy − y‖∞ ≤ Ch4,

we finally obtain that

‖I3
3hu

(e)
1 − y‖∞ ≤ ‖I3

3h(u(e)
1 − y)‖∞ + ‖I3

3hy − y‖∞ ≤ Ch4.

Similarly,
‖I2n+1

(2n+2)hu(e)
n − y‖∞ ≤ Ch2n+2,
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where I2n+1
(2n+2)h is an interpolation operator associated with the mesh

T(2n+2)h with mesh size (2n + 2)h obtained by a combination of each
(2n + 2)-element in Th.

4. Interpolation correction. In this section we propose an
interpolation correction scheme [11, 12] for the iterated finite element
solution produced by the piecewise-constant finite element solution to
obtain the approximation of the same accuracy as that in the once step
extrapolation described in the last section. First, we have

Theorem 4.1. In (1.1), assume that K ∈ C4(D) and g ∈ C4(I).
Then, for each t ∈ I we have

y(t) − I3
3huit(t) = h2γ1(t) + O(h4).

Proof. From (3.2) we get, by arguments similar to those for Theo-
rem 3.2, that

I3
3h(y − uit − h2γ1)(t) = O(h4).

This leads to the global expansion

y − I3
3huit = h2I3

3hγ1 + (y − I3
3hy) + O(h4)

= h2γ1 + h2(I3
3hγ1 − γ1) + O(h4)

= h2γ1 + O(h4),

since ‖I3
3hγ1 − γ1‖∞ ≤ Ch2‖γ1‖2,∞.

Let uit be the iterated finite element solution of problem (1.1), defined
by

uit := g + Ku,

where u ∈ S−1
0 (Th) is the finite element solution of (1.1). It follows

from (I − K)y = g and (2.4) that

Ki0huit = Ku − uit − g,

or

(4.1) (I − Ki0h)uit = (I − K)y.



390 H. BRUNNER, Y. LIN AND S. ZHANG

Assume that 1 is not an eigenvalue of K, so that (I−K)−1 always exists,
the inverse operator (I − Ki0h)−1 exists and is uniformly bounded on
C(I) for all h ∈ (0, σ) with σ > 0 sufficiently small. Then, setting
Qhy := uit we have, according to (4.1), that

(4.2) Qhy = (I − Ki0h)−1(I − K)y.

From (4.2) we know that Qh is a linear and bounded operator, and Qh

is the iterated finite element solution of the problem (1.1) if y is the
solution of (1.1).

Theorem 4.2. Under the conditions of Theorem 4.1,

‖y − u
(c)
it ‖∞ ≤ Ch4,

where u
(c)
it := I3

3huit + i1huit − i1hQhI3
3huit.

Proof. Using the result of Theorem 4.1, we derive

(I − i1hQh)(y − I3
3huit) = h2(I − i1hQh)γ1 + O(h4)

= h2(γ1 − i1hγ1) + h2i1h(γ1 − Qhγ1) + O(h4).

It follows from the interpolation approximation and the global super-
convergence of the iterated finite element solution [6] that

‖γ1 − i1hγ1‖∞ ≤ Ch2‖γ1‖2,∞

and

‖γ1 − Qhγ1‖∞ ≤ Ch2‖γ1‖1,∞.

This yields
(I − i1hQh)(y − I3

3huit) = O(h4),

where the left-hand side is simply

(I − i1hQh)(y − I3
3huit) = y − u

(c)
it .
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5. Iterative correction. Here, based on asymptotic expansion,
an iterative correction method for the interpolation post-processing of
the iterated finite element solution uit corresponding to the piecewise
constant finite element solution is given. Compared with [5], the
iterative technique here is of higher precision in that the (n − 1)-
fold application of the iterative correction method leads to a global
convergence rate of O(h2n) instead of O(hn) in [5].

Along technical lines similar to those for Theorem 4.1 we can gain,
without any difficulty,

Theorem 5.1. In (1.1), if K ∈ C2n+2(D) and g ∈ C2n+2(I), the
following holds

(5.1) y(t) − I2n+1
(2n+2)huit(t) =

n∑
j=1

h2jγj(t) + O(h2n+2),

where γj ∈ C2n+2(I).

As an immediate consequence of this result, we find

Theorem 5.2. Under the conditions of Theorem 5.1, the (n − 1)st
correction u

(c)
n of the interpolation post-processing of the iterated finite

element solution uit corresponding to the finite element solution u ∈
S

(−1)
0 (Th) has the property that

‖y − u(c)
n ‖∞ ≤ Ch2n,

where

u(c)
n :=

n∑
k=1

(−1)k−1Ck
n(I2n+1

(2n+2)hQh)ky, n ≥ 2.

Proof. From Theorem 5.1 we derive that

(I − I2n+1
(2n+2)hQh)y(t) =

n∑
j=1

h2jγj(t) + O(h2n+2),
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which yields

(I − I2n+1
(2n+2)hQh)2y =

n∑
j=1

h2j(I − I2n+1
(2n+2)hQh)γj + O(h2n+2).

Since γj ∈ C(2n+2)(I), 1 ≤ j ≤ n, and Qhγj can be regarded as the
exact solution and the iterated finite element solution, respectively, of
the auxiliary problem,

(I − K)y = f with f = (I − K)γj ,

(5.1) is true for γj , that is,

(I − I2n+1
(2n+2)hQh)γj =

n∑
i=1

h2iγ̃ij + O(h2n+2),

with γ̃ij ∈ C2n+2(I), 1 ≤ i ≤ n. Therefore,

(I − I2n+1
(2n+2)hQh)2y =

n∑
j=1

h2j
n∑

i=1

h2iγ̃ij + O(h2n+2).

Repeating the above process, we finally get

(I − I2n+1
(2n+2)hQh)ny = O(h2n),

and the left-hand side is just

(I − I2n+1
(2n+2)hQh)ny = y − u(c)

n .

As another application of the asymptotic expansion (3.1), we prove
that the (n − 1)-fold iterative correction of the iterated finite element
solution, uit, corresponding to the piecewise-constant finite element
solution u, also possesses a local superconvergence rate of O(h2n) at
the mesh points t1, t2, . . . , tN ; in other words, Conjecture 2.4 in [5] is
true because, for the collocation method with the collocation points
taken to be the zeros of the Legendre polynomial of degree m linearly
mapped to each subinterval σk, the similar asymptotic expansion to
that established in Theorem 2.2 holds, see [9] for details.
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Theorem 5.3. In (1.1), suppose that g ∈ C2n+1(I) and K ∈
C2n+1(D). Then the (n − 1)st correction of the iterated finite element
solution uit corresponding to the finite element solution u ∈ S

(−1)
0 (Th)

exhibits higher-order convergence:

max
1≤k≤N

|y(tk) − ũn(tk)| ≤ Ch2n, n ≥ 1.

Here ũn :=
∑n

k=1(−1)k−1Ck
nQk

hy.

Proof. From (2.9) and Theorem 2.1, we know

(5.2) (I − Qh)y = −
2n−2∑
k=1

Rk
hy + O(h2n).

Thus, by the boundedness of the linear operator (I − Qh), we have

(I − Qh)2y = −
2n−2∑
k=1

(I − Qh)Rk
hy + O(h2n).

On the basis of (5.2), using the same argument as in the proof of
Theorem 5.2, we can now obtain

(I − Qh)2y =
2n−2∑
k=1

2n−2∑
i=1

Ri+k
h y + O(h2n)

which, together with

(Rj
hy)(tk) = O(h2j), j ≥ 1; 1 ≤ k ≤ N,

demonstrated in Section 3, leads to

((I − Qh)2y)(tk) = O(h4).

Inductively, we can eventually gain

((I − Qh)ny)(tk) = O(h2n),
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and the lefthand side is exactly

(I − Qh)ny = y − ũn.

6. Future work. An obvious extension of the techniques and results
presented in this paper is to Volterra integral equations (1.1) with
weakly singular kernels of the form K(t, s) = pα(t − s)H(t, s), with
smooth H and

pα :=
{

(t − s)−a if 0 < α < 1,
log(t − s) if α = 1.

Here the use of a special class of nonuniform meshes, namely graded
meshes, see [3, 4, 7], is of particular interest. Work on this topic
is currently being carried out by a number of researchers, including
the authors. Analogous research on iterated correction methods for
collocation solutions to such equations is being done by H. Brunner
and N. Yan.

However, three important aspects of these postprocessing methods
remain to be studied. They are

• Iterated correction methods and extrapolation for nonlinear
(weakly singular) Volterra integral equations;

• Analysis of iterated correction methods in the (practically im-
portant) case where the integrals in (2.3) (and in the corresponding
expression for the iterated finite element solution uit) are not evalu-
ated exactly but approximated by appropriate numerical quadrature
rules, compare also [1];

• Long time integration of (1.1) and its weakly singular counter-
part. In many applications the solutions of second-kind Volterra inte-
gral equations exhibit certain asymptotic properties (boundedness or
asymptotic stability), and they are to be approximated on R+. For
example, it is known that the solution of

(6.1) y(t) = 1 + λ

∫ t

0

(t − s)−αy(s) ds, t ∈ R+,

satisfies y(t) → 0 as t → ∞, whenever 0 < α < 1 and λ < 0. Thus
error estimates for the (Galerkin or collocation based) approximation
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uit and its iterated corrections for (6.1) and its more general versions
on R+ are of considerable theoretical and practical interest.
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