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POSITIVE SOLUTIONS OF
SINGULAR INTEGRAL EQUATIONS

MARIA MEEHAN AND DONAL O’REGAN

ABSTRACT. Continuous, positive solutions of singular in-

tegral equations of the form y(t) = h(t)+
∫ T

0
k(t, s) [f(y(s))+

g(y(s))] ds are sought. Here f : [0,∞) → [0,∞) is continuous
and nondecreasing while g : (0,∞) → [0,∞) is continuous,
nonincreasing and possibly singular. The case when T = ∞
is also discussed.

1. Introduction. In the first half of this paper, Schauder’s fixed
point theorem is used to obtain the existence of continuous, positive
solutions of

(1.1) y(t) = h(t) +
∫ T

0

k(t, s)[f(y(s)) + g(y(s))] ds, t ∈ [0, T ].

It is assumed that f : [0,∞) → [0,∞) is continuous and nondecreasing,
while g : (0,∞) → [0,∞) is continuous, nonincreasing and possibly
singular, that is, the possibility of g(0) being undefined is allowed. In
Section 2, by placing appropriate conditions on h, k, f and g, we use
Schauder’s fixed point theorem to prove the existence of a solution
y ∈ C[0, T ] such that 0 < β < y(t) < α, t ∈ [0, T ] for some 0 < β < α.
In addition a special case of this result, which occurs when h ∈ C[0, T ]
is such that h(t) > 0, t ∈ [0, T ], is stated for completeness.

In Section 3 we extend the results of Section 2 and consider the
possibly singular equation

(1.2) y(t) = h(t) +
∫ ∞

0

k(t, s)[f(y(s)) + g(y(s))] ds, t ∈ [0,∞).

Schauder’s fixed point theorem and the Schauder-Tychonoff fixed point
theorem are used to establish the existence of a positive solution
y ∈ Cl[0,∞) and y ∈ BC[0,∞) ⊂ C[0,∞) respectively of (1.2). (Here
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BC[0,∞) denotes the space of bounded, continuous functions on [0,∞),
while Cl[0,∞) denotes the space of bounded, continuous functions on
[0,∞) whose limit exists at infinity.)

We conclude the introduction by stating the two fixed point theorems
that will be used in this paper.

Theorem 1.1 Schauder fixed point theorem. Let K be a convex
subset of a Banach space E and N : K → K a compact, continuous
map. Then N has at least one fixed point in K.

Theorem 1.2 Schauder-Tychonoff fixed point theorem. Let K be a
closed, convex subset of a locally convex, Hausdorff space E. Assume
that N : K → K is continuous and N(K) is relatively compact in E.
Then N has at least one fixed point in K.

2. Singular integral equations on compact intervals. Prompted
by the application of the nonlinear integral equation

(2.1) 1 = u(t) + u(t)
∫ β

α

R(t, s)
t2 − s2

u(s) ds, t ∈ [α, β]

to nuclear physics, this equation and generalizations have provoked
some interest in the literature [1], [3], [5], [8], [9]. Specifically equations
of the form (1.1) have been studied with a view to obtaining the
existence of positive solutions. In keeping with the nature of (2.1),
we assume that (1.1) is a singular integral equation, by which we mean
that the possibility of g(0) being undefined is permitted.

The following result uses Schauder’s fixed point theorem to guarantee
the existence of a positive solution y ∈ C[0, T ] of (1.1).

Notation. Throughout this section we let

(2.2) K1 := sup
t∈[0,T ]

∫ T

0

k(t, s) ds and K2 := inf
t∈[0,T ]

∫ T

0

k(t, s) ds.

In addition the norm on C[0, T ] will be denoted by ||.||∞, that is, for
y ∈ C[0, T ], ||y||∞ := supt∈[0,T ] |y(t)|.
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Theorem 2.1. Suppose that

(2.3) h ∈ C[0, T ] with h(t) ≥ 0, t ∈ [0, T ],

(2.4) 0 < kt = k(t, s) ∈ L1[0, T ] for each t ∈ [0, T ],

(2.5) the map t �→ kt is continuous from [0, T ] to L1[0, T ],

(2.6)




f : [0,∞) → [0,∞) is continuous and nondecreasing,
g : (0,∞) → [0,∞) is continuous and nonincreasing,
and f + g : (0,∞) → (0,∞)

and

(2.7)




0 < β < α exists such that
β

mint∈[0,T ] h(t)+K2[f(β)+g(α)]
< 1

<
α

||h||∞+K1[f(α)+g(β)]

(here K1 and K2 are as defined in (2.2))

hold. Then (1.1) has at least one positive solution y ∈ C[0, T ] such that
0 < β < y(t) < α, t ∈ [0, T ].

Proof. Define f� : R → [f(β), f(α)] and g� : R → [g(α), g(β)] by

f�(y) :=




f(α) y ≥ α,
f(y) β ≤ y ≤ α,
f(β) y ≤ β,

and g�(y) :=




g(α) y ≥ α,
g(y) β ≤ y ≤ α,
g(β) y ≤ β,

respectively. In addition let the operator K� be given by

K�y(t) := h(t) +
∫ T

0

k(t, s)[f�(y(s)) + g�(y(s))] ds, t ∈ [0, T ],
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and define a convex subset C ⊂ C[0, T ] by

C := {y ∈ C[0, T ] : ||y||∞ ≤ α}.

We will use Schauder’s fixed point theorem to show that K� has a fixed
point in C, and consequently we must ensure that

(2.8) K� : C → C is a continuous, compact operator

holds.

Let y ∈ C. Then for t, t′ ∈ [0, T ] we have that

|K�y(t′) − K�y(t)| ≤ |h(t′) − h(t)| +
∫ T

0

|kt′(s) − kt(s)|
· [f�(y(s)) + g�(y(s))] ds.

Furthermore (2.6) yields

(2.9)

|K�y(t′)−K�y(t)| ≤ |h(t′)−h(t)|+
(∫ T

0

|kt′(s)−kt(s)| ds

)
[f(α)+g(β)].

From this inequality and (2.5) we see that

|K�y(t′) − K�y(t)| → 0 as t → t′,

and hence K� : C → C[0, T ] is well-defined. In addition note that for
y ∈ C, (2.6) and (2.7) imply

(2.10) ||K�y||∞ ≤ ||h||∞ + K1[f(α) + g(β)] < α,

and consequently K� : C → C is well-defined.

We next show that K� : C → C is a continuous operator. Let yn → y
in C[0, T ]. Then for any t ∈ [0, T ],

|K�yn(t)−K�y(t)|
≤ K1

[
sup

t∈[0,T ]

|f�(yn(t))−f�(y(t))|+ sup
t∈[0,T ]

|g�(yn(t))−g�(y(t))|
]

and hence by (2.6) we have that K� : C → C is a continuous operator.
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Finally we use the Arzéla-Ascoli theorem to show that K� : C → C is
compact. Immediately we obtain from (2.10) that K�(C) is uniformly
bounded, while the equicontinuity of K�(C) follows from (2.9). The
Arzéla-Ascoli theorem thus guarantees that K� : C → C is a compact
operator.

We have therefore shown that (2.8) is true and hence by Schauder’s
fixed point theorem, K� : C → C has a fixed point y ∈ C, that is,

y(t) = h(t) +
∫ T

0

k(t, s)[f�(y(s)) + g�(y(s))] ds, t ∈ [0, T ],

has a solution y ∈ C[0, T ]. From (2.7) however we see that

||y||∞ ≤ ||h||∞ + K1[f(α) + g(β)] < α

and
y(t) ≥ min

t∈[0,T ]
h(t) + K2[f(β) + g(α)] > β, t ∈ [0, T ],

that is, β < y(t) < α, t ∈ [0, T ]. Consequently, by the definition of f�

and g�, we have that y ∈ C[0, T ] is a solution of (1.1).

Example 2.1. Suppose for simplicity that h ≡ 0 in Theorem 2.1,
and let f(y) = yp, 0 ≤ p < 1 and g(y) = y−q, 0 ≤ q < 1. Since it is
possible to find (for any positive K2 ≤ K1) 0 < β < α such that

αqβ

αqβp + 1
< K2 ≤ K1 <

αβq

αpβq + 1

holds, then it is clear that this choice of f and g satisfies (2.6) and
(2.7).

If h ∈ C[0, T ] in Theorem 2.1 is strictly positive, that is, h(t) > 0,
t ∈ [0, T ], then defining m > 0 by

m := min
t∈[0,T ]

h(t) > 0,

we note that, provided

(2.11) α > 0 exists such that 1 <
α

||h||∞ + K1[f(α) + g(m)]
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holds, the hypotheses of Theorem 2.1 are satisfied with β = m. We
thus state the following special case of Theorem 2.1 that occurs when
h ∈ C[0, T ] is strictly positive.

Theorem 2.2. Suppose that (2.4)− (2.6) and (2.12) hold along with

(2.12) h ∈ C[0, T ] with h(t) > 0 for t ∈ [0, T ].

Then (1.1) has at least one positive solution y ∈ C[0, T ]. In addition
0 < h(t) < y(t) < α, t ∈ [0, T ].

3. Singular integral equations on the half-line. We now want
to extend the ideas of the previous section to obtain analogous results
for singular integral equations of the form (1.2). Denote by BC[0,∞)
the normed space of bounded, continuous functions defined on [0,∞)
with norm given by

(3.1) ||y||∞ := sup
t∈[0,∞)

|y(t)|.

In addition we denote by Cl[0,∞) the subset of BC[0,∞) which consists
of all y ∈ BC[0,∞) such that limt→∞ y(t) exists. Cl[0,∞), equipped
with norm ||.||∞, is a Banach space and compactness criteria for this
space is readily available (see, for example, [2]). Therefore by revising
the conditions imposed on h, k, f and g in Theorem 2.1, one can once
again apply Schauder’s fixed point theorem, this time to obtain the
existence of at least one positive solution y ∈ Cl[0,∞) of (1.2).

Theorem 3.1. Suppose that (2.6),

(3.2) h ∈ Cl[0,∞) with h(t) ≥ 0, t ∈ [0,∞),

(3.3) 0 < kt(s) = k(t, s) ∈ L1[0,∞) for each t ∈ [0,∞),

(3.4) the map t �→ kt is continuous from [0,∞) to L1[0,∞),

(3.5) k̃ ∈ L1[0,∞) exists such that kt → k̃ in L1[0,∞) as t → ∞
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and

(3.6)




0 < β < α exists such that
β

inft∈[0,∞) h(t)+K4[f(β)+g(α)]
< 1

<
α

||h||∞+K3[f(α)+g(β)]

(here K3 and K4 are as defined in (3.7) below)

hold. Then (1.2) has at least one positive solution y ∈ Cl[0,∞) such
that 0 < β < y(t) < α, t ∈ [0,∞).

Notation. Throughout this section let

(3.7) K3 := sup
t∈[0,∞)

∫ ∞

0

k(t, s) ds and K4 := inf
t∈[0,∞)

∫ ∞

0

k(t, s) ds.

(From (3.3) (3.5) one can show that K3 and K4 are well defined.)

Proof. Let f� and g� be as defined in the proof of Theorem 2.1. Let
the operator K� be given by

K�y(t) := h(t) +
∫ ∞

0

k(t, s)[f�(y(s)) + g�(y(s))] ds, t ∈ [0,∞).

Defining the convex subset C of Cl[0,∞) by

C := {y ∈ Cl[0,∞) : ||y||∞ ≤ α},

one can show, with the aid of compactness criteria from [2, p. 62], that

K� : C → C is a continuous, compact operator.

The analysis is similar to that in Theorem 2.1; therefore, we omit the
details. The theorem now follows from Schauder’s fixed point theorem.
Once again we omit the detail since it is almost identical to that in the
proof of Theorem 2.1.
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Rather than require the solution of (1.2) to lie in Cl[0,∞), suppose
we seek solutions that are in the space BC[0,∞) ⊆ C[0,∞). Here we
denote the set of all continuous functions on [0,∞) by C[0,∞). This
is not a normed space, rather it is a Fréchet space, and for y ∈ C[0,∞)
we define, for each m ∈ {1, 2, . . . }, the seminorm ρm(y) by

ρm(y) := sup
t∈[0,m]

|y(t)|.

Recall that a subset C of C[0,∞) is bounded if a positive function
α ∈ C[0,∞) exists such that |y(t)| ≤ α(t), for all t ∈ [0,∞) and y ∈ C.
In addition recall that a subset C of C[0,∞) is compact if it is compact
on each compact subinterval of [0,∞).

We conclude the section by presenting a result which relies on the
Schauder-Tychonoff theorem to ensure that (1.2) has a positive solution
in the Fréchet space C[0,∞). Conditions on h, k, f and g will then
further imply that in fact the solution belongs to BC[0,∞).

Theorem 3.2. Suppose that (2.6), (3.3), (3.4), (3.6),

(3.8) h ∈ BC[0,∞) with h(t) ≥ 0, t ∈ [0,∞)

and

(3.9) the map t �→ kt is bounded from [0,∞) to L1[0,∞)

hold. Then (1.2) has at least one positive solution y ∈ C[0,∞) such
that 0 < β < y(t) < α, t ∈ [0,∞).

Remark 3.1. It is easy to check that conditions (3.3), (3.4) and (3.9)
ensure that K3 and K4 as given in (3.7) are well defined.

Proof. The idea behind the proof is quite similar to the idea in the
proof of Theorem 3.1 except that now we use the Schauder-Tychonoff
fixed point theorem.

Define f�, g� and K� as in the proof of Theorem 3.1. Let the closed,
convex subset C, required by the Schauder-Tychonoff theorem, be given
by

C := {y ∈ C[0,∞) : y ∈ BC[0,∞) and ||y||∞ < α}.
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Firstly note that K� : C → C is well-defined. Let y ∈ C. Then
K�y ∈ C[0,∞) since for any t, t′ ∈ [0,∞), we have from (3.3), (3.4)
and (3.8) that

(3.10)

|K�y(t) − K�y(t′)| ≤ |h(t) − h(t′)| +
( ∫ ∞

0

|k(t, s) − k(t′, s)| ds

)

· [f(α) + g(β)] → 0 as t → t′

holds. In addition, it is clear from (3.6) that

(3.11) ||K�y||∞ ≤ ||h||∞ + K3[f(α) + g(β)] < α for all y ∈ C[0,∞)

is true; therefore, we see that K� : C → C is well defined. (Note in
fact that K� : C[0,∞) → C is well defined.)

Secondly we show that K�(C) is relatively compact in C ⊂ C[0,∞).
To do this we must show that K�(C) is uniformly bounded and
equicontinuous on each compact subinterval of [0,∞). It is immediate
from (3.11) that K�(C) is in fact uniformly bounded on [0,∞), while
the equicontinuity of K�(C) on each compact subinterval of [0,∞)
follows directly from (3.10). Hence K�(C) (and also K�(C[0,∞)))
is relatively compact in C[0,∞).

Lastly we are required to show that K� : C → C is continuous.
Suppose that yn → y in C ⊆ C[0,∞), that is, yn → y in C[0, m] for
each m ∈ {1, 2, . . . }. Clearly this implies the pointwise convergence
of yn to y on [0,∞). Coupling this fact with (2.6) we obtain for each
t ∈ [0,∞) that

kt(s)[f(yn(s)) + g(yn(s))] → kt(s)[f(y(s)) + g(y(s))] a.e. s ∈ [0,∞).

In addition for each t ∈ [0,∞)

0 ≤ kt(s)[f(yn(s)) + g(yn(s))] ≤ kt(s)[f(α) + g(β)],
a.e. s ∈ [0,∞), for all n ∈ N.

Consequently by the Lebesgue dominated convergence theorem we have

(3.12) K�yn(t) → K�y(t), for each t ∈ [0,∞) as n → ∞.
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Now fix m ∈ {1, 2, . . .}. Since [0, m] is compact, combining (3.10) and
(3.12) yields

K�yn → K�y in C[0, m] as n → ∞.

Obviously this is true for any m ∈ {1, 2, . . .}, and therefore K�yn →
K�y in C[0,∞) as yn → y in C.

In summary we have that

K� : C → C is a continuous and compact operator,

and therefore, by the Schauder-Tychonoff theorem, K� has a fixed point
y ∈ C. Clearly 0 < β < y(t) < α, t ∈ [0,∞), and we have the desired
result.
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