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RIGOROUS RESULTS ON THE ASYMPTOTIC
SOLUTIONS OF SINGULARLY PERTURBED

NONLINEAR VOLTERRA INTEGRAL EQUATIONS

A.M. BIJURA

ABSTRACT. This paper studies singularly perturbed
Volterra integral equations of the form

εu(t) = f(t; ε) +

∫ t

0

g(t, s, u(s)) ds, 0 ≤ t ≤ T,

where ε is a small parameter. The function f(t; ε) is defined
for 0 ≤ t ≤ T and g(t, s, u) for 0 ≤ s ≤ t ≤ T . There
are many existence and uniqueness results known that ensure
that a unique continuous solution u(t; ε) exists for all small
ε > 0. The aim is to find asymptotic approximations to these
solutions and rigorously prove the asymptotic correctness.
This work is restricted to problems where there is an initial
layer; various hypotheses are placed on g to exclude other
behaviors.

1. Introduction. A singular perturbation problem is a problem
which depends on a parameter (or parameters) in such a way that
solutions of the problem behave nonuniformly as the parameter tends
toward some limiting value of interest. The nature of the nonuniformity
of the solutions can vary. This article concerns solutions of nonlinear
Volterra integral equations in which such nonuniformity occurs in an
isolated narrow region called the initial (or boundary) layer. The
thickness of the layer vanishes as the parameter tends to zero.

In particular, we consider the nonlinear singularly perturbed Volterra
integral equation

(1.1) εu(t) = f(t; ε) +
∫ t

0

g(t, s, u(s)) ds, 0 ≤ t ≤ T,
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where 0 < ε � 1. The function f(t; ε) is C∞ and defined for 0 ≤ t ≤ T
and 0 ≤ ε ≤ 1; g(t, s, u) is also C∞ and defined for 0 ≤ s ≤ t ≤ T
and −∞ < u < ∞. Also we require that limε→0 f(0; ε) = 0. f has an
asymptotic power series expansion,

f(t; ε) ∼
∞∑

j=0

εjfj(t) as ε → 0,

where each fj(t) is C∞. Furthermore, we require that f0(0) = 0 and
f1(0) is nontrivial. The function g can also depend regularly on ε but
we assume here that it is independent of ε.

Problem (1.1) depends on the parameter ε in such a way that the
reduced equation

0 = f0(t) +
∫ t

0

g(t, s, v(s)) ds, 0 ≤ t ≤ T,

is a Volterra equation of the first kind. For this to have a continuous
solution, f0(t) cannot be merely continuous. Assuming that a stability
condition for the boundary layer holds, we show that u(t; ε) converges
uniformly to v(t) as ε → 0. The fact that we need more smoothness on
g and f implies there is a loss of regularity as ε changes from positive
values to zero. The loss of regularity here is due to the dependence of
u(t; ε) on ε. Our task is to discover the nature of this dependence by
working with suitable approximate integral equations and then express
u(t; ε) in terms of solutions of these equations for small ε.

Singularly perturbed Volterra integral equations occur in various
areas of interest ranging from engineering, physics, chemistry and
ecology to epidemiology. A comprehensive survey of literature to
singularly perturbed Volterra models is found in [17].

Angell and Omstead [2] used the additive decomposition method
to obtain the first few terms in a formal solution of (1.1). However,
their approach has some short shortcomings including the fact that the
general equations for the coefficients in the formal solution cannot be
determined and their results are not rigorously presented. This paper
aims at improving their results. Lange and Smith [19], [20] used the
additive decomposition method in their study of singularly perturbed
linear Fredholm and Volterra integral equations. They deduced the
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general expansion for the formal solution and rigorous estimates to
show its closeness to the exact solution. Skinner [32] developed a
method of generating all the terms of the formal solution and showed
that the formal solution is an asymptotic solution. The approach in
[32] is somehow more complicated than the presentation given here.
However, an adaptation of Skinner’s method of deriving the equations
for the formal solution is included here. This work builds on that of
Smith [33, Chapter 6], O’Malley [28, Chapter 4] and O’Malley [29,
Chapter 2] on singularly perturbed initial value problems for nonlinear
ordinary differential equations. Kauthen [15] provided a survey of
analytical and numerical solutions to singularly perturbed Volterra and
Fredholm integral and integro-differential equations. The analysis in
[17] for solutions of Volterra equations is similar to the one presented
here. Kauthen constructed asymptotic solutions to linear problems
with convolution kernels and hence one will find that the present work
is general and is more detailed.

In recent years there has been an increasing interest to solutions of
singularly perturbed integral equations, both analytically and numeri-
cally. The reader is advised to consult Kauthen [17] for references on
singularly perturbed integral equations, some of which are included in
this paper. Many researchers seem to have focused their interest on sin-
gularly perturbed Volterra integro-differential equations and Fredholm
integral equations. These include the work by Angell and Olmstead
[1] [3], Lange and Smith [18] [19], Lomov [24], Liu [22] [23], Kauthen
[15] [16] and Horvat and Rogina [14] on integro-differential equations.
Fredholm equations have been studied by Lange and Smith [18] [19],
Angell and Olmstead [4], Gautesen [9] [10], Olmstead and Gautesen
[27], Wills and Nemat-Nasser [35], Georgiou [9], Ramm and Shifrin
[30] [31], Smith [33] and Liqun and Nasser [25] which generalizes the
results in [35].

In the use of additive decomposition method, one imposes the bound-
ary layer stability condition. This forces the inner layer solution to
decay (as the parameter tends to zero) exponentially and thus simpli-
fies the analysis. When the boundary layer stability condition fails,
care has to be taken especially when using the additive decomposition
method. In this case there is no exponential decay for the inner layer
solution. Lange [18] demonstrated this phenomenon using an example.
It is typical for the inner layer solution corresponding to a weakly singu-
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lar kernel to decay algebraically. Indeed, singularly perturbed Volterra
integral equations with weakly singular kernels are not well studied.
The problem on the heat conduction however has received some atten-
tion, (see [17] for the details). Bijura [5] investigated solutions to a
problem of the form

(1.2) εu(t) = f(t) +
1

Γ(β)

∫ t

0

k(t, s)
(t− s)1−β

u(s) ds, 0 ≤ t ≤ T,

where 0 < ε � 1 and 0 < β < 1. It is assumed in [5] that the data
is continuous and k(t, t) = −1. By pointing out possible technical
difficulties, Bijura constructed the leading order asymptotic solution
and the corresponding proof of asymptotic correctness. The main
interest in [5] is on the decay of the inner layer solution. The nonlinear
version of (1.2) with a convolution kernel is discussed by Kauthen [17]
using numerical methods. Chen [7] derived the asymptotic expansion
of the solution to a certain nonlinear singularly perturbed Fredholm
integral equations with weakly singular kernels. The existence of its
solution is also proved.

The paper is organised as follows: In Section 2, we construct a formal
solution for (1.1) using the additive decomposition method. We start
by introducing the inner layer variable using the dominant balance
argument. The solution is thought in the form

(1.3) UN (t; ε) =
N∑

j=0

εj

[
yj(t) + zj

(
t

ε

)]
,

t

ε
= τ,

where yj(t) represents the outer solution and zj

(
t
ε

)
represents the

inner layer solution. In Section 3 we prove that yj(t) and zj(τ ) have
the properties assumed in their derivation. Then in Section 4 we prove,
using the Banach fixed point theorem, that

|u(t; ε) − UN (t; ε)| = O(εN+1) as ε → 0,

uniformly for 0 ≤ t ≤ T . To demonstrate the methodology developed in
previous sections, in Section 5 we illustrate it by solving two examples,
one of which has been considered in Angell and Olmstead [2] and
another one from population growth modeling.
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2. Derivation of the formal solution. We derive in this section
a formal solution for the integral equation (1.1) using the additive
decomposition method. We suppose that the solution of (1.1) can be
represented in the form

(2.1) u(t; ε) = y(t; ε) + φ(ε)z(t/µ(ε); ε),

where

y(t; ε) = y0(t) + o(1), z(τ ; ε) = z0(τ ) + o(1) as ε → 0.

Firstly we determine formally the width µ(ε) and the magnitude φ(ε) of
the initial boundary layer, supposing that µ(ε) → 0. For this argument
we assume that g(0, 0, u) is nontrivial. Substituting (2.1) into (1.1)
gives

εy(t; ε) + εφ(ε)z(t/µ(ε); ε) = f(t; ε)
(2.2)

+
∫ t

0

g(t, s, y(s; ε) + φ(ε)z(s/µ(ε); ε)) ds,

which, letting τ = t/µ(ε), is equivalent to

εy(µ(ε)τ ; ε) + εφ(ε)z(τ ; ε)

= f(µ(ε)τ ; ε) + µ(ε)
∫ τ

0

g(µ(ε)τ, µ(ε)σ, y(µ(ε)σ; ε)

+ φ(ε)z(σ; ε)) dσ.

Hence, fixing τ > 0 and letting ε → 0,

εy0(0) + εφ(ε)z0(τ )

= εf1(0) + µ(ε)
∫ τ

0

g(0, 0, y0(0) + φ(ε)z0(σ)) dσ + o(ε) + o(µ(ε)).

Dominant terms can be balanced if we take

µ(ε) = ε, φ(ε) = 1.
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To obtain a formal solution we now suppose that y(t; ε) and z(τ ; ε)
have the asymptotic expansions

y(t; ε) ∼
∞∑

j=0

εjyj(t), z(τ ; ε) ∼
∞∑

j=0

εjzj(τ )

as ε → 0. y(t; ε) represents the outer solution, which approximates the

solution outside the initial layer, while z

(
t
ε ; ε
)

represents the inner

correction term which is required for uniform approximation of the
solution of (1.1) inside the initial layer but is negligible outside the
initial layer. We required for each j ≥ 0 that

(2.3) zj(τ ) = o(τ−r) as τ → ∞
for all r ≥ 0. The rapid decay in the initial layer is crucial for the
application of the method of additive decomposition because then
transcendentally small terms can be omitted from the asymptotic
expansions.

Since Theorem 2.1 from Skinner [32] is used later in this section, it
is stated here.

Lemma 2.1. Suppose that η(t, τ ; ε) is a C∞ function on [0, T ] ×
[0,∞) × [0, 1] and η(t, τ ; ε) = o(τ−r) as τ → ∞ for all r ≥ 0. Then

η

(
t,

t

ε
; ε
)

=
N∑

j=0

εjηj

(
t

ε

)
+ O(εN+1),

where ηj(τ ) is a C∞ function on [0,∞) and is the coefficient of εj in
the Taylor expansion of e 
→ η(ετ, τ, ε). Also ηj(τ ) = o(τ−r) as τ → ∞
for all r ≥ 0.

Another result which will be used later in this section and whose
proof is omitted is:

Lemma 2.2. For each integer j ≥ 0, let pj(t) be a continuous
function on [0, T ] and qj(τ ) a continuous function on [0,∞) such that
qj(τ ) → 0 as τ → ∞. Suppose that, for every integer N ≥ 1,

(2.4)
N−1∑
j=0

{
pj(t) + qj

(
t

ε

)}
εj = O(εN ),
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uniformly as ε → 0. Then pj = 0 and qj = 0 for every j ≥ 0.

We shall substitute (1.3) into (1.1). Therefore, for a fixed integer
N ≥ 0, we first consider the term∫ t

0

g(t, s, UN (s; ε)) ds.

We introduce

H(t, s; ε) = g

(
t, s,

N∑
j=0

εjyj(s)
)
,

K(t, s, σ; ε) = g

(
t, s,

N∑
j=0

εj(yj(s) + zj(σ))
)
− g

(
t, s,

N∑
j=0

εjyj(s)
)
,

By (2.3) and the mean value theorem, K(t, s, σ; ε) = o(σ−r) as σ → ∞
for all r ≥ 0. By applying Lemma 2.1 to (s, σ; ε) 
→ K(t, s, σ; ε), we
deduce that

(2.6) K(t, εσ, σ; ε) =
N∑

j=0

εjkj(t, σ) + O(εN+1),

with kj(t, σ) = o(σ−r) for all r ≥ 0. Also straightforward Taylor
expansions yields

H(t, s; ε) =
N∑

j=0

εjhj(t, s) + O(εN+1),(2.7)

K(ετ, εσ, σ; ε) =
N∑

j=0

εj lj(τ, σ) + O(εN+1).(2.8)

The coefficients hj(t, s) in (2.7) are given by

h0(t, s) = g(t, s, y0(s)), h1(t, s) = ∂3g(t, s, y0(s))y1(s),

and in general for j ≥ 1,

hj(t, s) = ∂3g(t, s, y0(s))yj(s) + Φj(t, s),
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where Φj(t, s) is determined by yi(s) for 0 ≤ i ≤ j − 1. The first two
terms of Φj are given by

Φ1(t, s) = 0, Φ2(t, s) =
1
2
∂2
3g(t, s, y0(s))y2

1(s).

The coefficients kj(t, σ) in (2.6) are given by

k0(t, σ) = g(t, 0, y0(0) + z0(σ)) − g(t, 0, y0(0)),
k1(t, σ) = ∂3g(t, 0, y0(0) + z0(σ))z1(σ) + Ψ1(t, σ),

and in general, for j ≥ 1,

kj(t, σ) = ∂3g(t, 0, y0(0) + z0(σ))zj(σ) + Ψj(t, σ).

Here the function Ψj(t, σ) is determined by yi(s) for 0 ≤ i ≤ j and
zi(σ) for 0 ≤ i ≤ j − 1. The first two Ψj are given by

Ψ1(t, σ) = {∂2g(t, 0, y0(0) + z0(σ) − ∂2g(t, 0, y0(0))}σ
+ {∂3g(t, 0, y0(0)+z0(σ)) − ∂3g(t, 0, y0(0))}(y′0(0)σ+y1(0)),

Ψ2(t, σ) =
{
∂3g(t, 0, y0(0) + z0(σ))

− ∂3g(t, 0, y0(0))
}(

y2(0) + y1(0)σ +
1
2
y′′0 (0)σ2

)
+ {∂2∂3g(t, 0, y0(0) + z0(σ))

− ∂2∂3g(t, 0, y0(0))}(y′0(0)σ2 + y1(0)σ)
+ ∂2∂3g(t, 0, y0(0) + z0(σ))z1(σ)σ
+ ∂2

3g(t, 0, y0(0) + z0(σ))z1(σ)y1(0)

+
1
2
{∂2

3g(t, 0, y0(0) + z0(σ))

− ∂2
3g(t, 0, y0(0))}(y′0(0)2σ2 + y2

1(0)
+ 2y′0(0)y1(0)σ)

+
1
2
∂2
3g(t, 0, y0(0) + z0(σ)){z2

1(σ) + z1(σ)y′0(0)σ}

+
1
2
{∂2

2g(t, 0, y0(0) + z0(σ)) − ∂2
2g(t, 0, y0(0))}σ2.
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The coefficients lj(τ, σ) in (2.8) are given by

l0(τ, σ) = g(0, 0, y0(0) + z0(σ)) − g(0, 0, y0(0)),
l1(τ, σ) = ∂3g(0, 0, y0(0) + z0(σ))z1(σ) + Ξ1(τ, σ),

and in general, for j ≥ 1,

lj(τ, σ) = ∂3g(0, 0, y0(0) + z0(σ))zj(σ) + Ξj(τ, σ),

where Ξj(τ, σ) is determined by yi for i ≤ j and zi for i ≤ j − 1. In
particular,

Ξ1(τ, σ) = {∂1g(0, 0, y0(0) + z0(σ)) − ∂1g(0, 0, y0(0))}τ
+ {∂2g(0, 0, y0(0) + z0(σ)) − ∂2g(0, 0, y0(0))}σ
+ {∂3g(0, 0, y0(0) + z0(σ)) − ∂3g(0, 0, y0(0))}
× (y′0(0)σ + y1(0)).

It follows from (2.5) that
(2.9)∫ t

0

g(t, s, UN (s; ε)) ds =
N∑

j=0

εj

(∫ t

0

hj(t, s) ds + ε

∫ ∞

0

kj(t, σ) dσ
)

−
N∑

j=0

εj+1

∫ ∞

t
ε

kj(t, σ) dσ + O(εN+1).

Since kj(t, σ) = o(σ−r) for all r ≥ 0,∫ ∞

τ

kj(t, σ) dσ = o(τ−r),

for all r ≥ 0, and Lemma 2.1 implies that

∫ ∞

t
ε

kj(t, σ) dσ =
∫ ∞

t
ε

j∑
i=0

εik̃j,i

(
t

ε
, σ

)
dσ + O(εN+1),

where k̃j,i(τ, σ) is the coefficient of εi in the Taylor expansion of
ε 
→ kj(ετ, σ). Of course, Lemma 2.1 also assures us that∫ ∞

τ

k̃j,i(τ, σ) dσ = o(τ−r) as τ → ∞
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for all r ≥ 0. Note also that if

K(ετ, εσ, σ; ε) =
∞∑

j=0

εj lj(τ, σ),

then

(2.10)
j∑

i=0

k̃j−i,i(τ, σ) = lj(τ, σ).

It follows that (2.9) becomes∫ t

0

g(t, s, UN (s; ε)) ds =
N∑

j=0

εj

(∫ t

0

hj(t, s) ds + ε

∫ ∞

0

kj(t, σ) dσ
)

−
N−1∑
j=0

εj+1

∫ ∞

τ

lj

(
t

ε
, σ

)
dσ + O(εN+1).

Next we define the residual ρN (t; ε) by

(2.11) εUN (t; ε) = f(t; ε) +
∫ t

0

g(t, s, UN (s; ε)) ds− ρN (t; ε).

Then, putting y−1(t) = 0 and k−1(t, σ) = 0, we see that
(2.12)

ρN (t; ε) =
N∑

j=0

εj

(∫ t

0

hj(t, s) ds +
∫ ∞

0

kj−1(t, σ) dσ + fj(t) − yj−1(t)
)

−
N−1∑
j=0

εj+1

(
zj

(
t

ε

)
+
∫ ∞

t
ε

lj

(
t

ε
, σ

))
+ O(εN+1).

If UN (t; ε) is a formal solution for all N ≥ 0, then ρN (t; ε) = O(εN+1)
as ε → 0 for all N ≥ 0, in which case the argument of Lemma 2.2 shows
that, for every j ≥ 0, yj(t) and zj(τ ) satisfy

yj−1(t) = fj(t) +
∫ t

0

hj(t, s) ds +
∫ ∞

0

kj−1(t, σ) dσ,

(2.13)

zj(τ ) = −
∫ ∞

τ

lj(τ, σ) dσ

(2.14)
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There is also an initial condition for solutions of (2.14), obtained from
εu(0; ε) = f(0; ε); namely, that for all j ≥ 0,

(2.15) zj(0) = fj+1(0) − yj(0).

Remark 2.3. There is considerable simplification in the case g(t, s, u) =
a(t, s)u for which (1.1) is a linear equation. It is found that

hj(t, s) = a(t, s)yj(s), kj(t, σ) =
j∑

i=0

ei(t, σ)zj−i(σ),

where
ei(t, σ) =

1
i!
∂i
2a(t, 0)σi.

Remark 2.4. Equation (2.12) for the residual has been derived only
assuming that (2.3) is true. It follows that if (2.3) holds and (2.13) and
(2.14) hold for 0 ≤ j ≤ N , then |ρN (t; ε)| = O(εN+1) as ε → 0.

3. Properties of the formal solution. In this section it is shown
that there are unique solutions yj(t) and zj(τ ) of (2.13) and (2.14), and
that they have the important properties assumed in their derivation.
It is convenient to rewrite these equations as

0 = f0(t) +
∫ t

0

g(t, s, y0(s)) ds,(3.1)

z0(τ ) = −
∫ ∞

τ

(g(0, 0, y0(0) + z0(σ)) − g(0, 0, y0(0))) dσ,

(3.2)

and j ≥ 1,

0 = φj(t) +
∫ t

0

∂3g(t, s, y0(s))yj(s) ds,(3.3)

zj(τ ) = −
∫ ∞

τ

∂3g(0, 0, y0(0) + z0(σ))zj(σ) dσ + ψj(τ ).

(3.4)
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Here we used the definitions

φj(t) = fj(t) +
∫ t

0

Φj(t, s) ds +
∫ ∞

0

kj−1(t, σ) dσ − yj−1(t),

(3.5)

ψj(τ ) = −
∫ ∞

τ

Ξj(τ, σ) dσ.

(3.6)

We see that the leading order solutions (outer and inner correction) are
given by nonlinear equations while the higher order terms are given by
linear equations.

We use the following hypotheses on the functions f(t; ε) and the
kernel g(t, s, u). They are based on the assumptions used in O’Malley
[29, Chapter 4].

(Hf ) The function f : [0, T ] × [0, 1] → R is C∞ and f(0; 0) = 0. Also
g : ∆T × R → R is a C∞ function where

∆T = {(t, s); 0 ≤ s ≤ t ≤ T}.

(Hy0) A C∞ solutions y0 : [0, T ] → R exists on (3.1) which is unique
in the class of continuous functions on [0, T ].

(Hg) There is a positive constant α such that

∂3g(t, t, y0(t)) ≤ −α < 0 for all 0 ≤ t ≤ T,

∂3g(0, 0, v) ≤ −α < 0,

for all v between y0(0) and y0(0) + f1(0).

Remark 3.1. If (Hf ) holds, f(t; ε) has the asymptotic expansion

f(t; ε) ∼
∞∑

j=0

εjfj(t), as ε → 0,

where each fj(t) is C∞ on [0, T ].
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Remark 3.2. Equation (3.1) is a Volterra integral equation of the first
kind for y0(t). An existence and uniqueness theorem for this equation
is given in Linz [21, Ch. 5, Theorem 5.2]. It is obtained by applying
the method of successive approximations to the differentiated version
of (3.1).

Proposition 3.3. Suppose that (Hf ), (Hy0) and (Hg) hold. Then
(3.2) and (2.15) have a C∞ solution z0 satisfying

(3.7) |z0(τ )| ≤ c0e
−ατ , τ ≥ 0,

for some positive constant c0.

Proof. The problem of solving (3.2) subject to (2.15) is equivalent to
the initial-value problem

(3.8)
z′0(τ ) = g(0, 0, y0(0) + z0(τ )) − g(0, 0, y0(0)),
z(0) = f1(0) − y0(0).

By standard theory of ordinary differential equations, (see for example,
Hirsch and Smale [13], Ch. 8), (3.8) has a unique continuous solution
defined on a maximal interval [0, S) such that limτ↑S |z0(τ )| = ∞ if
S < ∞. By the mean value theorem there is a function ω(τ ) such that

z′0(τ ) = ∂3g(0, 0, (1 − ω(τ ))y0(0) + ω(τ )z0(τ ))z0(τ ).

Assumption (Hg) implies that z0(τ ) decreases if z0(0) > 0 and increases
if z0(0) < 0 and that z0(τ ) +y0(0) lies between y0(0) and y0(0) +f1(0).
Therefore,

z′0(τ )z0(τ ) ≤ −αz0(τ )2,

and hence |z0(τ )| ≤ |z0(0)|e−ατ for all 0 ≤ τ < S. Hence S = ∞ and
(3.7) holds.

Proposition 3.4. Suppose that (Hf ), (Hy0) and (Hg) hold. Then
for every integer j ≥ 1, (3.3) has a C∞ solution yj(t) on [0, T ], and
equations (3.4) and (2.15) have a C∞ solution zj on [0,∞) satisfying

(3.9) |zj(τ )| ≤ cje
−βτ , τ ≥ 0,
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for some positive constants cj and β < α.

Proof. Consider the hypothesis that there is an integer N ≥ 0 such
that there are C∞ solutions yj(t) of (3.3) for 0 ≤ j ≤ N and C∞

solutions zj(τ ) for 0 ≤ j ≤ N of (3.4) and (2.15) such that

(3.10) |zj(τ )| ≤ cje
−βτ , τ ≥ 0.

Due to Proposition 3.3 and (Hy0), this hypothesis is true for N = 0.

Suppose now this hypothesis is true for M > 0. Then ΦM+1(t, s) and
kM (t, σ) are determined and, by (3.5), φM+1(t) is a well-defined C∞

function on [0, T ]. Assumption (Hy0) implies that ∂3g(t, t, y0(t)) 
= 0
for all 0 ≤ t ≤ T . Then it makes sense to consider the differentiated
version of (3.3), namely,

(3.11)
yM+1(t) = −

φ′
M+1(t)

∂3g(t, t, y0(t))

− 1
∂3g(t, t, y0(t))

∫ t

0

∂3∂1g(t, s, y0(s))yM+1(s) ds.

This is a linear Volterra integral equation of the second kind in yM+1

and has a C∞ solution on [0, T ] which can be written in terms of the
resolvent kernel. The theory can be found for example in Gripenberg,
London and Staffan [12, Chapter 2] or Miller [26, Chapter 4]. It follows
from (3.11) that

(3.12) constant = φM+1(t) +
∫ t

0

∂3g(t, s, y0(s))yM+1(s) ds.

But since zM (0) = fM+1(0) − yM (0) and lM (0, σ) = kM (0, σ), (3.4)
implies that

φM+1(0) = fM+1(0) − yM (0) +
∫ ∞

0

kM (0, σ) dσ

= zM (0) +
∫ ∞

0

kM (0, σ) dσ = 0.

Thus the constant in (3.12) vanishes and (3.3) holds in the case
j = M + 1.
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Now that yM+1(t) has been found, it follows from (3.6) that ψM+1(τ )
is a well-defined C∞ function. An argument like that of O’Malley [28,
pp. 84 85] shows that

(3.13) |ψj(τ )| ≤ γje
−βτ , τ ≥ 0,

can be deduced from (3.10) for 0 ≤ j ≤ M . The details are omitted.
Equation (3.4) is equivalent to the linear scalar equation

z′M+1(τ ) = ∂3g(0, 0, y0(0) + z0(τ ))zM+1(τ ) + ψ′
M+1(τ ),

zM+1(0) = fM+1(0) − yM (0).

It easily follows from the exact solution, (Hg) and (3.13) that (3.10)
holds for J = M + 1. This completes our proof that the induction
hypothesis holds for M + 1. The proposition then follows.

Lemma 3.5. Suppose that (Hf ), (Hy0) and (Hg) hold. Then the
residual ρN given by (2.11) satisfies

(3.14) |ρN (t; ε)| = O(εN+1) as ε → 0,

uniformly for all 0 ≤ t ≤ T . Moreover,

(3.15) |ρ′N (t; ε)| = O(εN+1) as ε → 0,

uniformly for all 0 ≤ t ≤ T , and

(3.16) |ρN (0; ε)| = O(εN+2).

Proof. Since Propositions 3.3 and 3.4 have established (2.3), the proof
of (3.14) follows from Remark 2.4. To prove (3.16)

ρN (0; ε) = f(0; ε) − εUN (0; ε) =
∞∑

j=0

εjfj(0) −
N∑

j=0

εj+1(yj(0) + zj(0)).

Using the initial conditions in (2.15) and the fact that f0(0) = 0, we
have

ρN (0; ε) =
∞∑

j=N+1

fj+1(0)εj+1 = O(εN+2).
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Differentiation of (2.11) gives

ρ′N (t; ε) = f ′(t; ε) −
N∑

j=0

εj+1y′j(t) −
N∑

j=0

εjz′j

(
t

ε

)

+ g

(
t, t,

N∑
j=0

εj

(
yj(t) + zj

(
t

ε

)))

+
∫ t

0

∂1g

(
t, s,

N∑
j=0

εj

(
yj(s) + zj

(
s

ε

)))
ds.

Introducing the new notations

H∗(t, s; ε) = ∂1g

(
t, s,

N∑
j=0

εjyj(s)
)
,

K∗(t, s, σ; ε) = ∂1g

(
t, s,

N∑
j=0

εj(yj(s) + zj(σ))
)
− ∂1g

(
t, s,

N∑
j=0

εjyj(s)
)
,

we have

(3.17)

ρ′N (t; ε) =
N∑

j=0

εjf ′
j(t) −

N∑
j=0

εj+1y′j(t) −
N∑

j=0

εjz′j

(
t

ε

)

+ H(t, t; ε) + K(t, t,
t

ε
; ε) +

∫ t

0

H∗(t, s; ε) ds

+ ε

∫ t
ε

0

K∗(t, εσ, σ; ε) dσ + O(εN+1).

Two useful Taylor expansions are

H∗(t, s; ε) =
N∑

j=0

εjh∗
j (t, s) + O(εN+1)

K∗(t, εσ, σ; ε) =
N∑

j=0

εjk∗j (t, σ) + O(εN+1),



SINGULARLY PERTURBED NONLINEAR VIEs 135

where the coefficients satisfy

k∗j (t, σ) = ∂1kj(t, σ), h∗
j (t, s) = ∂1hj(t, s).

Therefore (3.17) is equivalent to

ρ′N (t; ε) =
N∑

j=0

εjf ′
j(t) −

N∑
j=0

εj+1y′j(t) −
N∑

j=0

εjz′j

(
t

ε

)

+
N∑

j=0

εjhj(t, t)+
N∑

j=0

εjkj

(
t,

t

ε

)
+

N∑
j=0

εj

∫ t

0

h∗
j (t, s) ds

+
N∑

j=0

εj+1

∫ ∞

0

k∗j (t, σ) dσ −
N∑

j=0

εj+1

∫ ∞

t
ε

k∗j (t, σ) dσ

+ O(εN+1).

Then, substituting the differentiated version of (2.13), we get

(3.18)

ρ′N (t; ε) = εN+1

(∫ ∞

0

k∗N (t, σ) dσ − y′N (t)
)

−
N∑

j=0

εjz′j

(
t

ε

)
+

N∑
j=0

εjkj

(
t,

t

ε

)

−
N∑

j=0

εj+1

∫ ∞

t
ε

k∗j (t, σ) dσ + O(εN+1).

By substituting the differentiated version of (2.14), one gets

ρ′N (t; ε) = εN+1

(∫ ∞

0

k∗N (t, σ) dσ − y′N (t)
)

+
N∑

j=0

εjkj

(
t,

t

ε

)

−
N∑

j=0

εj lj

(
t

ε
,
t

ε

)
+

N∑
j=0

εj

∫ ∞

t
ε

∂1lj

(
t

ε
, σ

)
dσ

−
N∑

j=0

εj+1

∫ ∞

t
ε

k∗j (t, σ) dσ + O(εN+1).
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Using Lemma 2.1,

ρ′N (t; ε) = εN+1

(∫ ∞

0

k∗N (t, σ) dσ − y′N (t)
)

+
N∑

j=0

εj

j∑
i=0

εik̃j,i

(
t

ε
,
t

ε

)

−
N∑

j=0

εj lj

(
t

ε
,
t

ε

)
+

N∑
j=0

εj

∫ ∞

t
ε

∂1lj

(
t

ε
, σ

)
dσ

−
N∑

j=0

εj+1

∫ ∞

t
ε

j∑
i=0

εik̃∗j,i

(
t

ε
, σ

)
dσ + O(εN+1).

Collecting terms together using (2.10) gives

ρ′N (t; ε) = εN+1

(∫ ∞

0

k∗N (t, σ) dσ − y′N (t)
)

+
N∑

j=1

εj

∫ ∞

t
ε

∂1lj

(
t

ε
, σ

)
dσ

−
N+1∑
j=1

εj

∫ ∞

t
ε

j−1∑
i=0

k̃∗j−i−1,i

(
t

ε
, σ

)
dσ + O(εN+1).

We also see that if

K∗(ετ, εσ, σ; ε) =
∞∑

j=0

εj l∗j (τ, σ),

then
j∑

i=0

k̃∗j−i,i(τ, σ) = l∗j (τ, σ),

where the coefficients obey

l∗j−1(τ, σ) = ∂1lj(τ, σ), j ≥ 1.

Therefore,

(3.19) |ρ′N (t; ε)| = O(εN+1),
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uniformly for all 0 ≤ t ≤ T .

4. Existence of asymptotic solution. In this section we establish
that UN (t; ε) defined in (1.3) is an asymptotic solution. Our method is
to adapt the theory in Section 6.3 of Smith [33] for systems of singularly
perturbed ordinary differential equations. Skinner [32] employed a
similar method. The analysis here also has benefited from the general
discussion in Eckhaus [8, Section 6.1] on developing a rigorous theory
of singular perturbation. The main result in this paper is the following.

Theorem 4.1. Suppose that (Hf ), (Hy0) and (Hg) hold. Then
(1.1) has a continuous solution u(t; ε) with the property that there are
constants CN and ε∗N such that

|u(t; ε) − UN (t; ε)| ≤ CNεN+1

for all 0 ≤ t ≤ T and 0 < ε ≤ ε∗N .

It is natural to introduce rN (t; ε) = u(t; ε) − UN (t; ε) which satisfies
the equation
(4.1)

εrN (t; ε) = ρN (t; ε)+
∫ t

0

[g(t, s, UN (s; ε)+rN (s; ε))−g(t, s, UN(s; ε))] ds.

However, if the functions rN and ρN are scaled, a mapping considered
later becomes a uniform contraction rather than just a contraction.
For this reason let

θ(t; ε) = ε−(N+1)ρN (t; ε), x(t; ε) = ε−(N+1)rN (t; ε),

where, for simplicity, the dependence on the fixed integer N is omitted
from the notation. Then, for ε > 0, (4.1) is equivalent to
(4.2)

εx(t; ε) = θ(t; ε)+
∫ t

0

∂3g(t, s, UN (s, ε))x(s; ε) ds+
∫ t

0

h(t, s, x(s; ε); ε) ds,

where
h(t, s, x; ε) := ε−(N+1)g(t, s, UN (s; ε) + x)

− ε−(N+1)g(t, s, UN (s; ε))
− ∂3g(t, s, UN (s; ε))x.
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By Taylor’s theorem h(t, s, x; ε) = ε(N+1)h1(t, s, x; ε), where

h1(t, s, x; ε) = x2

∫ 1

0

(1 − v)∂2
3g(t, s, UN (s; ε) + vε(N+1)x) dv.

Hence, because |θ(t; ε)| = O(1) as ε → 0 uniformly by Lemma 3.5, we
expect the nonlinear term∫ t

0

h(t, s, x(s; ε); ε) ds

to be of higher order than other terms in (4.2). Therefore we first
consider the approximate equation

(4.3) εw(t; ε) = ξ(t; ε) +
∫ t

0

∂3g(t, s, UN (s; ε))w(s; ε) ds,

where ξ(t; ε) = O(1) uniformly as ε → 0 and ξ(0; ε) = O(ε).

Lemma 4.2. Suppose that (Hf ), (Hy0) and (Hg) hold for each 0 <
ε ≤ ε0. Also suppose that ξ(·; ε) : [0, T ] → R is a continuously differen-
tiable function with ‖ξ′(·, ; ε)‖ = O(1) and |ξ(0; ε)| = O(ε). Then (4.3)
has a unique continuous solution w(·; ε) satisfying ‖w(·; ε)‖ = O(1) for
all ε in some interval (0, ε1] ⊂ (0, ε0].

Proof. The standard theory of linear Volterra equations of the second
kind ensures that for each 0 < ε < ε0 (4.3) has a continuous solution
t 
→ w(t; ε) on [0, T ] and that w(·; ε) is continuously differentiable
because ξ(·; ε) is. Let 0 < β < α. It follows from (Hg)that there
is a number 0 < ε1 ≤ ε0 such that

p(t; ε) = ∂3g(t, t, UN (t; ε)) ≤ −β

for all 0 ≤ t ≤ T and 0 ≤ ε ≤ ε1. Equation (4.3) can be differentiated
to get an equation of the form

(4.4) εw′(t; ε) − p(t; ε)w(t; ε) = ξ1(t; ε),

where w(0; ε) = ξ(0; ε)/ε and

ξ1(t; ε) = ξ′(t; ε) +
∫ t

0

∂1∂3g(t, s, UN (s; ε))w(s; ε) ds.
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Since the solution of (4.4) satisfies

w(t; ε) = w(0; ε)e(1/ε)
∫ t

0
p(v;ε) dv +

1
ε

∫ t

0

e
(1/ε)

∫ t

s
p(v;ε) dv

ξ1(s; ε) ds

and

e
(1/ε)

∫ t

0
p(v;ε) dv ≤ e−β t

ε , e
(1/ε)

∫ t

s
p(v;ε) dv ≤ e−β(t−s)/ε,

we see that

|w(t; ε)| ≤ C1 +
C2

β
+

M

β

∫ t

0

|w(s; ε)| ds,

where

C1 = sup
0<ε≤ε0

|ξ(0; ε)|/ε,

C2 = sup
0<ε≤ε0

‖ξ′(·; ε)‖,

M = sup
(t,s)∈∆T

0≤ε≤ε0

|∂1∂3g(t, s, UN (s; ε))|.

By Gronwall’s inequality

|w(t; ε)| ≤
(
C1 +

C2

β
e

Mt
β

)
,

and the lemma is proved.

Equation (4.2) can be written as

(4.5) L(x, ε) = θ(·; ε) + N (x, ε),

where L,N : C[0, T ] × [0, ε1] → C[0, T ] are defined by

L(x, ε)(t) = εx(t) −
∫ t

0

∂3g(t, s, UN (s; ε))x(s) ds,

N (x, ε)(t) = ε(N+1)

∫ t

0

h1(t, s, x(s); ε) ds.
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It is convenient to introduce the space X of functions (t, ε) 
→ ξ(t; ε)
on [0, T ]×[0, ε] with t 
→ ξ(t; ε) continuously differentiable and ‖ξ′(·; ε)‖
and ξ(0; ε)/ε are uniformly bounded on [0, ε0] and (0, ε0], respectively.
X ′ is given the norm

‖ξ‖X = sup
0<ε≤ε1

|ξ(0; ε)/ε| + sup
0<ε≤ε1

‖ξ′(·; ε)‖.

Then (t, ε) 
→ L(x, ε)(t), (t, ε) 
→ N (x, ε)(t) and (t, ε) 
→ θ(t; ε) are in
X .

Lemma 4.2 can be reinterpreted as asserting that for ξ ∈ X the
equation L(w, ε) = ξ(·; ε) is equivalent to w(·; ε) = M(·, ε)ξ(·; ε) for
some linear operator M(·, ε) : X → C[0, T ] and there is a constant µ
such that ‖M(·, ε)ξ(·; ε)‖ ≤ µ‖ξ‖X uniformly for 0 < ε ≤ ε1. Hence
there is a number δ > 0 such that

‖M(·, ε)θ(·, ε)‖ ≤ δ.

Also (4.5) is equivalent to

x = M(·, ε)[θ(·; ε) + N (x, ε)].

Thus the problem of finding solutions of (4.5) is equivalent to finding
fixed points of a mapping. Let

B = {x ∈ C[0, T ] : ‖x‖ ≤ 2δ}.

A simple calculation shows that if x is in B, then

‖N (x, ·)‖X ≤ εN+1TM1,

where
M1 = max

(t,s)∈∆T

|x|≤2δ
0≤ε≤ε1

|h1(t, s, x; ε)|

Therefore, for each x in B,

‖M(·, ε)[θ(·; ε) + N (x, ε)]‖ ≤ δ + µTM1ε
N+1 ≤ 2δ,
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if ε is in some interval (0, ε2]. It has been shown that the mapping
Tε : B → B given by

Tε(x) = M(·, ε)[θ(·; ε) + N (x, ε)]

is well defined.

Next it is shown that Tε is a contraction on B. Note that N (x, ε)(0) =
0. Let x1, x2 be in B. Then

(N (x1, ε)′(t) −N (x2; ε)′(t)) = εN+1

[
h1(t, t, x1(t); ε)

− h1(t, t, x2(t); ε)

+
∫ t

0

{∂1h1(t, s, x1(s); ε)

− ∂1h1(t, s, x2(s); ε)} ds
]
,

and, using the mean value theorem,

|N (x1, ε)′(t) −N (x2, ε)′(t)|

≤ εN+1

{
M2|x1(t) − x2(t)| + M3

∫ t

0

|x1(s) − x2(s)| ds
}

where
M2 = max

0≤t≤T
|x|≤2δ
0≤ε≤ε0

|∂3h1(t, t, x; ε)|,

M3 = max
(t,s)∈∆T

|x|≤2δ
0≤ε≤ε0

|∂3∂1h1(t, s, x; ε)|.

It follows that

‖N (x1, ε) −N (x2, ε)‖X ≤ εN+1(M2 + M3T )‖x1 − x2‖,

and hence that Tε : B → B is a uniform contraction for ε in some
interval (0, ε3] with 0 ≤ ε3 ≤ ε2. The Banach fixed point theorem
implies the following result.
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Lemma 4.3. Suppose that (Hf ), (Hy0) and (Hg) hold. Then there
is a number ε3 > 0 such that (4.2) has a unique solution x(ε) in B for
all 0 < ε ≤ ε3.

It is easy to show that since x(ε)(t) = x(t; ε) satisfies (4.2)

u(t; ε) := UN (t; ε) + εN+1x(t; ε)

is a solution of (1.1). Moreover,

|u(t; ε) − UN (t; ε)| = εN+1|x(t; ε)| ≤ 2δεN+1

for all 0 ≤ t ≤ T . This completes the proof of Theorem 4.1.

5. Example.

5.1 Example one. Let us consider the following example from
Angell and Olmstead [2]

(5.1) εu(t) =
∫ t

0

e(t−s)(u2(s) − 1) ds.

The exact solution of this is determined by converting the integral
equation to a nonlinear first order differential equation subject to the
initial condition u(0) = 0 is

(5.2) u(t; ε) =
2
ε

1 − eγt

(γ − 1)eγt + γ + 1

where

(5.3) γ =
1
ε

√
4 + ε2.

Example (5.1) corresponds to

f(t; ε) = 1 − et, g(t, s, u) = e(t−s)u2,

which implies ∂3g(t, t, u) = 2u. It follows from (3.1) that the leading
order outer solution satisfies

0 =
∫ t

0

e(t−s)(y2
0(s) − 1) ds



SINGULARLY PERTURBED NONLINEAR VIEs 143

which has solutions y0(t) = ±1. But only one of these can be
appropriate since (5.1) has a unique solution. (Hg) cannot be satisfied
with y0(t) = 1, but with y0(t) = −1 it holds with α = 2, since
∂3g(t, t, y0) = −2. Therefore

y0(t) = −1, t ≥ 0.

The leading order inner correction solution is given by the nonlinear
ordinary differential equation

z′0(τ ) = z2
0(τ ) − 2z0(τ ), z0(0) = 1,

which has a solution

z0(τ ) = 1 − tanh τ, τ ≥ 0.

We see from this solution that z0(τ ) satisfies the requirement that

lim
τ→∞ z0(τ ) = 0.

To the leading order, the asymptotic solution U0(t; ε) of (5.1) is given
by

U0(t; ε) = − tanh
t

ε
.

In general, for j ≥ 1, the outer solution satisfies

yj−1(t) = −2
∫ t

0

et−syj(s) ds +
∫ t

0

Φj(t, s) ds +
∫ ∞

0

kj−1(t, σ) dσ,

where kj−1(t, σ) and Φj(t, s) are determined by yi(t) and zi(τ ) for
i ≤ j − 1. Since

Φ1(t, s) = 0, k0(t, σ) = −etsech 2σ,

it follows that the first order outer solution satisfies the equation

2
∫ t

0

et−sy1(s) ds = 1 − et.
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Solving this by differentiating once gives

y1(t) = −1
2
, t ≥ 0.

From (3.4), the inner correction solution in general satisfies

z′j(τ ) = −2 tanh τzj(τ ) + ψ′
j(τ ),

where

ψj(τ ) = −
∫ ∞

τ

Ξj(τ, σ)

is determined by yi(t) and zi(τ ) for i ≤ j, respectively i ≤ j − 1. Then
since

Ξ1(τ, σ) = (σ − τ )sech 2σ + tanhσ − 1,

the first order inner correction solution z1(τ ) satisfies

z′1(τ ) = −2 tanh τz1(τ ), z1(0) =
1
2
.

Solving this gives

z1(τ ) =
1
2

sech 2τ, τ ≥ 0.

Then to the first order, the asymptotic solution U1(t; ε) is given by

U1(t; ε) = − tanh
t

ε
− ε

2
tanh2 t

ε
.

To verify that U0(t; ε) is a uniformly valid asymptotic solution, we
consider the difference

(5.4)

u(t; ε) − U0(t; ε) =
2/ε(1 − eγt

)
(γ − 1)eγt + γ + 1

+
e2 t

ε − 1
e2 t

ε + 1

=
2/ε(1 − eγt)(e2 t

ε + 1)
(γ − 1)eγt + γ + 1(e2 t

ε + 1)

+
(e2 t

ε − 1){(γ − 1)eγt + γ + 1}
(γ − 1)eγt + γ + 1(e2 t

ε + 1)
.
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Simplifying (5.4) gives

u(t; ε) − U0(t; ε) =
eγt + e2 t

ε − eγte2 t
ε − 1

γeγt + γe2 t
ε + (γ − 1)eγte2 t

ε + γ + 1
.

We have from (5.3) that

γ ∼ −2
3

+ O(ε), ε → 0.

Therefore

u(t; ε) − U0(t; ε) =
2εe2 t

ε − εe4 t
ε − ε

2εe2 t
ε + (2 − ε)e4 t

ε + 2 + ε

and

|u(t; ε) − U0(t; ε)| ≤
∣∣∣∣ 2εe−2 t

ε − εe−4 t
ε − ε

2εe−2 t
ε + 2 − ε + (2 + ε)e−4 t

ε

∣∣∣∣.
It therefore follows that, for 0 < ε ≤ ε0, we have

|u(t; ε) − U0(t; ε)| ≤ ε

2
,

for all 0 ≤ t ≤ T . Similar calculations show that there exists a positive
constant c1 > 0 such that

|u(t; ε) − U1(t; ε)| ≤ c1e
2,

uniformly for all 0 ≤ t ≤ T .

5.2 Example two. Consider the following example which follows
from the population growth model. The unperturbed model is dis-
cussed by Brauner [6] and related models are found in Gripenberg et
al. [12]

(5.5) εu(t) = εS(t) +
∫ t

0

S(t− s)u(s)(1 − u(s)/c) ds,

where c > 0 is a constant. Problem (5.5) is a model for the population
growth. The function u(t) is the population size at time t. The survival
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function S(t) is the fraction of the initial population which is still alive
at time t, so S(0) = 1. u(1 − u/c) is the rate of reproduction. Since
ε is small, (5.5) describes a rapidly growing population. A typical
survival function considered here will be nonnegative, nonincreasing
and differentiable such as e−t.

Problem (5.5) corresponds to

f(t; ε) = εS(t), g(t, s, u) = S(t− s)u(1 − u/c).

The leading order outer solution, y0(t), is given by

(5.6) 0 =
∫ t

0

S(t− s)y0(s)(1 − y0(s)/c) ds

which implies

(5.7) y0(t) = 0 or y0(t) = c.

To satisfy (Hg), the correct leading order outer solution is

y0(t) = c,

since then ∂3g(t, t, y0(t)) = −1. By (3.1) the leading order inner
correction solution z0(τ ) is given by

(5.8) z′0(τ ) = −z0(τ )
(

1 − 1
c
z0(τ )

)
, z0(0) = 1 − c,

which has solution

(5.9) z0(τ ) =
c(1 − c)e−τ

1 + (c− 1)e−τ
.

This implies that limτ→∞ z0(τ ) = 0 and thus to the leading order, the
asymptotic solution, U0(t; ε) of (5.5) is given by

(5.10) U0(t; ε) =
c

1 + (c− 1)e−
t
ε

.
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Thus on a time scale of order ε, the population increases rapidly. Since
(5.5) and y0(t) satisfy the hypotheses imposed on this presentation.
The unknown exact solution satisfies

(5.11)
∣∣∣∣u(t; ε) − c

1 + (c− 1)e−
t
ε

∣∣∣∣ = O(ε)

uniformly for 0 ≤ t ≤ T .

The higher order outer solutions are given in general for j ≥ 1 as
(5.12)

yj−1(t) = fj(t)−
∫ t

0

S(t−s)yj(s) ds+
∫ t

0

Φj(t, s) ds+
∫ ∞

0

kj−1(t, σ) dσ,

where fj(t) = S(t), j = 1 and fj(t) = 0, j ≥ 2. The functions Φj and
kj−1 are determined by yi(t) and zi(τ ) for i ≤ j− 1. Since Φ1(t, s) = 0
and

k0(t, σ) = S(t)
{

c(c− 1)e−σ

(1 + (c− 1)e−σ)2

}
,

it follows that the first order outer solution, y1(t) is given by

(5.13) c(1 − S(t)) = −
∫ t

0

S(t− s)y1(s) ds.

Equation (5.13) has the unique solution which depends on s(t).
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