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ON THE RANGE OF THE STRUVE
Hν-TRANSFORM

VU KIM TUAN

ABSTRACT. The range of the Hν -transform on some
spaces of functions is described.

1. Introduction. The Struve Hν-transform as an example of an
asymmetric Watson transform is defined as [8], [9]

(1)
f(x) = (Hνg)(x) =

∫ ∞

0

√
xyHν(xy)g(y) dy,

x ∈ (0,∞) = R+,

if the integral converges in some sense (absolutely, improper or mean
convergence). Here Hν(x) is the Struve function [1]. The boundedness
and range of the Struve Hν -transform on the space Lµ,p of functions
f , measurable on R+, and such that

(2) ‖f‖µ,p =
{∫ ∞

0

|xµf(x)|p dx
x

}1/p

< ∞, 1 ≤ p < ∞,

have been considered in [2], [4], [5]. It has been proved there that,
under some restrictions on parameters ν, µ, p, the range of the Struve
Hν-transform (1) coincides with the range of the Hankel transform

(3) f(x) = (Hν+1g)(x) =
∫ ∞

0

√
xyJν+1(xy)g(y) dy, x ∈ R+,

on the space Lµ,p. It is well known that the Hankel transform (3) is
an automorphism on the space L2(R+) = L1/2,2, hence in the strip
−2 < Re ν < 0 the Struve Hν-transform is bounded on L2(R+), and
moreover, if Re ν �= −1, its range is the whole space L2(R+):

‖Hνg‖L2(R+) ≤ C‖g‖L2(R+), −2 < Re ν < 0,(4)
‖g‖L2(R+) ≤ C‖Hνg‖L2(R+), |1 +Re ν| < 1,(5)
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where C ∈ [1,∞) is an independent constant.

When −1 < Re ν < 0 the inverse of the Struve Hν-transform on
L2(R+) is the so-called Yν-transform, defined by [8], [9]

(6) g(x) = (Yνf)(x) =
∫ ∞

0

√
xy Yν(xy)f(y) dy, x ∈ R+.

Here Yν(x) is the Bessel function of the second kind [1]. The Yν-
transform is a bounded operator on L2(R+) if |Re ν| < 1. In the strip
−2 < Re ν < −1 the inverse of the Hν-transform should be modified
to

(7) g(x) =
∫ ∞

0

[√
xy Yν(xy)− cot(πν)(xy)ν+1/2

2νΓ(ν + 1)

]
f(y) dy, x ∈ R+.

The Hν- and Yν-transforms are useful in many axially-symmetric
potential problems when solutions singular on the symmetric axis are
required (see, for example, [4]).

In this work we characterize the range of the Hν-transform on some
spaces of functions. On the spaces considered in this paper, the Yν-
transform and its modified form (7) are the inverse of the Hν-transform,
hence their respective ranges can be easily derived.

2. Hν-transform of rapidly decreasing functions. We describe
the range of the Hν-transform on a subspace of the space of functions
g(y) such that yng(y), n = 1, 2, . . . , are square integrable.

Theorem 1. A function f(x) is the Struve Hν transform (−1/2 <
Re ν < 0) of a function g(y) such that yng(y), n = 1, 2, . . . , are square
integrable and

(8)
∫ ∞

0

yν+2n+3/2g(y) dy = 0, n = 0, 1, . . . ,

if and only if

(i) f(x) is infinitely differentiable on R+;

(ii) ((d2/dx2) + (1/x2)((1/4) − ν2))nf(x), n = 0, 1, . . . , belong to
L2(R+);
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(iii) xRe ν−1/2((d2/dx2)+(1/x2)((1/4)−ν2))nf(x), n = 0, 1, . . . , tend
to 0 as x → 0;

(iv) ((d2/dx2) + (1/x2)((1/4)− ν2))nf(x), n = 0, 1, . . . , tend to zero
as x approaches infinity;

(v) (d/dx)((d2/dx2) + (1/x2)((1/4)− ν2))nf(x), n = 0, 1, . . . , tend
to 0 as x → 0;

(vi) (d/dx)((d2/dx2) + (1/x2)((1/4) − ν2))nf(x), n = 0, 1, . . . , tend
to zero as x approaches infinity.

Proof. Necessity. Let yng(y) belong to L2(R+) for all n = 0, 1, 2, . . . ;
then yng(y) belongs to L1(R+) for all n = 0, 1, 2, . . . . The Struve
function Hν(y) has the order O(y1+Re ν) at 0 and grows no faster than
polynomials at infinity [1]. Therefore, integral (1) converges absolutely
if Re ν > −5/2. Let f(x) be the Hν-transform (−1/2 < Re ν < 0) of
the function g(y).

(i) We have [1]

(9)
Hν(x) =

21−νxν

√
πΓ(ν + 1/2)

∫ 1

0

(1− t2)ν−1/2 sin(xt) dt,

Re ν > −1/2.

Therefore,

(10)

∂n

∂xn
(
√
xyHν(xy))

=
21−νyν+1/2

√
πΓ(ν+1/2)

n∑
k=0

(−1)k(k−ν−3/2)k

(
n

k

)
xν+1/2−kyn−k

·
∫ 1

0

(1−t2)ν−1/2tn−k sin(xyt+π(n−k)/2) dt,

where (a)n = Γ(a + n)/Γ(a) is the Pochhammer symbol [1]. Con-
sequently, (∂n/∂xn)[

√
xyHν(xy)], Re ν > −1/2, as a function of

y has the asymptotics O(y1/2+Re ν) in a neighborhood of zero and
O(y1/2+Re ν+n) at infinity. Hence,

∂n

∂xn
[
√
xyHν(xy)]g(y), Re ν > −1/2,
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as a function of y belongs to L1(R+) for all n = 0, 1, 2, . . . . Therefore,
the function f(x) is infinitely differentiable on R+.

(ii) As the Struve function Hν(x) satisfies the nonhomogeneous
Bessel differential equation [1]

(11) x2u′′ + xu′ + (x2 − ν2)u =
21−νxν+1

√
π Γ(ν + 1/2)

,

we have

(12)

[
∂2

∂x2
+

1
x2

(
1
4
− ν2

)]
(
√
xyHν(xy)) =

21−νxν−1/2yν+3/2

√
π Γ(ν + 1/2)

− y2√xyHν(xy).

Consequently,

[
d2

dx2
+

1
x2

(
1
4
− ν2

)]
f(x) =

21−νxν−1/2

√
πΓ(ν + 1/2)

∫ ∞

0

yν+3/2g(y) dy

−
∫ ∞

0

√
xyHν(xy)y2g(y) dy,(13)

|Re ν| < 1/2.

Now using condition (8) we obtain

(14)
[
d2

dx2
+

1
x2

(
1
4
− ν2

)]
f(x) = −

∫ ∞

0

√
xyHν(xy)y2g(y) dy.

Applying the same procedure and condition (8) n times we get
(15)[

d2

dx2
+

1
x2

(
1
4
− ν2

)]n

f(x) = (−1)n
∫ ∞

0

√
xyHν(xy)y2ng(y) dy,

−1/2 < Re ν < 0.

From inequality (4) for the Hν-transform we see that [(d2/dx2) +
(1/x2)((1/4) − ν2)]nf(x), −1/2 < Re ν < 0, n = 0, 1, . . . , belong to
L2(R+).
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(iii) The Struve function Hν(y), Re ν < 1/2, has the asymptotics [1]
(16)

Hν(y) =




√
2
πy

[
sin

(
y − νπ

2
− π

4

)
+

4ν2−1
8y

cos
(
y − νπ

2
− π

4

)]

+
21−νyν−1

√
π Γ(ν + (1/2))

+O
(
y−5/2

)
, y → ∞,

O
(
yRe ν+1

)
, y → 0.

Therefore, the function
√
xyHν(xy), |Re ν| < 1/2, is uniformly

bounded on R+. As y2ng(y) ∈ L1(R+), applying the dominated con-
vergence theorem and formula (16) we obtain

lim
x→0

xRe ν−(1/2)

[
d2

dx2
+

1
x2

(
1
4
− ν2

)]n

f(x)

= (−1)n
∫ ∞

0

lim
x→0

[xRe ν Hν(xy)]y2n+1/2g(y) dy = 0,(17)

− 1/2 < Re ν < 0.

(iv) The function
√
yHν(y) can be expressed in the following form

by virtue of formula (16)

(18)
√
yHν(y) =

√
2
π
sin

(
y − νπ

2
− π

4

)
+ ϕ(y),

−3/2 < Re ν < 1/2,

where ϕ(y) is uniformly bounded on R+ and limy→∞ ϕ(y) = 0. Since
yng(y) ∈ L1(R+), applying the Riemann-Lebesgue lemma and the
dominated convergence theorem we obtain

(19)

lim
x→∞

∫ ∞

0

√
xyHν(xy)yng(y) dy

= lim
x→∞

√
2
π

∫ ∞

0

sin
(
xy − νπ

2
− π

4

)
yng(y) dy

+
∫ ∞

0

lim
x→∞ϕ(xy)yng(y) dy = 0,

− 3/2 < Re ν < 1/2.
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Hence

(20)
lim

x→∞

[
d2

dx2
+

1
x2

(
1
4
− ν2

)]n

f(x) = 0,

n = 0, 1, . . . , −1/2 < Re ν < 0.

(v) Using the formula [1]

(21)
∂

∂x
(
√
xyHν(xy)) = (1/2− ν)

√
y

x
Hν(xy) + y

√
xyHν−1(xy),

we have

d

dx

[
d2

dx2
+

1
x2

(
1
4
− ν2

)]n

f(x)

= (−1)n
∫ ∞

0

√
xyHν−1(xy)y2n+1g(y) dy,(22)

+
(−1)n

x

(
1
2
− ν

)∫ ∞

0

√
xyHν(xy)y2ng(y) dy.

The functions x−1/2Hν(x) and x1/2Hν−1(x), |Re ν| < 1/2, are uni-
formly bounded on R+ and tend to 0 as x approaches 0. Hence, apply-
ing again the dominated convergence theorem we obtain

lim
x→0

1
x

∫ ∞

0

√
xyHν(xy)y2ng(y) dy

=
∫ ∞

0

lim
x→0

[(xy)−1/2Hν(xy)]y2n+1g(y) dy = 0,

(23) lim
x→0

∫ ∞

0

√
xyHν−1(xy)y2n+1g(y) dy

=
∫ ∞

0

lim
x→0

[
√
xyHν−1(xy)]y2n+1g(y) dy = 0.

From formulas (22) and (23) we get

(24)
lim
x→0

d

dx

[
d2

dx2
+

1
x2

(
1
4
− ν2

)]n

f(x) = 0,

n = 0, 1, . . . , −1/2 < Re ν < 0.
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(vi) If −1/2 < Re ν < 0, then −3/2 < Re ν − 1 < −1. Hence, one
can apply formula (19) to obtain

(25) lim
x→∞

∫ ∞

0

√
xyHν−1(xy)y2n+1g(y) dy = 0, −1/2 < Reν < 0.

Now using formulas (22) and (25) we have

(26)
lim

x→∞
d

dx

[
d2

dx2
+

1
x2

(
1
4
− ν2

)]n

f(x) = 0,

n = 0, 1, . . . , −1/2 < Re ν < 0.

Sufficiency. Suppose now that f satisfies conditions (i) (vi) of Theo-
rem 1. Then [(d2/dx2)+(1/x2)((1/4)−ν2)]nf(x), n = 0, 1, . . . , belong
to L2(R+). Let gn(y), n = 0, 1, . . . , be their Yν-transforms

(27)
gn(y) =

∫ ∞

0

√
xy Yν(xy)

[
d2

dx2
+

1
x2

(
1
4
− ν2

)]n

f(x) dx,

−1/2 < Re ν < 0, n = 0, 1, 2, . . . ,

where the integral is considered in the L2 sense. Set

(28)
gN

n (y) =
∫ N

1/N

√
xy Yν(xy)

[
d2

dx2
+

1
x2

(
1
4
− ν2

)]n

f(x) dx,

n = 0, 1, 2, . . . ,

we see that gN
n (y) tends to gn(y) in L2 norm as N → ∞. Let n ≥ 1;

integrating (28) by parts twice we obtain

gN
n (y) =

{√
xy Yν(xy)

d

dx

[
d2

dx2
+

1
x2

(
1
4
− ν2

)]n−1

f(x)
}∣∣∣x=N

x=1/N

−
{

∂

∂x
(
√
xy Yν(xy))

[
d2

dx2
+

1
x2

(
1
4
− ν2

)]n−1

f(x)
}∣∣∣x=N

x=1/N

+
∫ N

1/N

[
∂2

∂x2
+

1
x2

(
1
4
− ν2

)](29)

· (√xy Yν(xy))
[
d2

dx2
+

1
x2

(
1
4
− ν2

)]n−1

f(x) dx.
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Using the formulas [1]

(30)

∂

∂x
(
√
xy Yν(xy)) = (1/2− ν)

√
y

x
Yν(xy) + y

√
xy Yν−1(xy),

[
∂2

∂x2
+

1
x2

(
1
4
− ν2

)]
(
√
xy Yν(xy)) = −y2√xy Yν(xy),

we have

gN
n (y) =

√
Ny Yν(Ny)

d

dx

[
d2

dx2
+

1
x2

(
1
4
− ν2

)]n−1

f(N)(31)

−
√

y

N
Yν(y/N)

d

dx

[
d2

dx2
+

1
x2

(
1
4
− ν2

)]n−1

f(1/N)(32)

+
(
ν − 1

2

)√
y

N
Yν(Ny)

[
d2

dx2
+

1
x2

(
1
4
− ν2

)]n−1

f(N)(33)

−y
√

Ny Yν−1(Ny)
[
d2

dx2
+

1
x2

(
1
4
− ν2

)]n−1

f(N)(34)

+
(
1
2
− ν

)√
Ny Yν(y/N)

[
d2

dx2
+

1
x2

(
1
4
− ν2

)]n−1

f(1/N)(35)

+y

√
y

N
Yν−1(y/N)

[
d2

dx2
+

1
x2

(
1
4
− ν2

)]n−1

f(1/N)(36)

−y2

∫ N

1/N

√
xy Yν(xy)

[
d2

dx2
+

1
x2

(
1
4
− ν2

)]n−1

f(x) dx.(37)

Here P (d/dx)f(N) means P (d/dx)f(x)|x=N .

Applying the following asymptotic formula for the Bessel function of
the second kind [1]
(38)

Yν(y) =




√
2
πy

[
sin

(
y − νπ

2
− π

4

)
+

4ν2 − 1
8y

cos
(
y − νπ

2
− π

4

)]
+O(y−5/2) y → ∞,

O(y−|Re ν|) y → 0,

we conclude that the function
√
Ny Yν(Ny), |Re ν| < 1/2, is uniformly

bounded. The function (d/dx)[(d2/dx2) + (1/x2)((1/4)− ν2)]n−1f(N)
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tends to zero as N approaches infinity (property (vi)); therefore, the
expression on the righthand side of (31) tends to zero as N approaches
infinity.

From (v) we see that (d/dx)[(d2/dx2)+(1/x2)((1/4)−ν2)]n−1f(1/N)
has the order o(1), whereas the function

√
y/N Yν(y/N) has the order

O(N−Re ν−1/2). Hence expression (32) approaches zero as N tends to
infinity.

The function
√

y/N Yν(Ny) has the order O(N−1), whereas the
expression [(d2/dx2) + (1/x2)((1/4) − ν2)]n−1f(N) is o(1) (property
(iv)), therefore expression (33) is o(1).

The function y
√
Ny Yν−1(Ny) is O(1), hence property (iv) shows that

expression (34) is o(1).

Since the function
√
Ny Yν(y/N) has the order O(N1/2−Re ν), and

[(d2/dx2) + (1/x2)((1/4)− ν2)]n−1f(1/N) is o(N−1/2+Re ν) (property
(iii)) expression (35) is also o(1).

The function y
√

y/N Yν−1(y/N) has the order O(N1/2−Re ν), hence
expression (36) is o(1) by virtue of property (iii).

Therefore, we observe that the righthand side of formula (31), as
well as all functions (32) (36), vanish as N tends to infinity, whereas
expression (37) converges to −y2gn−1(y). Consequently, gn(y) =
−y2gn−1(y), and hence gn(y) = (−y2)ng0(y), n = 0, 1, . . . . Thus
g(y) = g0(y) with y2ng(y) ∈ L2(R+), n = 0, 1, . . . , is the Yν-transform
of a function f . As the Yν-transform is the inverse of the Hν-transform,
the function f is the Struve Hν-transform (−1/2 < Re ν < 0) of a
function g such that yng(y) ∈ L2(R+), n = 0, 1, . . . .

We have proved that the function (−y2)ng(y) is the Yν-transform
(−1/2 < Re ν < 0) of the function [(d2/dx2)+(1/x2)((1/4)−ν2)]nf(x),
n = 0, 1, . . . . Hence, [(d2/dx2) + (1/x2)((1/4) − ν2)]nf(x) is the
Struve Hν transform, −1/2 < Re ν < 0, of (−y2)ng(y), n = 0, 1, . . . .
Consequently, formula (14) holds. We recall that formula (13) is
valid if (−y2)ng(y) ∈ L2(R+), n = 0, 1, . . . , hence comparing it with
formula (14) we get formula (8) for n = 0. Applying the same
procedure with [(d2/dx2) + (1/x2)((1/4)− ν2)]n−1f(x) instead of f(x)
and (−y2)n−1g(y) instead of g(y) we obtain formula (8) for other values
of n.

Theorem 1 is thus proved.
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Remark 1. Let S(R) be the Schwartz space of infinitely differentiable
and rapidly decreasing functions on R = (−∞,∞) [12]. The Lisorkin
space [3] Φ(R) ⊂ S(R) is the set of Schwartz functions ϕ with zero
moments

(39)
∫ ∞

−∞
ynϕ(y) dy = 0, n = 0, 1, 2, . . . .

The Lisorkin space Φ(R) plays an important role in fractional inte-
grals, potential theory [6] and singular integrals [7], for example, the
Weyl fractional integral and derivative, and the Riesz potential are au-
tomorphisms on Φ(R) [6]. It is easy to see that the restrictions of the
Lisorkin odd functions on R+, multiplied by y−ν−1/2, belong to the
class of functions considered in Theorem 1.

3. Hν-transform of functions analytic in an angle. Let G be the
space of functions g(z) that are (i) regular in an angle −α < arg z < β
where 0 < α, β ≤ π, (ii) of the order O(|z|−a−ε) for small z and
O(|z|−b+ε) for large z uniformly in any angle interior to the above,
for every positive ε, where a < 1/2 < b, (iii) satisfying the following
conditions

(40)

∫ ∞

0

yν−2n−1/2g(y) dy = 0,

n ∈ (−b/2 +Re ν/2 + 1/4,−a/2 +Re ν/2 + 1/4),∫ ∞

0

yν+2n+3/2g(y) dy = 0,

n ∈ (a/2−Re ν/2− 5/4, b/2−Re ν/2− 5/4),

for all nonnegative integers n (if such an n exists).

Let F be the space of functions f(z), which are (i) regular in the
angle −β < arg z < α, (ii) of the order O(|z|1−b−ε) for small z and
O(|z|1−a+ε) for large z uniformly in any angle interior to the above for
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every positive ε and (iii) satisfying the following conditions

(41)

∫ ∞

0

xν+2n+1/2f(x) dx = 0,

n ∈ (−b/2−Re ν/2− 1/4,−a/2−Re ν/2− 1/4),∫ ∞

0

x−ν+2n+1/2f(x) dx = 0,

n ∈ (−b/2 +Re ν/2− 1/4,−a/2 +Re ν/2− 1/4),

for all nonnegative integers n if such an n exists; for example, if Re ν =
−1, then n = 0 always belongs to the interval (−b/2−1/2,−a/2−1/2).

Theorem 2. The Hν-transform, −2 < Re ν < 0, maps the space G
one-to-one onto the space F .

Proof. Let g(z) belong to the space G. Then the restriction of the
function g(z) on R+ belongs to L2(R+) and its Mellin transform g∗(s)

(42) g∗(s) =
∫ ∞

0

xs−1g(x) dx

is regular in the strip a < Res < b and has the asymptotics

(43) g∗(s) =
{
O(e−(β−ε)Ims) Ims → ∞,
O(e(α−ε)Ims) Ims → −∞,

uniformly in any strip interior to a < Res < b for every positive ε (see
[9]). Let f(x) be the Hν-transform (−2 < Re ν < 0) of g(y). Since g(y)
belongs to L2(R+), the Parseval identity holds on the line Res = 1/2
and [2]

(44) f∗(s)

= 2s−1Γ((1/4)− (ν/2)− (s/2))Γ((3/4) + (ν/2) + (s/2))
Γ((3/4) + (ν/2)− (s/2))Γ((3/4)− (ν/2)− (s/2))

g∗(1−s).

Because of condition (40) the function g∗(1 − s) equals 0 at the poles
of the function Γ((1/4) − (ν/2) − (s/2))Γ((3/4) + (ν/2) + (s/2)) in
the strip 1 − b < Res < 1 − a, provided there exists one. Hence,
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from formula (44) one can see that f∗(s) is analytic in the strip
1−b < Res < 1−a. Furthermore, since the function 2s−1/2[(Γ((1/4)−
(ν/2)−(s/2))Γ((3/4)+(ν/2)+(s/2))]/[Γ((3/4)+(ν/2)−(s/2))Γ((3/4)−
(ν/2) − (s/2))] is uniformly bounded on any compact subdomain of
the strip 1 − b < Res < 1 − a containing no poles of the function
Γ((1/4)− (ν/2)− (s/2))Γ((3/4)+ (ν/2)+ (s/2)), and has at most only
polynomial growth as Ims → ±∞, from formula (43) we see that the
function f∗(s) also decays exponentially

(45) f∗(s) =

{
O(e(β−ε)Ims) Ims → −∞,

O(e−(α−ε)Ims) Ims → ∞,

uniformly in any strip interior to 1 − b < Res < 1 − a for every
positive ε. Hence its inverse Mellin transform f(z) is regular in the
angle −β < arg z < α and of the order O(|z|b−1−ε) for small z and
O(|z|a−1+ε) for large z uniformly in any angle interior to the above
angle, for every positive ε [9]. Moreover, f∗(s) has zeros at the poles
of the function Γ((3/4)+ (ν/2)− (s/2))Γ((3/4)− (ν/2)− (s/2)) in the
strip 1− b < Res < 1− a (provided one exists); hence (41) holds.

Conversely, let f(z) belong to the space F . Then the restriction of
the function f(z) on R+ belongs to L2(R+) and its Mellin transform
(42) f∗(s) is analytic in the strip 1−b < Res < 1−a and satisfies (45).
Furthermore, from condition (41) we see that f∗(s) has zeros at the
poles of the function Γ((3/4) + (ν/2)− (s/2))Γ((3/4)− (ν/2)− (s/2))
in the strip 1− b < Res < 1− a, provided one exists. Therefore, if we
express f∗(s) in the form (44), the function g∗(s) is analytic in the strip
a < Res < b and has asymptotics (43) uniformly in any strip interior to
a < Res < b for every positive ε. Furthermore, g∗(1−s) has zeros at the
poles of the function Γ((1/4)− (ν/2)− (s/2))Γ((3/4) + (ν/2) + (s/2))
in the strip 1 − b < Res < 1 − a. Consequently, the inverse Mellin
transform g(z) of g∗(s) satisfies the conditions of Theorem 2 and f is
the Struve Hν-transform of g.

If we take α = β and 0 < a < min{|ν|, |ν+1|, |ν+2|}, then in the strip
1/2 − a < Res < 1/2 + a there are no poles and zeros of the function
2s−1/2[Γ((1/4) − (ν/2) − (s/2))Γ((3/4) + (ν/2) + (s/2))]/[Γ((3/4) +
(ν/2) − (s/2))Γ((3/4) − (ν/2) − (s/2))]. This leads to the following
corollary.
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Corollary 1. The Hν-transform (0 < |Re ν + 1| < 1) is a bijection
on the space of functions, regular in the angle | arg z| < α, 0 < α ≤ π
of the order O(|z|a−1/2−ε) for small z and O(|z|−a−1/2+ε) for large z
uniformly in any angle interior to the above, for every positive ε, where
0 < a < min{|ν|, |ν + 1|, |ν + 2|}.

4. Hν-transform on some other space of functions. Let Φ be
any linear subspace of either L1(R) or L2(R) having properties

(i) if φ(t) ∈ Φ then φ(−t) ∈ Φ;

(ii) the functions ϕ(t) = (2it cosh(π/2)(t − iν)Γ((1/2) + (ν/2) +
(it/2)))/[Γ((1/2) + (ν/2) − (it/2))], 0 < |1 + Re ν| < 1 and ϕ−1(t)
are multipliers of Φ.

It is easy to see that ϕ−1(−t) is also a multiplier of Φ. The multipliers
ϕ(t) and ϕ−1(t) are infinitely differentiable and uniformly bounded on
R and their derivatives grow logarithmically; therefore, many classical
spaces on R are special cases of Φ (for example, any L1 or L2 space
with L∞-weights, the Schwartz space S(R) and the space of infinitely
differentiable functions with compact support [12]). On R+ we define
by M−1(Φ) the space of functions g that can be represented in the
form

(46) g(x) =
∫ ∞

−∞
φ(t)xit−1/2 dt

almost everywhere, where φ ∈ Φ (if φ /∈ L1(R) the integral should
be understood as the inverse Mellin transform in L2 [9]). The space
M−1

c,γ(L) [10], [11] as well as the space of functions considered in
Corollary 3.1 are special cases of M−1(Φ).

Theorem 3. The Hν-transform, 0 < |1 +Re ν| < 1, is a bijection
on M−1(Φ).

Proof. From representation (46) we see that if g ∈ M−1(Φ) then g
can be expressed in the form of the inverse Mellin transform

(47) g(x) =
1
2πi

∫ 1/2+i∞

1/2−i∞
g∗(s)x−s ds,
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where g∗(1/2 + it) ∈ Φ. The Mellin transform (42) of the function
k(x) =

√
xHν(x), −2 < Re ν < 0, is k∗(s) = −ϕ(i/2 − is) [1].

Applying the Parseval equation for the Mellin transform

(48)
∫ ∞

0

k(xy)g(y) dy =
1
2πi

∫ 1/2+i∞

1/2−i∞
k∗(s)g∗(1− s)x−s ds,

we obtain

(49)
(Hνg)(x) =

∫ ∞

0

√
xyHν(xy)g(y) dy

= − 1
2π

∫ ∞

−∞
ϕ(t)g∗(1/2− it)x−it−1/2 dt.

The Parseval formula (48) has been proved for g∗(1/2 + it) ∈ L2(R)
in [9] and g∗(1/2 + it) ∈ L1(R) in [10]. Since ϕ(t) and ϕ−1(−t) are
multipliers of Φ, the function ϕ(t)g∗(1/2− it) belongs to Φ if and only
if g∗(1/2 + it) belongs to Φ. Therefore, (Hνg)(x) ∈ M−1(Φ) if and
only if g ∈ M−1(Φ). Theorem 3 is proved.
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