
JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 14, Number 1, Spring 2002

A QUENCHING PROBLEM
FOR THE HEAT EQUATION

C.M. KIRK AND CATHERINE A. ROBERTS

ABSTRACT. A nonlinear partial differential equation of
parabolic type is investigated for quenching behavior. Quench-
ing occurs when the solution of the equation remains bounded
while the first order time derivative becomes unbounded in
finite time. We examine a quenching problem for the heat
equation in a one-dimensional strip of finite width with spe-
cial nonlinear boundary conditions. Specifically, the bound-
ary condition at one end represents nonlinear absorption of
heat and the boundary condition at the other end represents
nonlinear heat loss. The interactions between the diffusion,
the heat behavior at the boundaries and the length of the
domain are studied to determine conditions under which the
phenomenon of quenching will or will not occur.

1. Background. The study of specialized behavior for nonlinear
parabolic partial differential equations has been an active area of
research for decades. Two types of specialized behavior, solution
explosion and solution quenching, have been of particular interest more
recently (see [2], [3], [10], [11], [13]). In explosion problems, the
solution becomes unbounded in finite time. In quenching problems, the
solution remains bounded while the first order time derivative becomes
unbounded in finite time.

The thrust of the research is generally to establish sufficient condi-
tions for the existence of a unique solution that exhibits either explosion
or quenching behavior. Other research characterizes the solution by
describing, for example, the asymptotic behavior in certain key limits.
The body of research on these types of problems typically formulates
them as parabolic (sometimes hyperbolic) partial differential equations
with nonlinear source terms or boundary conditions (see [1] [4], [10],
[11]). In some cases, the analysis proceeds best when the problem
is recast in terms of a nonlinear integral equation (see [6], [8], [9],
[12] [14]).
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The analysis for explosion of nonlinear Volterra equations has quite
recently been modified and expanded to accommodate issues of quench-
ing phenomena in related problems (see [6], [12], [14]). Because of
the intrinsic mathematical similarities between explosion problems and
quenching problems, this is a natural evolution of the theory of non-
linear Volterra integral equations. The results given here represent
another contribution to this expanding body of work. In section (7),
the results of this paper will be analyzed in the context of existing
literature.

2. Introduction. We consider a quenching problem for the heat
equation in a one-dimensional strip of finite width with nonlinear
boundary conditions of a particular type. We examine

∂v

∂t
=
∂2v

∂x2
0 < x < l, t > 0(2.1)

v(x, 0) = v0(x), 0 ≤ v0(x) < 1(2.2)
∂v

∂x
(0, t) = f [v](2.3)

∂v

∂x
(l, t) = g[v](2.4)

where

f [v] > 0,
∂f

∂v
[v] > 0 for v > 0(2.5)

g[v] > 0,
∂g

∂v
[v] > 0,

∂2g

∂v2
[v] > 0 for v > 0(2.6)

and

(2.7) g[v] → +∞ as v → 1−.

Physically, these boundary conditions represent cooling of the strip at
x = 0 and heating at x = l. The quenching value is v(x, t̂ ) = 1 as
t → t̂ < ∞. Note that (2.2) guarantees that the solution starts below
the quenching value. We will establish conditions for the existence and
non-existence of a unique quenching solution.

3. Conversion to an integral equation. Our solution ap-
proach involves finding lower and upper bound estimates on the critical
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quenching time. Using the standard Green’s function for this problem
yields a system that is not amenable to our techniques for establishing
an upper bound. Instead, we will consider an alternative Green’s func-
tion and use the appropriate Green’s identity to express the solution of
our problem.

Recall that f [v] is the cooling nonlinearity at x = 0 and that v → 1
is the quenching value. Assume that there exist an m and an M such
that

(3.1) 0 < m ≤ f ′(v) ≤M <∞ and f(v) ≤Mv for 0 ≤ v < 1.

Consider the following Green’s function problem:

Gt −Gxx = δ(x− ξ)δ(t− s)(3.2)
G |t=s− = 0(3.3)
Gx |x=0 = MG |x=0(3.4)
Gx |x=l = 0.(3.5)

The Green’s function is given by

(3.6) G(x, t | ξ, s) = H(t− s) Σ∞
n=1

φn(x)φn(ξ)∫ l

0
φ2

n(s)ds
e−λn(t−s)

where

(3.7) φn(x) = cos
[√
λn (x− l)]

and where λn satisfies

(3.8)
M√
λn

= tan
(√
λn l

)
.

The solution to the problem (2.1) (2.6) for v(x, t) can be expressed in
terms of G(x, t|ξ, s):

(3.9)
v(x, t) =

∫ l

0

G(x, t | ξ, 0)v0(ξ) dξ +
∫ t

0

G(x, t | l, s)g[v(l, s)] ds

−
∫ t

0

G(x, t | 0, s){f [v(0, s)]−Mv(0, s)} ds.
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We will consider only the temperature at x = 0 and x = l. The
maximum principle guarantees that quenching can not occur elsewhere.
In particular, it can be shown that if quenching occurs, it will occur
at x = l (see [7], [14]). This makes intuitive sense as well, given the
physical description of the scenario under consideration. Heating at
x = l and cooling at x = 0 implies that if quenching is to occur, it will
occur on the heated end. In such a case, the solution will remain
bounded while the first order time derivative (∂v/∂t)(l, t) becomes
infinite in finite time. Let

(3.10) u1(t) ≡ v(0, t), u2(t) ≡ v(l, t)

and

h1(t) ≡
∫ l

0

G(0, t | ξ, 0)v0(ξ) dξ(3.11)

h2(t) ≡
∫ l

0

G(l, t | ξ, 0)v0(ξ) dξ.(3.12)

The equations for v(x, t) at x = 0 and x = l are, respectively:

u1(t) = h1(t) +
∫ t

0

G(0, t | l, s)g[u2(s)] ds

+
∫ t

0

G(0, t | 0, s){Mu1(s)− f [u1(s)]
}
ds(3.13)

u2(t) = h2(t) +
∫ t

0

G(l, t|l, s)g[u2(s)] ds

+
∫ t

0

G(l, t|0, s){Mu1(s)− f [u1(s)]
}
ds.(3.14)

Introduce the following notation:

kab ≡ G(a, t | b, s) ≡ Gab(t− s),(3.15)

Iab(t) ≡
∫ t

0

kab(s)ds.(3.16)

Our goal is to examine the system of nonlinear Volterra integral
equations (3.13) and (3.14) to establish the existence or non-existence
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of quenching behavior. Some useful properties of (3.15) (3.16) will be
stated here, for use in the forthcoming theorems.

Note that since φn(0) ≤ φn(l), we have

(3.17) k0l(t) = kl0(t) ≤ kll(t)

and

(3.18) k00(t) ≤ kll(t).

Then it follows that

(3.19) I0l(t) = Il0(t) ≤ Ill(t)

and

(3.20) I00(t) ≤ Ill(t).

Also note that k11(t) is decreasing. It can be shown that h1(t) and
h2(t) are continuous. Moreover, they are bounded:

(3.21) h1 ≤ h1(t) ≤ h̄1 and h2 ≤ h2(t) ≤ h̄2.

This can be seen by noticing that

(3.22) V (x, t) =
∫ l

0

G(x, t | ξ, 0) dξ

is a solution of the one-dimensional heat equation with V (x, 0) = 1;
with a homogeneous Neumann condition at x = l; and the homogeneous
condition Vx |x=0 −MV at x = 0. Thus, by the maximum principle,
0 ≤ V (x, t) ≤ 1. It then follows that h1(t) < 1 and h2(t) < 1.

4. Lower bound result. In this section we will establish the exis-
tence of a continuously differentiable solution of (3.13) (3.14). Rewrite
the system (3.1) (3.14) as

(4.1) ū = A[ū]
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where ū(t) ≡ (u1(t), u2(t)) and the operator A = [A1, A2] is defined by

(4.2)
A1[ū(t)] ≡ h1(t) +

∫ t

0

k0l(t− s)g[u2(s)] ds

+
∫ t

0

k00(t− s)
{
Mu1(s)− f [u1(s)]

}
ds

(4.3)
A2[ū(t)] ≡ h2(t) +

∫ t

0

kll(t− s)g[u2(s)] ds

+
∫ t

0

kl0(t− s)
{
Mu1(s)− f [u1(s)]

}
ds.

Consider the space:

(4.4)

B ≡
{
ū = [u1(t), u2(t)] : 0 < ui(t) ≤ L < 1, ui(t) continuous,

0 ≤ t < t∗, i = 1, 2
}
.

Define the norm as

(4.5) ||ū|| ≡ Σ2
n=1 sup

0≤t<t∗
|un(t)|.

The existence result given by the following theorem is based on a
contraction mapping argument.

Theorem 4.1. There exists a unique solution of (4.1) that is
continuously differentiable and satisfies 0 < u(t) ≤ L < 1, 0 ≤ t < t∗

where t∗ is determined by

(4.6)

Ill(t∗) ≡
∫ t∗

0

kll(s) ds = min
{ 1

2g′(L)
,

1
2(M−m)

,
L− h̄

g(L)+L(M−m)

}
.

Proof. The goal is to establish the existence of a unique fixed point
of (4.1). First show that the operator A maps B into B. Clearly,



A QUENCHING PROBLEM 59

both A1[ū] and A2[ū] are continuous and nonnegative. Next show that
A1[ū] ≤ L and that A2[ū] ≤ L. Note that

(4.7)

A1[ū(t)] = h1(t) +
∫ t

0

k0l(t− s) g[u2(s)] ds

+
∫ t

0

k00(t− s)
{
Mu1(s)− (f [u1(s)]− f(0))

}
ds

−
∫ t

0

k00(t− s)f(0) ds

= h1(t) +
∫ t

0

k0l(t− s) g[u2(s)] ds

+
∫ t

0

k00(t− s)u1(s)
{
M − f ′[ũ(s)]} ds

−
∫ t

0

k00(t− s)f(0) ds

where 0 ≤ ũ(t) ≤ u1(t). Then

(4.8) A1[ū(t)] ≤ h̄1 + g(L) I0l(t) + L(M −m) I00(t).

Similarly,

(4.9) A2[ū(t)] ≤ h̄2 + g(L) Ill(t) + L(M −m) Il0(t).

Define h̄ ≡ max{h̄1, h̄2}. Then, since I00(t) ≤ Ill(t) and since I0l(t) ≤
Ill(t), we obtain

A1[ū(t)] ≤ h̄+ Ill(t)[g(L) + L(M −m)](4.10)
A2[ū(t)] ≤ h̄+ Ill(t)[g(L) + L(M −m)].(4.11)

Therefore, a sufficient condition to guarantee that A maps B into B is

(4.12) Ill(t) ≤ L− h̄
g(L) + L(M −m)

.

In order to show that A is a contraction mapping, we need

(4.13) ||A[ū]−A[v̄]|| < ||ū− v̄||.
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From our given equations, we have

(4.14)

A1[ū]−A1[v̄] =
∫ t

0

k0l(t− s) [g[u2(s)]− g[v2(s)] ] ds

+
∫ t

0

k00(t− s) [Mu1(s)− f [u1(s)] ] ds

=
∫ t

0

k0l(t− s)g′ [ũ2(s)] (u2(s)− v2(s)) ds

+
∫ t

0

k00(t− s) [M − f ′[ũ1(s)]] (u1(s)− v1(s)) ds.
Then it follows that
(4.15)

|A1[ū]−A1[v̄]| ≤
∫ t

0

k0l(t− s)g′[L] |u2(s)− v2(s)| ds

+
∫ t

0

k00(t− s)|M − f ′[ũ1(s)]| |u1(s)− v1(s)| ds
≤ g′(L) I0l(t) sup

0≤t≤t∗
|u2(t)− v2(t)|

+ (M −m) I00(t) sup
0≤t≤t∗

|u1(t)− v1(t)|

where ũ1(t) lies between u1(t) and v1(t) and where ũ2(t) lies between
u2(t) and v2(t). Similarly

(4.16)
|A2[ū]−A2[v̄]| ≤ g′(L) Ill(t) sup

0≤t≤t∗
|u2(t)− v2(t)|

+ (M −m) Il0(t) sup
0≤t≤t∗

|u1(t)− v1(t)|.

Then

(4.17)

sup
0≤t≤t∗

|A1[ū]−A1[v̄]| + sup
0≤t≤t∗

|A2[ū]−A2[v̄]|

≤ g′(L) [I0l(t) + Ill(t)] sup
0≤t≤t∗

|u2(t)− v2(t)|

+ (M −m) [I00(t) + Il0(t)] sup
0≤t≤t∗

|u1(t)− v1(t)|

≤ 2 Ill (t)[g′(L) sup
0≤t≤t∗

|u2(t)− v2(t)|

+ (M −m) sup
0≤t≤t∗

|u1(t)− v1(t)|].
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So a sufficient condition for A to be a contraction mapping is

(4.18) Ill(t) < min
{ 1

2g′(L)
,

1
2(M −m)

}
.

Combine conditions (4.12) and (4.18) to obtain

(4.19) Ill(t) < min
{ 1

2g′(L)
,

1
2(M −m)

,
L− h̄

g(L) + L(M −m)

}
.

There will exist a unique fixed point of (4.1) whenever (4.19) holds. To
push the existence of a unique, bounded solution to hold for the largest
interval of time possible, we choose the largest value t∗ for which (4.19)
holds.

Next we will demonstrate that the continuous solution is also contin-
uously differentiable. Consider the derivatives of u1(t) and u2(t):

u′1(t) = h′1(t) + k0l(t)g(u2(0)) +
∫ t

0

k0l(t− s)g′[u2(s)]u′2(s) ds

+ k00(t)[Mu1(0)− f [u1(0)] ]

+
∫ t

0

k00(t− s)[M − f ′(u1(s))]u′1(s) ds

(4.20)

u′2(t) = h′2(t) + kll(t)g(u2(0)) +
∫ t

0

kll(t− s)g′[u2(s)]u′2(s) ds

+ kl0(t)[Mu1(0)− f [u1(0)] ]

+
∫ t

0

kl0(t− s)[M − f ′(u1(s))]u′1(s) ds.

(4.21)

With the knowledge that there exists a t∗ such that u1(t) and u2(t) are
continuous for 0 ≤ t < t∗, define the following:

(4.22) a1(t) ≡ h′1(t) + k0l(t) g(u2(0)) + k00(t)[Mu1(0)− f [u1(0)] ]

(4.23) a2(t) ≡ h′2(t) + kll(t) g(u2(0)) + kl0(t)[Mu1(0)− f [u1(0)] ]
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k22(t− s) ≡ kll(t− s)g′[u2(s)](4.24)
k21(t− s) ≡ kl0(t− s)[M − f ′(u1(s))](4.25)
k12(t− s) ≡ k0l(t− s)g′[u2(s)](4.26)
k11(t− s) ≡ k00(t− s)[M − f ′(u1(s))].(4.27)

Then we have

u′1(t) = a1(t) +
∫ t

0

k11(t− s)u′1(s) ds

+
∫ t

0

k12(t− s)u′2(s) ds(4.28)

u′2(t) = a2(t) +
∫ t

0

k21(t− s)u′1(s) ds

+
∫ t

0

k22(t− s)u′2(s) ds.(4.29)

Equations (4.28) and (4.29) can be viewed as a system of linear Volterra
equations for u′1(t) and u′2(t). The existence of continuous u′1(t) and
u′2(t) for 0 ≤ t ≤ t∗ then follows (see [5]).

This establishes Theorem 4.1. Since t∗ is the lower bound on the
quenching time, t∗ ≤ t̂. If t∗ = ∞, then quenching is avoided for all
time.

5. Upper bound result. In this section we obtain an upper bound
on the time of quenching. Recall that if quenching does occur, it will
do so at x = l, the end which is absorbing heat. Since quenching occurs
at x = l, attention will be focused on u2(t). We can show that, under
appropriate conditions, it is sufficient to have u2(t) → 1 as t→ t̂ <∞
in order for quenching to occur.

Theorem 5.1. Let (4.1) have a continuously differentiable solution
u(t) for 0 ≤ t < t̂, where u2(t) → 1 as t→ t̂. If h′2(t)+kl0(t)[Mu1(0)−
f [u1(0)] ] > 0, then u′2(t) → ∞ as t → t̂.

Proof. We have

(5.1) u′2(t) > 0 for 0 < t < t̂
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from applying the theory of linear Volterra equations to (4.29) (see [5]).

(5.2)

u′2(t) ≥ h′2(t) + kll(t)g(u2(0)) + kl0(t)[Mu1(0)− f [u1(0)] ]

+
∫ t

0

kl0(t− s)[M − f ′(u1(s))]u′1(s) ds

+ kll(t)
∫ t

0

d

ds
g[u2(s)] ds.

Since
∫ t

0
(d/ds)g[u2(s)] ds = g[u2(t)]− g[u2(0)], we obtain

(5.3) u′2(t) ≥ hω
2 (t) + kl0(t)[Mu1(0)− f [u1(0)] ] + kll(t)g[u2(t)].

Recall that as u2 → 1, g[u2] → ∞. Hence, if h′2(t) + kl0(t)[Mu1(0) −
f [u1(0)] ] > 0, then as u2 → 1 (as t → t̂), u′2(t) → ∞. Theorem 5.1 is
established.

Theorem 5.2. Whenever there exists a t∗∗ such that

(5.4)
∫ 1

h2

dz

g[z]
= Ill(t∗∗), h2 ≡ min

0≤t≤t∗∗
h2(t)

then (3.13) and (3.14) cannot have continuous, bounded solutions for
t > t∗∗.

Proof. Attention is still focused on u2(t). Assume that there exist
continuous, bounded solutions to (3.13) and (3.14) for 0 ≤ t ≤ t1. Then

(5.5)

u2(t) = h2(t) +
∫ t

0

kll(t− s)g[u2(s)] ds

+
∫ t

0

kl0(t− s)
{
Mu1(s)− f [u1(s)]

}
ds

≥ h2 +
∫ t

0

kll(t− s)g[u2(s)] ds

≥ h2 +
∫ t

0

kll(t1 − s)g[u2(s)] ds.

The previous inequalities rely on the fact that the kernel kll(t) is
decreasing and that Mu1(t)− f [u1(t)] > 0. Define

(5.6) J(t) ≡
∫ t

0

kll(t1 − s)g[u2(s)] ds
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so that

(5.7) u2(t) ≥ h2 + J(t).

Then note that

(5.8) J ′(t) = kll(t1 − t)g[u2(t)] ≥ kll(t1 − t)g[h2 + J(t)].

Integrate both sides to obtain

∫ J(t1)

0

dJ

g[J + h2]
≥

∫ t1

0

kll(t1 − t) dt(5.9)

∫ J(t1+h2)

h2

dz

g[z]
≥

∫ t1

0

kll(s) ds(5.10)

∫ 1

h2

dz

g[z]
>

∫ t1

0

kll(s) ds ≡ Ill(t1).(5.11)

If there exists a t∗∗ such that

(5.12)
∫ 1

h̄2

dz

g[z]
= Ill(t∗∗)

then a contradiction occurs. Hence, (3.13) and (3.14) cannot have
continuous, bounded solutions for t > t∗∗. Quenching will have
occurred. This proves Theorem 5.2.

Note that this result makes intuitive sense. If a large amount of heat
is input into the system, then g(z) will tend to be large. Due to the
inverse relation in (5.12), if g(z) is large, t∗∗ will tend to be small.
Hence quenching will tend to occur sooner.

6. Quenching and nonquenching results.

6.1 If g>f and g′>f ′, then quenching will always occur. In
this section we will show that if g(z)> f(z) and if g′(z)> f ′(z), then
quenching will always occur in finite time. This result is a generaliza-
tion of a result in [4]. (See Section (7) for details.) Note that we will
employ a different Green’s function (G̃) in this section. In particular,
the requirement that Mv(t) − f [v(t)] > 0 will be unnecessary.
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Consider the original problem (2.1) (2.6) for v(x, t). We can obtain
the following system of integral equations:

u1(t) = h1(t) +
∫ t

0

G̃(0, t | l, s)g[u2(x)] ds

−
∫ t

0

G̃(0, t | 0, s)f [u1(x)] ds(6.1)

u2(t) = h2(t) +
∫ t

0

G̃(l, t | l, s)g[u2(x)] ds

−
∫ t

0

G̃(l, t | 0, s)f [u1(x)] ds.(6.2)

In this case the Green’s function G̃ satisfies the following:

(6.3) G̃ = G̃(x, t | ξ, s)

(6.4) G̃t − G̃xx = δ(t− s)δ(x− ξ), 0 < x < l, t > s−

(6.5) G̃ |t=s− = 0

(6.6) G̃x |x=0 = 0, G̃x |x=l = 0

The Green’s function is given by

(6.7)
G̃(x, t | ξ, s) = H(t− s)

[1
l
+

2
l
Σ∞

n=1 cos
(nπξ
l

)
cos

(nπx
l

)

· exp
(−n2π2

l2
(t− s)

)]
.

Define k̃ab(t− s) ≡ G̃(a, t|b, s). Note that

k̃00(t) = k̃ll(t)(6.8)

k̃0l(t) = k̃l0(t)(6.9)

k̃l0(t) < k̃ll(t).(6.10)
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Each k̃ab(t) is positive and decreasing. Define

(6.11) Ĩab(t) ≡
∫ t

0

k̃ab(s) ds.

The behavior of Ĩll(t) will be essential in the results of this section:

(6.12)

Ĩll(t) =
∫ t

0

k̃ll(s) ds

=
∫ t

0

[1
l
+

2
l
Σ∞

n=1 exp
(−n2π2

l2
(t− s)

)]
ds

=
t

l
+

2l
π2

Σ∞
n=1

1
n2

[
exp

(−n2π2

l2
(t)

)]

Then

(6.13)
t

l
≤ Ĩll(t) ≤ t

l
+

2l
π2

(π2

6

)
.

Hence

(6.14) lim
t→∞ Ĩll(t) = ∞.

Since heat enters at x = l and leaves at x = 0, it makes intuitive
sense that u2(t) ≥ u1(t). This fact is proved in the following lemma.

Lemma 6.1. Consider the system of equations (6.1) and (6.2). If
h2(t) > h1(t) and if g(z) ≥ f(z), then u2(t) ≥ u1(t).

Proof. Note that

(6.15)

u2(t)−u1(t) = h2(t)−h1(t) +
∫ t

0

[
k̃0l(t− s) + k̃ll(t− s)

]
g[u2(s)] ds

−
∫ t

0

[k̃00(t− s) + k̃l0(t− s)]f [u1(s)] ds

= h2(t)− h1(t) +
∫ t

0

[
k̃00(t− s) + k̃l0(t− s)

]

· [g[u2(s)]− f [u1(s)]
]
ds.
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The previous equality holds since k̃00(t) = k̃ll(t) and k̃0l(t) = k̃l0(t).
Let

(6.16) b(t) ≡ h2(t)− h1(t)

so that b(t) > 0. Also define

(6.17) k̃(t) = k̃00(t) + k̃l0(t)

so that

(6.18)

u2(t)− u1(t) = b(t) +
∫ t

0

k̃(t− s)[g[u2(s)]− f [u1(s)]
]
ds

≥ b(t) +
∫ t

0

k̃(t− s)[f [u2(s)]− f [u1(s)]
]
ds

= b(t) +
∫ t

0

k̃(t− s)f ′[ũ(s)][u2(s)− u1(s)] ds

where ũ(s) lies between u1(s) and u2(s). Let

(6.19) w(t) = u2(t)− u1(t)

and

(6.20) k̂∗∗(t, s) = k̃(t− s)f ′[ũ(s)]

so that

(6.21) w(t) ≥ b(t) +
∫ t

0

k̂(t, s)w(s) ds.

Note that w(0) > 0 since b(0) > 0. Also w(t) is continuous and can
never equal zero (since k̂(t, s) > 0 and b(t) > 0). Therefore w(t) > 0
and so u2(t) > u1(t). This establishes Lemma 6.1.

Now a similar argument to that of Section (4) can be used here to
establish the existence of a unique, continuous, bounded solution to
(6.1) and (6.2) up to some t∗. With a lower bound established, we
can now seek an upper bound on the quenching time of the system
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(6.1) (6.2). Note that we will focus only on u2(t) since quenching will
occur at x = l (since u2 ≥ u1):

(6.22)

u2(t) = h2(t) +
∫ t

0

G̃(l, t | l, s)g[u2(s)] ds−
∫ t

0

G̃(l, t | 0, s)f [u1(s)] ds

= h2(t) +
∫ t

0

k̃ll(t)g[u2(s)] ds−
∫ t

0

k̃l0(t)f [u1(s)] ds

≥ h2(t) +
∫ t

0

k̃ll(t)g[u2(s)] ds−
∫ t

0

k̃ll(t)f [u2(s)] ds.

This inequality holds since u2(t) ≥ u1(t), g(z) > f(z), and k̃ll(t) >
k̃l0(t). Then obtain

(6.23)
u2(t) ≥ h2(t) +

∫ t

0

k̃ll(t)
{
g[u2(s)]− f [u2(s)]

}
ds

≥ h2 +
∫ t

0

k̃ll(t1 − s)
{
g[u2(s)]− f [u2(s)]

}
ds.

Define

(6.24) J̃(t) ≡
∫ t

0

k̃ll(t1 − s)
{
g[u2(s)]− f [u2(s)]

}
ds

so that

(6.25) u2(t) ≥ βh2 + J̃(t).

Use the fact that g′(z) > f ′(z) to obtain

(6.26)
J̃ ′(t) = k̃ll(t1 − t)

{
g[u2(s)]− f [u2(s)]

}
≥ k̃ll(t1 − t)

{
g[h2 + J̃(t)]− f [h2 + J̃(t)]

}
.

Integrate both sides to obtain

(6.27)
∫ J̃(t1)

0

dJ̃

g[J̃ + h2]− f [J̃ + βh2]
≥

∫ t1

0

k̃ll(t1 − t) dt ≡ Ĩll(t1).
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If there exists a t∗∗ <∞ such that

(6.28)
∫ 1

h2

dz

g[z]− f [z] = Ill(t∗∗)

then a contradiction occurs. Hence, (6.1) and (6.2) cannot have
continuous solutions for t > t∗∗. Thus t∗∗ provides an upper bound
on the time of quenching.

Recall that

(6.29) lim
t→∞ Ĩll(t) = ∞.

Thus, condition (6.28) will always be met for some t∗∗ <∞. Quenching
will always occur in finite time. The conditions g(z) > f(z) and
g′(z) > f ′(z) can be interpreted to mean that more heat is being put
into the system than is being removed. Hence it makes sense that
quenching would occur in this case.

6.2 Avoid quenching by controlling l and M . In this section we
will obtain conditions that, when met, guarantee that quenching can
be avoided for all time. We will show that quenching can be avoided
by making l sufficiently small and M sufficiently large. Recall that l
is the length of the domain and that M is, in a sense, a bound on the
amount of heat leaving the system: m ≤ f ′(u) ≤ M and f(u) ≤ Mu.
Physically, this means that if the length of the rod is small and if the
heat loss is large, then quenching can be avoided. We rely upon the
results from sections (2) (4) employing the Green’s function G.

Since the condition (4.19) for obtaining the lower bound on the time
of quenching depends only on Ill(t), we need only address the behavior
of Ill(t) as t→ ∞. Recall that Ill(t) =

∫ t

0
G(l, t|l, s) ds. We will analyze

the following comparison problem in order to determine limt→∞ Ill(t).
Consider the problem:

ṽt = ṽxx 0 ≤ x ≤ l, 0 ≤ t(6.30)
ṽ(x, 0) = ṽ0(x) = 0(6.31)
ṽx|x=0 = Mṽ|x=0(6.32)
ṽx|x=l = 1.(6.33)
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Then ṽ(x, t) =
∫ t

0
G(x, t|l, s)(1) ds. Evaluate ṽ(x, t) at x = l to obtain:

(6.34) ṽ(l, t) =
∫ t

0

G(l, t | l, s) ds.

The steady state solution of (6.30) (6.33)is

(6.35) lim
t→∞ ṽ(x, t) = x+

1
M
.

Since ṽ(l, t) = Ill(t), we have

(6.36) lim
t→∞ Ill(t) = lim

t→∞ ṽ(l, t) = l +
1
M
.

Recall that in order to avoid quenching entirely, we need:

(6.37) Ill(t) < min
{ 1

2gω(L)
,

1
2(M −m)

,
L− h̄

g(L) + L(M −m)

}

or, from (6.36):

(6.38) l +
1
M

< min
{ 1

2g′(L)
,

1
2(M −m)

,
L− h̄

g(L) + L(M −m)

}
.

From this expression, it can be seen how lowering l sufficiently and
increasing M sufficiently can prevent quenching. From (6.38), it can
be seen that (M/2) < m must hold.

6.3 Guarantee quenching by controlling l and M . In order to
guarantee that quenching occurs in finite time, we need:

(6.39)
∫ 1

h2

dz

g[z]
< lim

t→∞ Ill(t).

This is obtained from condition (5.12). Then (6.36) gives

(6.40)
∫ 1

h2

dz

g[z]
< l +

1
M
.



A QUENCHING PROBLEM 71

Clearly, quenching can be guaranteed to occur by increasing l and
decreasing M sufficiently. Also, increasing g(z) tends to encourage
the onset of quenching.

7. Analysis of results in the context of the existing litera-
ture. The literature has treated two similar problems in [4], [14]. A
comparison between these papers and the results included here helps
place this work into a broader context.

In [4], Chan and Yeun examine a similar problem: a heat equation
with cooling at one end and heating at the other end. They specify
that f [v] and g[v] (given in our (2.3) (2.4)) must be of the particular
form (1− v(t))−p.

Our results establish that quenching will always occur if g > f and
g′ > f ′ for a more general f and g. We can show quenching will always
occur if l is large enough and M small enough. These results represent
a generalization of analogous statements in [4]. (Specifically, for these
particular results we do not require the extra restrictions on f , such
that Mv − f(v) > 0 or m ≤ f ′(v) ≤M .)

Additionally, we show quenching can be avoided if l is small enough
and M is large enough. This result is not a complete generalization of
the analogous results in [4] since we require additional conditions on
f , namely: Mv − f(v) > 0 and m ≤ f ′(v) ≤ M . Nonetheless, our
function g is more general and we allow for a larger class of functions
for f . Moreover, our results provide bounds on the time of quenching
and show how to control those bounds by changing l, f and g.

In [14], Roberts and Olmstead examine quenching problems with a
nonlinear boundary condition that is of either local or nonlocal type.
For their local case with Neumann boundary conditions, heat enters
one end of the rod through a nonlinear, Neumann boundary condition:
ux |x=l= g(u). The boundary condition at the left end is insulated:
ux |x=0= 0. The result in [14] is that quenching always occurs.

In our problem, the boundary condition at x = 0 is generalized as
ux |x=0= f [u] > 0, where f [u] is nonlinear. Since heat loss is allowed
at this end, we can control whether or not quenching occurs. This
represents a generalization of the results established in [14].
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