# IMPLICIT INTEGRAL EQUATIONS WITH DISCONTINUOUS NONLINEARITIES 

PASQUALE CANDITO


#### Abstract

In this paper we establish the existence of at least one solution for a class of implicit integral equations with possibly discontinuous nonlinearities, which includes the wellknown Chandrasekhar equation, among others. Our approach fully depends on a very recent result on fixed points for increasing, not necessarily continuous, operators in ordered Banach space due to Bonanno and Marano; see Theorem 1 below.


Very recently, in $[\mathbf{6}]$, the following fixed point result has been established; see [6, Theorem 2.1].

Theorem 1. Let $(E,\|\cdot\|, K)$ be an ordered Banach space with a regular cone $K$, let $[a, b]$ be an order interval in $E$, and let $F:[a, b] \rightarrow$ $[a, b]$ be an increasing function. Then:
A1) The function $F$ has a minimal fixed point $v_{*}$ and a maximal fixed point $v^{*}$.

A2) $v_{*}=\min \{v \in[a, b]: v \leq F(v)\}$ while $v^{*}=\max \{v \in[a, b]:$ $F(v) \leq v\}$.

A3) For continuous $F$ one has $v_{*}=\lim _{n \rightarrow \infty} F^{n}(a)$ as well as $v^{*}=\lim _{n \rightarrow \infty} F^{n}(b)$.

As pointed out in [6], due to the monotone convergence theorem, a natural framework where the above result applies successfully is given by usual Lebesgue spaces $\left(L^{p}(\Omega),\|\cdot\|_{p}\right), 1 \leq p<+\infty$, equipped with the positive cone

$$
\begin{equation*}
K_{p}:=\left\{u \in L^{p}(\Omega): u(t) \geq 0 \quad \text { a.e. in } \Omega\right\} \tag{1}
\end{equation*}
$$

[^0]In this direction, the authors obtain an existence result for a semi-linear elliptic equation in the whole space and with discontinuous nonlinear terms, see [6, Theorem 3.1]. Here, we investigate the following implicit integral equation with discontinuous nonlinearities

$$
\begin{gather*}
h(u(t))=\varphi_{0}(t)+f(t, u(t)) \int_{\Omega} g(t, s, u(s)) d s  \tag{2}\\
u \in L^{p}(\Omega)
\end{gather*}
$$

where $\Omega$ is a Lebesgue measurable, not necessarily bounded, subset of $\mathbf{R}^{n}, \varphi_{0} \in L^{p}(\Omega)$, while $f: \Omega \times \mathbf{R}_{0}^{+} \rightarrow \mathbf{R}_{0}^{+}, g: \Omega \times \Omega \times \mathbf{R}_{0}^{+} \rightarrow \mathbf{R}_{0}^{+}$ and $h: \mathbf{R}_{0}^{+} \rightarrow \mathbf{R}_{0}^{+}$are three monotone increasing functions. Besides the Urysohn type integral equations (2) includes as a special case the well-known Chandrasekhar equation

$$
\begin{equation*}
u(t)=\varphi_{0}(t)+\lambda u(t) \int_{\Omega} k(t, s) u(s) d s \tag{3}
\end{equation*}
$$

which arises in the kinetic theory of gases and in transport theory, see for instance $[\mathbf{9 , 1 0}]$ and the references therein.

Numerous papers are devoted to investigating (3) through a technical chiefly based on fixed point results. To be precise, the goal is frequently achieved gathering the Banach-Caccioppoli contraction principle with some classical results on bilinear maps, see $[\mathbf{2}, \mathbf{3}, \mathbf{9}]$; we refer also to Corollary 4 and Remarks 5-7 below.
If $h$ turns out to be the identity mapping on $\mathbf{R}_{0}^{+}$, one solution of (2) is obtained by using the Darbo Fixed Point Theorem. This approach is prevalently exploited inside the Banach algebra $C(\Omega)$, see $[\mathbf{4}, \mathbf{5}, \mathbf{1 4}]$ and [15].

In this paper we look at (2) from another point of view, which fully depends on a simple but useful consequence of Theorem 1, namely Theorem 2 below.

Here is the plan of the paper. After establishing Theorem 2, two examples and some remarks are presented. In particular, Example 1 shows that the minimal solution $v_{*}$ and the maximal solution $v^{*}$, given by Theorem 2, can be different, while Example 2 deals with an application of this result to two-point boundary value problems with discontinuous nonlinearities. In Remark 3 we discuss the iterative
method given by A3) of Theorem 1 also in connection with the existing literature. Next Theorem 3 shows that a meaningful special case of (2), see Remark 4, admits at least one solution whenever a suitable assumption is made. Finally, Corollary 4 treats integral equations like (3).

We start by establishing the following result, which represents our main tool for investigating (2).

Theorem 2. Let $\Omega$ be a nonempty Lebesgue measurable subset of $\mathbf{R}^{n}$; let $a, b$ and $\varphi_{0}$ belong to $L^{p}(\Omega), 1 \leq p<+\infty$ with $a \leq b$ and $\varphi_{0} \geq 0$; let $f: \Omega \times \mathbf{R}_{0}^{+} \rightarrow \mathbf{R}_{0}^{+}, g: \Omega \times \Omega \times \mathbf{R}_{0}^{+} \rightarrow \mathbf{R}_{0}^{+}$, and let $h: \mathbf{R}_{0}^{+} \rightarrow \mathbf{R}_{0}^{+}$ be three functions. Assume that:

B1) For almost every $t \in \Omega, f(t, \cdot)$ is increasing and sup-measurable.
B2) For each measurable $u: \Omega \rightarrow \mathbf{R}$, the function $(t, s) \rightarrow g(t, s, u(s))$ is measurable in $\Omega \times \Omega$.

B3) $h$ is a one-to-one function with $h^{-1}$ strictly increasing and supmeasurable.

B4) For almost every $(t, s) \in \Omega \times \Omega, g(t, s, \cdot)$ is increasing and $g(t, \cdot, b(\cdot))$ lies in $L^{1}(\Omega)$.

B5) For almost every $t \in \Omega$, the following result

$$
\begin{aligned}
& h(a(t)) \leq \varphi_{0}(t)+f(t, a(t)) \int_{\Omega} g(t, s, a(s)) d s \\
& \varphi_{0}(t)+f(t, b(t)) \int_{\Omega} g(t, s, b(s)) d s \leq h(b(t))
\end{aligned}
$$

Then equation (2) admits the minimal solution $v_{*}$ and the maximal solution $v^{*}$ belonging to order interval $[a, b]$.

Proof. We first reduce (2) to a fixed point problem through the function $F:[a, b] \rightarrow[a, b]$ defined by putting

$$
\begin{equation*}
F(u)(t):=h^{-1}\left(\varphi_{0}(t)+f(t, u(t)) \int_{\Omega} g(t, s, u(s)) d s\right) \tag{4}
\end{equation*}
$$

for all $u \in[a, b]$ and $t \in \Omega$. Clearly, each fixed point of $F$ is a solution to (2) and vice versa. Let us now apply Theorem 1 , with $E=L^{p}(\Omega)$,
$K=K_{p}$, where $K_{p}$ is the cone given by (1) and $F$ as above. To this end, we note that, because of B1)-B4), the function $F$ is well defined and increasing. Indeed, it is easily seen that $F(u)$ is measurable provided the function

$$
\begin{equation*}
t \longrightarrow \int_{\Omega} g(t, s, u(s)) d s \tag{5}
\end{equation*}
$$

enjoys the same property, which immediately follows from Theorem 8.8 (a) of [16]. Moreover, by B5), we have $F(a) \geq a$ as well as $F(b) \leq$ $b$. Since $F$ satisfies all the assumptions of Theorem 1, the proof is complete.

Remark 1. The monotonicity condition requested in assumptions B1)-B4) doesn't guarantee the sup-measurability; see, for instance, [1, page 218].

Remark 2. We explicitly observe that the minimal solution $v_{*}$ and the maximal solution $v^{*}$ given by Theorem 2 can be different, as the following simple example shows.

Example 1. Consider the quadratic integral equation

$$
\begin{equation*}
u(t)=\frac{6}{5}+\frac{u(t)}{5} \int_{0}^{1} u(s) d s, \quad u \in L^{1}(\Omega) \tag{6}
\end{equation*}
$$

and define, for every $t \in[0,1]$,

$$
a(t):=\frac{6}{5}, \quad b(t):=3 .
$$

It is a simple matter to verify that all the assumptions of Theorem 2 are satisfied. Furthermore, since the constant functions $u \equiv 2$ and $u \equiv 3$ are solutions to (6), $v_{*}$ and $v^{*}$ must be different.

The following example shows that Theorem 2 can be applied successfully in solving two-point boundary value problems with discontinuous nonlinearities.

Example 2. Let $[\beta, \gamma]$ be a compact real interval. Consider the following two-point boundary value problem

$$
\left\{\begin{array}{l}
\left.u^{\prime \prime}(t)+\Psi(u(t))=0 \quad \text { a.e. in }\right] \beta, \gamma[ \\
u(\beta)=u(\gamma)=0
\end{array}\right.
$$

where $\Psi: \mathbf{R}_{0}^{+} \rightarrow \mathbf{R}_{0}^{+}$is a possibly discontinuous, increasing and supmeasurable function with

$$
\underset{\mathbf{R}_{0}^{+}}{\operatorname{ess} \inf } \Psi>0
$$

Clearly a solution $u \in W^{2, p}[\beta, \gamma]$ to this problem is obtained by solving the nonlinear integral equation

$$
\begin{equation*}
u(t)=\int_{\beta}^{\gamma} k(t, s) \Psi(u(s)) d s \tag{7}
\end{equation*}
$$

where $k:[\beta, \gamma] \times[\beta, \gamma] \rightarrow \mathbf{R}_{0}^{+}$denotes the Green function, namely,

$$
k(t, s):= \begin{cases}(\gamma-t)(s-\beta) /(\gamma-\beta) & \text { if } \beta \leq s \leq t \leq \gamma  \tag{8}\\ (\gamma-s)(t-\beta) /(\gamma-\beta) & \text { if } \beta \leq t \leq s \leq \gamma\end{cases}
$$

Now, due to Theorem 2, it is a simple matter to see that (7) has at least one nontrivial generalized solution provided there exists a positive constant $\varrho$ such that

$$
\frac{\Psi(\varrho)}{\varrho} \leq \frac{4}{(\gamma-\beta)^{2}}
$$

Remark 3. It is worth noting that if in Theorem 2 we also assume that $h^{-1}$ is continuous together with $f$ and $g$ continuous in the second and third variable, respectively, then, the conclusion of this result can be improved as follows:

Equation (2) admits the minimal solution $v_{*}$ and the maximal solution $v^{*}$ in the order interval $[a, b]$. Moreover, one has

$$
\begin{equation*}
v_{*}=\lim _{n \rightarrow \infty} F^{n}(a) \quad \text { as well as } \quad v^{*}=\lim _{n \rightarrow \infty} F^{n}(b) \tag{9}
\end{equation*}
$$

where $F$ is given by (4).

Indeed, let $\left\{v_{n}\right\}$ be a sequence in $[a, b]$ such that $v_{n} \leq v_{n+1}, n \in \mathbf{N}$ and $\lim _{n \rightarrow \infty} v_{n}=v$. Then one has $F\left(v_{n}\right) \leq F(v), n \in \mathbf{N}$ and, taking into account both the regularity of the cone $K_{p}$ and the fact that $\left\{F\left(v_{n}\right)\right\}$ now converges to $F(v)$ almost everywhere in $\Omega$, we obtain $\lim _{n \rightarrow \infty} F\left(v_{n}\right)=F(v)$. Arguing in a standard way, it is easy to verify that the same conclusion still holds when $v_{n} \geq v_{n+1}, n \in \mathbf{N}$, results. Thus (9) is achieved once we note that, due to Remark 2.3 of [6], the continuity assumption on $F$ in A 3 ) of Theorem 1 can be replaced by the less restrictive one:
$\left.\mathrm{A}_{3}^{*}\right)$ For each monotone sequence $\left\{v_{n}\right\} \subseteq[a, b]$, one has

$$
\lim _{n \rightarrow \infty} v_{n}=v \Longrightarrow \lim _{n \rightarrow \infty} F\left(v_{n}\right)=F(v)
$$

As classical works on this subject and as general references on monotone operators in partially ordered sets, we refer to $[\mathbf{1 1}-\mathbf{1 3}]$ and $[\mathbf{7}, \mathbf{1 7}$, 18], respectively. In particular, we point out that, here, in contrast to [11] and [13], the functions $F$ can be discontinuous.

Let us now investigate some special cases of the nonlinear integral equations (2) under continuity assumptions. As usual, we denote by $p^{\prime}$ the conjugate exponent of $p$.

Theorem 3. Let $\Omega$ be a nonempty Lebesgue measurable subset of $\mathbf{R}^{n}$ with $m(\Omega)<+\infty$; let $c, d, r$ and $q$ be four real nonnegative constants with $c$, d positive; let $k: \Omega \times \Omega \rightarrow \mathbf{R}_{0}^{+}$and $\omega_{0} \in L^{p}(\Omega)$ be two functions such that $k \neq 0$ and $\omega_{0} \geq 0$. Assume that:
$\mathrm{C} 1)$ For almost every $t \in \Omega, k(t, \cdot)$ is measurable and lies in $L^{p^{\prime}}(\Omega)$.
C2)

$$
\alpha=\underset{t \in \Omega}{\operatorname{ess} \sup }\|k(t, \cdot)\|_{p^{\prime}}<+\infty .
$$

C3) There exists $\varrho \in\left(c^{*},+\infty\right)$ such that

$$
\alpha\left\|\omega_{0}\right\|_{p} \leq \frac{\varrho^{d}-c^{*}}{\varrho^{r+q}}
$$

where $c^{*}=\max \left\{c, c^{1 / d}\right\}$.

Then the integral equation

$$
\begin{equation*}
u(t)^{d}=c+u(t)^{r} \int_{\Omega} k(t, s) \omega_{0}(s) u(s)^{q} d s, \quad u \in L^{p}(\Omega) \tag{10}
\end{equation*}
$$

admits the minimal solution $v_{*}$ and the maximal solution $v^{*}$ in the order interval $\left[c^{1 / d}, \varrho\right]$.

Proof. Without loss of generality, we can assume $\omega_{0} \neq 0$. Now, using the notation of Theorem 2, put

$$
\begin{cases}h(t):=t^{d} & \forall t \in \mathbf{R}_{0}^{+} \\ f(t, u):=u^{r} & \text { if }(t, u) \in \Omega \times \mathbf{R}_{0}^{+} \\ g(t, s, u):=k(t, s) \omega_{0}(s) u^{q}, & \text { if }(t, s, u) \in \Omega \times \Omega \times \mathbf{R}_{0}^{+}\end{cases}
$$

We claim that all the assumptions of Theorem 2 are satisfied. Indeed B1), B2) and B3) are obviously true. Write, for almost every $t \in \Omega$,

$$
a(t):=c^{1 / d} \quad \text { as well as } \quad b(t):=\rho .
$$

Due to C2) one has

$$
\int_{\Omega} g(t, s, b(s)) d s \leq \varrho^{q} \int_{\Omega} k(t, s) \omega_{0}(s) d s \leq \varrho^{q} \alpha\left\|\omega_{0}\right\|_{p}<+\infty
$$

Therefore, B4) holds. Moreover,

$$
h(a(t))=c \leq c+c^{(r+q) / d} \int_{\Omega} k(t, s) \omega_{0}(s) d s
$$

results, while bearing in mind C 3 ), we have

$$
c+\varrho^{r+q} \int_{\Omega} k(t, s) \omega_{0}(s) d s \leq c+\varrho^{r+q} \alpha\left\|\omega_{0}\right\|_{p} \leq \varrho^{d}=h(b(t))
$$

for every $t \in \Omega$. So also B5) is verified. At this point, the conclusion follows from Theorem 2.

Remark 4. It is worthwhile to note that assumption C3) of Theorem 3 is satisfied by every nonnegative function $\omega_{0}$ belonging to $L^{p}(\Omega)$ whenever one has
$\left.\mathrm{C}_{3}^{\prime}\right) d>r+q$.
Arguing as in Theorem 3 it is possible to prove the following result regarding (3), which is an immediate consequence of Theorem 2.

Corollary 4. Let $\Omega$ be a nonempty Lebesgue measurable subset of $\mathbf{R}^{n}$; let $k: \Omega \times \Omega \rightarrow \mathbf{R}_{0}^{+}$and $\varphi_{0} \in L^{p}(\Omega)$ be two functions such that $k \neq 0$ and $\varphi_{0} \geq 0$. Assume that C 1 ) and C 2$)$ hold and, moreover,

$$
\begin{equation*}
\alpha\left\|\varphi_{0}\right\|_{p} \leq 1 / 4 \tag{3}
\end{equation*}
$$

Then equation (3) admits the minimal solution $v_{*}$ and the maximal solution $v^{*}$ belonging to order interval $\left[\varphi_{0}, \varrho \varphi_{0}\right]$ where

$$
\begin{equation*}
\frac{1-\sqrt{1-4 \alpha\left\|\varphi_{0}\right\|_{p}}}{2 \alpha\left\|\varphi_{0}\right\|_{p}} \leq \varrho \leq \frac{1+\sqrt{1-4 \alpha\left\|\varphi_{0}\right\|_{p}}}{2 \alpha\left\|\varphi_{0}\right\|_{p}} \tag{11}
\end{equation*}
$$

Proof. We first note that $\mathrm{C}_{3}^{*}$ ) allows us to write (11). Since $\varrho$ satisfies (11), Theorem 2 can be applied to equation (3) by choosing $a(t)=\varphi_{0}(t), b(t)=\varrho \varphi_{0}(t), t \in \Omega$ and $h \equiv i d$.

Remark 5. We explicitly observe that in Corollary 4 it is neither assumed that $\Omega$ is of finite measure nor that the solution given by the same result is bounded or unbounded according to whether $\varphi_{0}$ is.

Remark 6. As pointed out in [9], equation (3) admits a unique solution in a certain sphere of $L^{1}(0,1)$ whenever the kernel $k(t, s)$ and $\varphi_{0}$ satisfy the assumptions:
i) $0<k(t, s)<1$,
ii) $k(t+s)+k(s, t)=1$, for all $(t, s) \in \Omega \times \Omega$,
iii) $\left\|\varphi_{0}\right\|_{1} \leq 1 / 2$.

Instead, here, the same conclusion is achieved by requiring that the kernel be non-negative and iii) replaced with $C_{3}^{*}$. Moreover, it is a simple matter to prove that if $1<\varrho<2$, then the operator $B$ is
defined by putting

$$
B(u)(t):=\varphi_{0}(t)+u(t) \int_{\Omega} k(t, s) u(s) d s \quad \forall u \in\left[\varphi_{0}, \varrho \varphi_{0}\right]
$$

is a contraction on the complete metric space $\left[\varphi_{0}, \varrho \varphi_{0}\right]$. Thus, due to the Banach-Caccioppoli contraction principle, there exists at most one solution in the order interval

$$
\left[\varphi_{0}, \frac{1-\sqrt{1-4 \alpha\left\|\varphi_{0}\right\|_{1}}}{2 \alpha\left\|\varphi_{0}\right\|_{1}} \varphi_{0}\right]
$$

provided $\alpha\left\|\varphi_{0}\right\|_{1}<1 / 4$.

Acknowledgments. The author wishes to thank Professors G. Bonanno and S.A. Marano for introducing him to the topics treated in this paper and for many stimulating conversations.

## REFERENCES

1. J. Appell, The superposition operator in function spaces-A survey, Expo. Math. 6 (1988), 209-270.
2. I.K. Argyros, Quadratic equations and application to Chandrasekhar's and related equations, Bull. Austral. Math. Soc. 32 (1985), 275-292.
3. On some quadratic equations, Funct. Approx. Comment. Math. 19 (1990), 159-165.
4. J. Banás, J.R. Rodriguez and K. Sadarangani, On a class of Urysohn-Stieltjes quadratic integral equations and their applications, J. Comput. Appl. Math. 113 (2000), 35-50.
5. J. Banás, M. Lecko and W.G. El-Sayed, Existence theorems for some quadratic integral equations, J. Math. Anal. Appl. 222 (1998), 276-285.
6. G. Bonanno and S.A. Marano, Fixed points in ordered Banach spaces and applications to elliptic boundary-value problems, in Equilibrium problems and variational models, Kluwer Academic Publishers, F. Giannessi-A. Maugeri-P. Pardalos Eds.
7. Y. Du, Fixed points of increasing operators in ordered Banach space and applications, Appl. Anal. 38 (1990), 1-20.
8. J. Dugundji and A. Granas, Fixed points theory, Mono. Matem. (1982),
9. G.A. Hively, On a class of nonlinear integral equations arising in transport theory, SIAM J. Math. Anal. 9 (1978), 787-792.
10. S. Hu, M. Khavanin and W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Anal. 34 (1989), 261-266.
11. V. Hutson and J.S. Pym, Applications of functional analysis and operator theory, Academic Press, 1980.
12. L. Kantorovitch, The method of successive approximations for functional equations, Acta Math. 71 (1939), 63-97.
13. M.A. Krasnoselskij, Positive solutions of operator equations, Noordhoff, 1964.
14. R. Leggett, On certain nonlinear integral equations, J. Math. Anal. Appl. 57 (1977), 462-468.
15. A. Majorana and S.A. Marano, Continuous solutions of a non linear integral equation on an unbounded domain, J. Integral Equations Appl. 1 Vol. 6 (1994), 119-128.
16. W. Rudin, Real and complex analysis, 3rd ed., McGraw-Hill, Singapore, 1987.
17. D.Z. Vulikh, Introduction to the theory of partially ordered space, WoltersNoordoff Scientific Publications, 1967.
18. E. Zeidler, Applied functional analysis: Main principles and their applications, Springer, New York, 1996.

Dipartimento di Patrimonio Architettonico e Urbanistico, Univerità di Reggio Calabria, Salita Melissari, Feo di Vito, 89100 Reggio Calabria, Italy and Dipartimento di Matematica, Università di Messina, 98166 Sant' Agata (ME), Italy
Email address: candito@ing.unirc.it


[^0]:    Received by the editors on June 20, 2001 and in revised form on December 6, 2001.

