# ON THE RANGE OF THE STRUVE $\mathrm{H}_{\nu}$-TRANSFORM 

VU KIM TUAN


#### Abstract

The range of the $\mathbf{H}_{\nu}$-transform on some spaces of functions is described.


1. Introduction. The Struve $\mathbf{H}_{\nu}$-transform as an example of an asymmetric Watson transform is defined as [8], [9]

$$
\begin{gather*}
f(x)=\left(\mathbf{H}_{\nu} g\right)(x)=\int_{0}^{\infty} \sqrt{x y} \mathbf{H}_{\nu}(x y) g(y) d y,  \tag{1}\\
x \in(0, \infty)=R_{+},
\end{gather*}
$$

if the integral converges in some sense (absolutely, improper or mean convergence). Here $\mathbf{H}_{\nu}(x)$ is the Struve function [1]. The boundedness and range of the Struve $\mathbf{H}_{\nu}$-transform on the space $\mathcal{L}_{\mu, p}$ of functions $f$, measurable on $R_{+}$, and such that

$$
\begin{equation*}
\|f\|_{\mu, p}=\left\{\int_{0}^{\infty}\left|x^{\mu} f(x)\right|^{p} \frac{d x}{x}\right\}^{1 / p}<\infty, \quad 1 \leq p<\infty, \tag{2}
\end{equation*}
$$

have been considered in [2], [4], [5]. It has been proved there that, under some restrictions on parameters $\nu, \mu, p$, the range of the Struve $\mathbf{H}_{\nu}$-transform (1) coincides with the range of the Hankel transform

$$
\begin{equation*}
f(x)=\left(\mathcal{H}_{\nu+1} g\right)(x)=\int_{0}^{\infty} \sqrt{x y} J_{\nu+1}(x y) g(y) d y, \quad x \in R_{+} \tag{3}
\end{equation*}
$$

on the space $\mathcal{L}_{\mu, p}$. It is well known that the Hankel transform (3) is an automorphism on the space $L_{2}\left(R_{+}\right)=\mathcal{L}_{1 / 2,2}$, hence in the strip $-2<\mathcal{R} e \nu<0$ the Struve $\mathbf{H}_{\nu}$-transform is bounded on $L_{2}\left(R_{+}\right)$, and moreover, if $\mathcal{R e} \nu \neq-1$, its range is the whole space $L_{2}\left(R_{+}\right)$:

$$
\begin{align*}
\left\|\mathbf{H}_{\nu} g\right\|_{L_{2}\left(R_{+}\right)} & \leq C\|g\|_{L_{2}\left(R_{+}\right)}, \quad-2<\mathcal{R} e \nu<0  \tag{4}\\
\|g\|_{L_{2}\left(R_{+}\right)} & \leq C\left\|\mathbf{H}_{\nu} g\right\|_{L_{2}\left(R_{+}\right)}, \quad|1+\mathcal{R} e \nu|<1, \tag{5}
\end{align*}
$$

[^0]where $C \in[1, \infty)$ is an independent constant.
When $-1<\mathcal{R} e \nu<0$ the inverse of the Struve $\mathbf{H}_{\nu}$-transform on $L_{2}\left(R_{+}\right)$is the so-called $Y_{\nu}$-transform, defined by [8], [9]
\[

$$
\begin{equation*}
g(x)=\left(Y_{\nu} f\right)(x)=\int_{0}^{\infty} \sqrt{x y} Y_{\nu}(x y) f(y) d y, \quad x \in R_{+} \tag{6}
\end{equation*}
$$

\]

Here $Y_{\nu}(x)$ is the Bessel function of the second kind [1]. The $Y_{\nu^{-}}$ transform is a bounded operator on $L_{2}\left(R_{+}\right)$if $|\mathcal{R} e \nu|<1$. In the strip $-2<\mathcal{R} e \nu<-1$ the inverse of the $\mathbf{H}_{\nu}$-transform should be modified to
(7) $g(x)=\int_{0}^{\infty}\left[\sqrt{x y} Y_{\nu}(x y)-\frac{\cot (\pi \nu)(x y)^{\nu+1 / 2}}{2^{\nu} \Gamma(\nu+1)}\right] f(y) d y, \quad x \in R_{+}$.

The $\mathbf{H}_{\nu^{-}}$and $Y_{\nu^{\prime}}$-transforms are useful in many axially-symmetric potential problems when solutions singular on the symmetric axis are required (see, for example, [4]).

In this work we characterize the range of the $\mathbf{H}_{\nu}$-transform on some spaces of functions. On the spaces considered in this paper, the $Y_{\nu^{-}}$ transform and its modified form (7) are the inverse of the $\mathbf{H}_{\nu}$-transform, hence their respective ranges can be easily derived.
2. $H_{\nu}$-transform of rapidly decreasing functions. We describe the range of the $\mathbf{H}_{\nu}$-transform on a subspace of the space of functions $g(y)$ such that $y^{n} g(y), n=1,2, \ldots$, are square integrable.

Theorem 1. A function $f(x)$ is the Struve $\mathbf{H}_{\nu}$ transform $(-1 / 2<$ $\mathcal{R} e \nu<0$ ) of a function $g(y)$ such that $y^{n} g(y), n=1,2, \ldots$, are square integrable and

$$
\begin{equation*}
\int_{0}^{\infty} y^{\nu+2 n+3 / 2} g(y) d y=0, \quad n=0,1, \ldots \tag{8}
\end{equation*}
$$

if and only if
(i) $f(x)$ is infinitely differentiable on $R_{+}$;
(ii) $\left(\left(d^{2} / d x^{2}\right)+\left(1 / x^{2}\right)\left((1 / 4)-\nu^{2}\right)\right)^{n} f(x), n=0,1, \ldots$, belong to $L_{2}\left(R_{+}\right)$;
(iii) $x^{\mathcal{R e} \nu-1 / 2}\left(\left(d^{2} / d x^{2}\right)+\left(1 / x^{2}\right)\left((1 / 4)-\nu^{2}\right)\right)^{n} f(x), n=0,1, \ldots$, tend to 0 as $x \rightarrow 0$;
(iv) $\left(\left(d^{2} / d x^{2}\right)+\left(1 / x^{2}\right)\left((1 / 4)-\nu^{2}\right)\right)^{n} f(x), n=0,1, \ldots$, tend to zero as $x$ approaches infinity;
(v) $(d / d x)\left(\left(d^{2} / d x^{2}\right)+\left(1 / x^{2}\right)\left((1 / 4)-\nu^{2}\right)\right)^{n} f(x), n=0,1, \ldots$, tend to 0 as $x \rightarrow 0$;
(vi) $(d / d x)\left(\left(d^{2} / d x^{2}\right)+\left(1 / x^{2}\right)\left((1 / 4)-\nu^{2}\right)\right)^{n} f(x), n=0,1, \ldots$, tend to zero as $x$ approaches infinity.

Proof. Necessity. Let $y^{n} g(y)$ belong to $L_{2}\left(R_{+}\right)$for all $n=0,1,2, \ldots$; then $y^{n} g(y)$ belongs to $L_{1}\left(R_{+}\right)$for all $n=0,1,2, \ldots$. The Struve function $\mathbf{H}_{\nu}(y)$ has the order $O\left(y^{1+\mathcal{R} e \nu}\right)$ at 0 and grows no faster than polynomials at infinity [1]. Therefore, integral (1) converges absolutely if $\mathcal{R} e \nu>-5 / 2$. Let $f(x)$ be the $\mathbf{H}_{\nu}$-transform $(-1 / 2<\mathcal{R} e \nu<0)$ of the function $g(y)$.
(i) We have $[\mathbf{1}]$

$$
\begin{gather*}
\mathbf{H}_{\nu}(x)=\frac{2^{1-\nu} x^{\nu}}{\sqrt{\pi} \Gamma(\nu+1 / 2)} \int_{0}^{1}\left(1-t^{2}\right)^{\nu-1 / 2} \sin (x t) d t  \tag{9}\\
\mathcal{R} e \nu>-1 / 2
\end{gather*}
$$

Therefore,

$$
\begin{align*}
& \frac{\partial^{n}}{\partial x^{n}}\left(\sqrt{x y} \mathbf{H}_{\nu}(x y)\right)  \tag{10}\\
&= \frac{2^{1-\nu} y^{\nu+1 / 2}}{\sqrt{\pi} \Gamma(\nu+1 / 2)} \sum_{k=0}^{n}(-1)^{k}(k-\nu-3 / 2)_{k}\binom{n}{k} x^{\nu+1 / 2-k} y^{n-k} \\
& \cdot \int_{0}^{1}\left(1-t^{2}\right)^{\nu-1 / 2} t^{n-k} \sin (x y t+\pi(n-k) / 2) d t
\end{align*}
$$

where $(a)_{n}=\Gamma(a+n) / \Gamma(a)$ is the Pochhammer symbol [1]. Consequently, $\left(\partial^{n} / \partial x^{n}\right)\left[\sqrt{x y} \mathbf{H}_{\nu}(x y)\right]$, $\mathcal{R} e \nu>-1 / 2$, as a function of $y$ has the asymptotics $O\left(y^{1 / 2+\mathcal{R} e \nu}\right)$ in a neighborhood of zero and $O\left(y^{1 / 2+\mathcal{R e} e+n}\right)$ at infinity. Hence,

$$
\frac{\partial^{n}}{\partial x^{n}}\left[\sqrt{x y} \mathbf{H}_{\nu}(x y)\right] g(y), \quad \mathcal{R} e \nu>-1 / 2
$$

as a function of $y$ belongs to $L_{1}\left(R_{+}\right)$for all $n=0,1,2, \ldots$. Therefore, the function $f(x)$ is infinitely differentiable on $R_{+}$.
(ii) As the Struve function $\mathbf{H}_{\nu}(x)$ satisfies the nonhomogeneous Bessel differential equation [1]

$$
\begin{equation*}
x^{2} u^{\prime \prime}+x u^{\prime}+\left(x^{2}-\nu^{2}\right) u=\frac{2^{1-\nu} x^{\nu+1}}{\sqrt{\pi} \Gamma(\nu+1 / 2)} \tag{11}
\end{equation*}
$$

we have

$$
\begin{align*}
{\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{1}{x^{2}}\left(\frac{1}{4}-\nu^{2}\right)\right]\left(\sqrt{x y} \mathbf{H}_{\nu}(x y)\right)=} & \frac{2^{1-\nu} x^{\nu-1 / 2} y^{\nu+3 / 2}}{\sqrt{\pi} \Gamma(\nu+1 / 2)}  \tag{12}\\
& -y^{2} \sqrt{x y} \mathbf{H}_{\nu}(x y)
\end{align*}
$$

Consequently,

$$
\begin{aligned}
{\left[\frac{d^{2}}{d x^{2}}+\frac{1}{x^{2}}\left(\frac{1}{4}-\nu^{2}\right)\right] f(x)=} & \frac{2^{1-\nu} x^{\nu-1 / 2}}{\sqrt{\pi} \Gamma(\nu+1 / 2)} \int_{0}^{\infty} y^{\nu+3 / 2} g(y) d y \\
& -\int_{0}^{\infty} \sqrt{x y} \mathbf{H}_{\nu}(x y) y^{2} g(y) d y \\
|\mathcal{R} e \nu| & <1 / 2
\end{aligned}
$$

Now using condition (8) we obtain

$$
\begin{equation*}
\left[\frac{d^{2}}{d x^{2}}+\frac{1}{x^{2}}\left(\frac{1}{4}-\nu^{2}\right)\right] f(x)=-\int_{0}^{\infty} \sqrt{x y} \mathbf{H}_{\nu}(x y) y^{2} g(y) d y \tag{14}
\end{equation*}
$$

Applying the same procedure and condition (8) $n$ times we get

$$
\begin{gather*}
{\left[\frac{d^{2}}{d x^{2}}+\frac{1}{x^{2}}\left(\frac{1}{4}-\nu^{2}\right)\right]^{n} f(x)=(-1)^{n} \int_{0}^{\infty} \sqrt{x y} \mathbf{H}_{\nu}(x y) y^{2 n} g(y) d y}  \tag{15}\\
-1 / 2<\mathcal{R} e \nu<0
\end{gather*}
$$

From inequality (4) for the $\mathbf{H}_{\nu}$-transform we see that $\left[\left(d^{2} / d x^{2}\right)+\right.$ $\left.\left(1 / x^{2}\right)\left((1 / 4)-\nu^{2}\right)\right]^{n} f(x),-1 / 2<\mathcal{R} e \nu<0, n=0,1, \ldots$, belong to $L_{2}\left(R_{+}\right)$.
(iii) The Struve function $\mathbf{H}_{\nu}(y), \mathcal{R} e \nu<1 / 2$, has the asymptotics [1] (16)

$$
\mathbf{H}_{\nu}(y)= \begin{cases}\sqrt{\frac{2}{\pi y}}\left[\sin \left(y-\frac{\nu \pi}{2}-\frac{\pi}{4}\right)+\frac{4 \nu^{2}-1}{8 y} \cos \left(y-\frac{\nu \pi}{2}-\frac{\pi}{4}\right)\right] \\ +\frac{2^{1-\nu} y^{\nu-1}}{\sqrt{\pi} \Gamma(\nu+(1 / 2))}+O\left(y^{-5 / 2}\right), & y \rightarrow \infty \\ O\left(y^{\mathcal{R} e \nu+1}\right), & y \rightarrow 0\end{cases}
$$

Therefore, the function $\sqrt{x y} \mathbf{H}_{\nu}(x y),|\mathcal{R} e \nu|<1 / 2$, is uniformly bounded on $R_{+}$. As $y^{2 n} g(y) \in L_{1}\left(R_{+}\right)$, applying the dominated convergence theorem and formula (16) we obtain
$\lim _{x \rightarrow 0} x^{\mathcal{R e} e \nu-(1 / 2)}\left[\frac{d^{2}}{d x^{2}}+\frac{1}{x^{2}}\left(\frac{1}{4}-\nu^{2}\right)\right]^{n} f(x)$

$$
\begin{gather*}
=(-1)^{n} \int_{0}^{\infty} \lim _{x \rightarrow 0}\left[x^{\mathcal{R} e \nu} \mathbf{H}_{\nu}(x y)\right] y^{2 n+1 / 2} g(y) d y=0  \tag{17}\\
-1 / 2<\mathcal{R} e \nu<0
\end{gather*}
$$

(iv) The function $\sqrt{y} \mathbf{H}_{\nu}(y)$ can be expressed in the following form by virtue of formula (16)

$$
\begin{align*}
\sqrt{y} \mathbf{H}_{\nu}(y)= & \sqrt{\frac{2}{\pi}} \sin \left(y-\frac{\nu \pi}{2}-\frac{\pi}{4}\right)+\varphi(y)  \tag{18}\\
& -3 / 2<\mathcal{R} e \nu<1 / 2
\end{align*}
$$

where $\varphi(y)$ is uniformly bounded on $R_{+}$and $\lim _{y \rightarrow \infty} \varphi(y)=0$. Since $y^{n} g(y) \in L_{1}\left(R_{+}\right)$, applying the Riemann-Lebesgue lemma and the dominated convergence theorem we obtain

$$
\begin{align*}
& \lim _{x \rightarrow \infty} \int_{0}^{\infty} \sqrt{x y} \mathbf{H}_{\nu}(x y) y^{n} g(y) d y \\
& =\lim _{x \rightarrow \infty} \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \sin \left(x y-\frac{\nu \pi}{2}-\frac{\pi}{4}\right) y^{n} g(y) d y  \tag{19}\\
& \\
& \quad+\int_{0}^{\infty} \lim _{x \rightarrow \infty} \varphi(x y) y^{n} g(y) d y=0 \\
& \quad-3 / 2<\mathcal{R} e \nu<1 / 2
\end{align*}
$$

Hence

$$
\begin{gather*}
\lim _{x \rightarrow \infty}\left[\frac{d^{2}}{d x^{2}}+\frac{1}{x^{2}}\left(\frac{1}{4}-\nu^{2}\right)\right]^{n} f(x)=0  \tag{20}\\
n=0,1, \ldots,-1 / 2<\mathcal{R} e \nu<0
\end{gather*}
$$

(v) Using the formula [1]
(21) $\quad \frac{\partial}{\partial x}\left(\sqrt{x y} \mathbf{H}_{\nu}(x y)\right)=(1 / 2-\nu) \sqrt{\frac{y}{x}} \mathbf{H}_{\nu}(x y)+y \sqrt{x y} \mathbf{H}_{\nu-1}(x y)$,
we have

$$
\begin{align*}
\frac{d}{d x}\left[\frac{d^{2}}{d x^{2}}+\right. & \left.\frac{1}{x^{2}}\left(\frac{1}{4}-\nu^{2}\right)\right]^{n} f(x) \\
= & (-1)^{n} \int_{0}^{\infty} \sqrt{x y} \mathbf{H}_{\nu-1}(x y) y^{2 n+1} g(y) d y  \tag{22}\\
& +\frac{(-1)^{n}}{x}\left(\frac{1}{2}-\nu\right) \int_{0}^{\infty} \sqrt{x y} \mathbf{H}_{\nu}(x y) y^{2 n} g(y) d y
\end{align*}
$$

The functions $x^{-1 / 2} \mathbf{H}_{\nu}(x)$ and $x^{1 / 2} \mathbf{H}_{\nu-1}(x),|\mathcal{R} e \nu|<1 / 2$, are uniformly bounded on $R_{+}$and tend to 0 as $x$ approaches 0 . Hence, applying again the dominated convergence theorem we obtain

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{1}{x} \int_{0}^{\infty} \sqrt{x y} \mathbf{H}_{\nu}(x y) y^{2 n} g(y) d y \\
&=\int_{0}^{\infty} \lim _{x \rightarrow 0}\left[(x y)^{-1 / 2} \mathbf{H}_{\nu}(x y)\right] y^{2 n+1} g(y) d y=0
\end{aligned}
$$

$$
\begin{align*}
& \lim _{x \rightarrow 0} \int_{0}^{\infty} \sqrt{x y} \mathbf{H}_{\nu-1}(x y) y^{2 n+1} g(y) d y  \tag{23}\\
&=\int_{0}^{\infty} \lim _{x \rightarrow 0}\left[\sqrt{x y} \mathbf{H}_{\nu-1}(x y)\right] y^{2 n+1} g(y) d y=0
\end{align*}
$$

From formulas (22) and (23) we get

$$
\begin{gather*}
\lim _{x \rightarrow 0} \frac{d}{d x}\left[\frac{d^{2}}{d x^{2}}+\frac{1}{x^{2}}\left(\frac{1}{4}-\nu^{2}\right)\right]^{n} f(x)=0  \tag{24}\\
n=0,1, \ldots,-1 / 2<\mathcal{R} e \nu<0
\end{gather*}
$$

(vi) If $-1 / 2<\mathcal{R} e \nu<0$, then $-3 / 2<\mathcal{R} e \nu-1<-1$. Hence, one can apply formula (19) to obtain

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \int_{0}^{\infty} \sqrt{x y} \mathbf{H}_{\nu-1}(x y) y^{2 n+1} g(y) d y=0, \quad-1 / 2<R e \nu<0 \tag{25}
\end{equation*}
$$

Now using formulas (22) and (25) we have

$$
\begin{gather*}
\lim _{x \rightarrow \infty} \frac{d}{d x}\left[\frac{d^{2}}{d x^{2}}+\frac{1}{x^{2}}\left(\frac{1}{4}-\nu^{2}\right)\right]^{n} f(x)=0  \tag{26}\\
n=0,1, \ldots,-1 / 2<\mathcal{R} e \nu<0
\end{gather*}
$$

Sufficiency. Suppose now that $f$ satisfies conditions (i)-(vi) of Theorem 1. Then $\left[\left(d^{2} / d x^{2}\right)+\left(1 / x^{2}\right)\left((1 / 4)-\nu^{2}\right)\right]^{n} f(x), n=0,1, \ldots$, belong to $L_{2}\left(R_{+}\right)$. Let $g_{n}(y), n=0,1, \ldots$, be their $Y_{\nu}$-transforms

$$
\begin{gather*}
g_{n}(y)=\int_{0}^{\infty} \sqrt{x y} Y_{\nu}(x y)\left[\frac{d^{2}}{d x^{2}}+\frac{1}{x^{2}}\left(\frac{1}{4}-\nu^{2}\right)\right]^{n} f(x) d x  \tag{27}\\
-1 / 2<\mathcal{R} e \nu<0, n=0,1,2, \ldots
\end{gather*}
$$

where the integral is considered in the $L_{2}$ sense. Set

$$
\begin{gather*}
g_{n}^{N}(y)=\int_{1 / N}^{N} \sqrt{x y} Y_{\nu}(x y)\left[\frac{d^{2}}{d x^{2}}+\frac{1}{x^{2}}\left(\frac{1}{4}-\nu^{2}\right)\right]^{n} f(x) d x  \tag{28}\\
n=0,1,2, \ldots
\end{gather*}
$$

we see that $g_{n}^{N}(y)$ tends to $g_{n}(y)$ in $L_{2}$ norm as $N \rightarrow \infty$. Let $n \geq 1$; integrating (28) by parts twice we obtain

$$
\begin{aligned}
g_{n}^{N}(y)= & \left.\left\{\sqrt{x y} Y_{\nu}(x y) \frac{d}{d x}\left[\frac{d^{2}}{d x^{2}}+\frac{1}{x^{2}}\left(\frac{1}{4}-\nu^{2}\right)\right]^{n-1} f(x)\right\}\right|_{x=1 / N} ^{x=N} \\
& -\left.\left\{\frac{\partial}{\partial x}\left(\sqrt{x y} Y_{\nu}(x y)\right)\left[\frac{d^{2}}{d x^{2}}+\frac{1}{x^{2}}\left(\frac{1}{4}-\nu^{2}\right)\right]^{n-1} f(x)\right\}\right|_{x=1 / N} ^{x=N} \\
& +\int_{1 / N}^{N}\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{1}{x^{2}}\left(\frac{1}{4}-\nu^{2}\right)\right] \\
& \cdot\left(\sqrt{x y} Y_{\nu}(x y)\right)\left[\frac{d^{2}}{d x^{2}}+\frac{1}{x^{2}}\left(\frac{1}{4}-\nu^{2}\right)\right]^{n-1} f(x) d x
\end{aligned}
$$

Using the formulas [1]

$$
\begin{gather*}
\frac{\partial}{\partial x}\left(\sqrt{x y} Y_{\nu}(x y)\right)=(1 / 2-\nu) \sqrt{\frac{y}{x}} Y_{\nu}(x y)+y \sqrt{x y} Y_{\nu-1}(x y),  \tag{30}\\
{\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{1}{x^{2}}\left(\frac{1}{4}-\nu^{2}\right)\right]\left(\sqrt{x y} Y_{\nu}(x y)\right)=-y^{2} \sqrt{x y} Y_{\nu}(x y)}
\end{gather*}
$$

we have

$$
\begin{align*}
& g_{n}^{N}(y)=\sqrt{N y} Y_{\nu}(N y) \frac{d}{d x}\left[\frac{d^{2}}{d x^{2}}+\frac{1}{x^{2}}\left(\frac{1}{4}-\nu^{2}\right)\right]^{n-1} f(N)  \tag{31}\\
& -\sqrt{\frac{y}{N}} Y_{\nu}(y / N) \frac{d}{d x}\left[\frac{d^{2}}{d x^{2}}+\frac{1}{x^{2}}\left(\frac{1}{4}-\nu^{2}\right)\right]^{n-1} f(1 / N)  \tag{32}\\
& +\left(\nu-\frac{1}{2}\right) \sqrt{\frac{y}{N}} Y_{\nu}(N y)\left[\frac{d^{2}}{d x^{2}}+\frac{1}{x^{2}}\left(\frac{1}{4}-\nu^{2}\right)\right]^{n-1} f(N)  \tag{33}\\
& \quad-y \sqrt{N y} Y_{\nu-1}(N y)\left[\frac{d^{2}}{d x^{2}}+\frac{1}{x^{2}}\left(\frac{1}{4}-\nu^{2}\right)\right]^{n-1} f(N)  \tag{34}\\
& +\left(\frac{1}{2}-\nu\right) \sqrt{N y} Y_{\nu}(y / N)\left[\frac{d^{2}}{d x^{2}}+\frac{1}{x^{2}}\left(\frac{1}{4}-\nu^{2}\right)\right]^{n-1} f(1 / N)  \tag{35}\\
& +y \sqrt{\frac{y}{N}} Y_{\nu-1}(y / N)\left[\frac{d^{2}}{d x^{2}}+\frac{1}{x^{2}}\left(\frac{1}{4}-\nu^{2}\right)\right]^{n-1} f(1 / N)  \tag{36}\\
& -y^{2} \int_{1 / N}^{N} \sqrt{x y} Y_{\nu}(x y)\left[\frac{d^{2}}{d x^{2}}+\frac{1}{x^{2}}\left(\frac{1}{4}-\nu^{2}\right)\right]^{n-1} f(x) d x \tag{37}
\end{align*}
$$

Here $P(d / d x) f(N)$ means $\left.P(d / d x) f(x)\right|_{x=N}$.
Applying the following asymptotic formula for the Bessel function of the second kind [1]

$$
Y_{\nu}(y)=\left\{\begin{array}{lr}
\sqrt{\frac{2}{\pi y}}\left[\sin \left(y-\frac{\nu \pi}{2}-\frac{\pi}{4}\right)+\frac{4 \nu^{2}-1}{8 y} \cos \left(y-\frac{\nu \pi}{2}-\frac{\pi}{4}\right)\right]  \tag{38}\\
+O\left(y^{-5 / 2}\right) & y \rightarrow \infty \\
O\left(y^{-|\mathcal{R} e \nu|}\right) & y \rightarrow 0
\end{array}\right.
$$

we conclude that the function $\sqrt{N y} Y_{\nu}(N y),|\mathcal{R} e \nu|<1 / 2$, is uniformly bounded. The function $(d / d x)\left[\left(d^{2} / d x^{2}\right)+\left(1 / x^{2}\right)\left((1 / 4)-\nu^{2}\right)\right]^{n-1} f(N)$
tends to zero as $N$ approaches infinity (property (vi)); therefore, the expression on the righthand side of (31) tends to zero as $N$ approaches infinity.

From (v) we see that $(d / d x)\left[\left(d^{2} / d x^{2}\right)+\left(1 / x^{2}\right)\left((1 / 4)-\nu^{2}\right)\right]^{n-1} f(1 / N)$ has the order $o(1)$, whereas the function $\sqrt{y / N} Y_{\nu}(y / N)$ has the order $O\left(N^{-\mathcal{R} e \nu-1 / 2}\right)$. Hence expression (32) approaches zero as $N$ tends to infinity.

The function $\sqrt{y / N} Y_{\nu}(N y)$ has the order $O\left(N^{-1}\right)$, whereas the expression $\left[\left(d^{2} / d x^{2}\right)+\left(1 / x^{2}\right)\left((1 / 4)-\nu^{2}\right)\right]^{n-1} f(N)$ is $o(1)$ (property (iv)), therefore expression (33) is $o(1)$.

The function $y \sqrt{N y} Y_{\nu-1}(N y)$ is $O(1)$, hence property (iv) shows that expression (34) is $o(1)$.

Since the function $\sqrt{N y} Y_{\nu}(y / N)$ has the order $O\left(N^{1 / 2-\mathcal{R e} e}\right)$, and $\left[\left(d^{2} / d x^{2}\right)+\left(1 / x^{2}\right)\left((1 / 4)-\nu^{2}\right)\right]^{n-1} f(1 / N)$ is $o\left(N^{-1 / 2+\mathcal{R e} \nu}\right)$ (property (iii)) expression (35) is also $o(1)$.

The function $y \sqrt{y / N} Y_{\nu-1}(y / N)$ has the order $O\left(N^{1 / 2-\mathcal{R e} \nu}\right)$, hence expression (36) is $o(1)$ by virtue of property (iii).

Therefore, we observe that the righthand side of formula (31), as well as all functions (32)-(36), vanish as $N$ tends to infinity, whereas expression (37) converges to $-y^{2} g_{n-1}(y)$. Consequently, $g_{n}(y)=$ $-y^{2} g_{n-1}(y)$, and hence $g_{n}(y)=\left(-y^{2}\right)^{n} g_{0}(y), n=0,1, \ldots$. Thus $g(y)=g_{0}(y)$ with $y^{2 n} g(y) \in L_{2}\left(R_{+}\right), n=0,1, \ldots$, is the $Y_{\nu}$-transform of a function $f$. As the $Y_{\nu}$-transform is the inverse of the $\mathbf{H}_{\nu}$-transform, the function $f$ is the Struve $\mathbf{H}_{\nu}$-transform $(-1 / 2<\mathcal{R} e \nu<0)$ of a function $g$ such that $y^{n} g(y) \in L_{2}\left(R_{+}\right), n=0,1, \ldots$.

We have proved that the function $\left(-y^{2}\right)^{n} g(y)$ is the $Y_{\nu}$-transform $(-1 / 2<\mathcal{R} e \nu<0)$ of the function $\left[\left(d^{2} / d x^{2}\right)+\left(1 / x^{2}\right)\left((1 / 4)-\nu^{2}\right)\right]^{n} f(x)$, $n=0,1, \ldots$. Hence, $\left[\left(d^{2} / d x^{2}\right)+\left(1 / x^{2}\right)\left((1 / 4)-\nu^{2}\right)\right]^{n} f(x)$ is the Struve $\mathbf{H}_{\nu}$ transform, $-1 / 2<\mathcal{R} e \nu<0$, of $\left(-y^{2}\right)^{n} g(y), n=0,1, \ldots$. Consequently, formula (14) holds. We recall that formula (13) is valid if $\left(-y^{2}\right)^{n} g(y) \in L_{2}\left(R_{+}\right), n=0,1, \ldots$, hence comparing it with formula (14) we get formula (8) for $n=0$. Applying the same procedure with $\left[\left(d^{2} / d x^{2}\right)+\left(1 / x^{2}\right)\left((1 / 4)-\nu^{2}\right)\right]^{n-1} f(x)$ instead of $f(x)$ and $\left(-y^{2}\right)^{n-1} g(y)$ instead of $g(y)$ we obtain formula (8) for other values of $n$.

Theorem 1 is thus proved.

Remark 1. Let $\mathcal{S}(R)$ be the Schwartz space of infinitely differentiable and rapidly decreasing functions on $R=(-\infty, \infty)$ [12]. The Lisorkin space $[\mathbf{3}] \Phi(R) \subset \mathcal{S}(R)$ is the set of Schwartz functions $\varphi$ with zero moments

$$
\begin{equation*}
\int_{-\infty}^{\infty} y^{n} \varphi(y) d y=0, \quad n=0,1,2, \ldots \tag{39}
\end{equation*}
$$

The Lisorkin space $\Phi(R)$ plays an important role in fractional integrals, potential theory [6] and singular integrals [7], for example, the Weyl fractional integral and derivative, and the Riesz potential are automorphisms on $\Phi(R)[\mathbf{6}]$. It is easy to see that the restrictions of the Lisorkin odd functions on $R_{+}$, multiplied by $y^{-\nu-1 / 2}$, belong to the class of functions considered in Theorem 1.
3. $H_{\nu}$-transform of functions analytic in an angle. Let $\mathcal{G}$ be the space of functions $g(z)$ that are (i) regular in an angle $-\alpha<\arg z<\beta$ where $0<\alpha, \beta \leq \pi$, (ii) of the order $O\left(|z|^{-a-\varepsilon}\right)$ for small $z$ and $O\left(|z|^{-b+\varepsilon}\right)$ for large $z$ uniformly in any angle interior to the above, for every positive $\varepsilon$, where $a<1 / 2<b$, (iii) satisfying the following conditions

$$
\begin{gather*}
\int_{0}^{\infty} y^{\nu-2 n-1 / 2} g(y) d y=0, \\
n \in(-b / 2+\mathcal{R} e \nu / 2+1 / 4,-a / 2+\mathcal{R} e \nu / 2+1 / 4), \\
\int_{0}^{\infty} y^{\nu+2 n+3 / 2} g(y) d y=0,  \tag{40}\\
n \in(a / 2-\mathcal{R} e \nu / 2-5 / 4, b / 2-\mathcal{R} e \nu / 2-5 / 4),
\end{gather*}
$$

for all nonnegative integers $n$ (if such an $n$ exists).
Let $\mathcal{F}$ be the space of functions $f(z)$, which are (i) regular in the angle $-\beta<\arg z<\alpha$, (ii) of the order $O\left(|z|^{1-b-\varepsilon}\right)$ for small $z$ and $O\left(|z|^{1-a+\varepsilon}\right)$ for large $z$ uniformly in any angle interior to the above for
every positive $\varepsilon$ and (iii) satisfying the following conditions

$$
n \in(-b / 2-\mathcal{R} e \nu / 2-1 / 4,-a / 2-\mathcal{R} e \nu / 2-1 / 4)
$$

$$
\int_{0}^{\infty} x^{\nu+2 n+1 / 2} f(x) d x=0
$$

$$
\begin{gather*}
\int_{0}^{\infty} x^{-\nu+2 n+1 / 2} f(x) d x=0  \tag{41}\\
n \in(-b / 2+\mathcal{R} e \nu / 2-1 / 4,-a / 2+\operatorname{Re} e \nu / 2-1 / 4)
\end{gather*}
$$

for all nonnegative integers $n$ if such an $n$ exists; for example, if $\mathcal{R} e \nu=$ -1 , then $n=0$ always belongs to the interval $(-b / 2-1 / 2,-a / 2-1 / 2)$.

Theorem 2. The $\mathbf{H}_{\nu}$-transform, $-2<\mathcal{R} e \nu<0$, maps the space $\mathcal{G}$ one-to-one onto the space $\mathcal{F}$.

Proof. Let $g(z)$ belong to the space $\mathcal{G}$. Then the restriction of the function $g(z)$ on $R_{+}$belongs to $L_{2}\left(R_{+}\right)$and its Mellin transform $g^{*}(s)$

$$
\begin{equation*}
g^{*}(s)=\int_{0}^{\infty} x^{s-1} g(x) d x \tag{42}
\end{equation*}
$$

is regular in the strip $a<\mathcal{R}$ es $<b$ and has the asymptotics

$$
g^{*}(s)= \begin{cases}O\left(e^{-(\beta-\varepsilon) \mathcal{I} m s}\right) & \mathcal{I} m s \rightarrow \infty  \tag{43}\\ O\left(e^{(\alpha-\varepsilon) \mathcal{I} m s}\right) & \mathcal{I} m s \rightarrow-\infty\end{cases}
$$

uniformly in any strip interior to $a<\mathcal{R} e s<b$ for every positive $\varepsilon$ (see $[\mathbf{9}])$. Let $f(x)$ be the $\mathbf{H}_{\nu}$-transform $(-2<\mathcal{R} e \nu<0)$ of $g(y)$. Since $g(y)$ belongs to $L_{2}\left(R_{+}\right)$, the Parseval identity holds on the line $\mathcal{R} e s=1 / 2$ and [2]

$$
\text { 44) } \begin{align*}
& f^{*}(s)  \tag{44}\\
= & 2^{s-1} \frac{\Gamma((1 / 4)-(\nu / 2)-(s / 2)) \Gamma((3 / 4)+(\nu / 2)+(s / 2))}{\Gamma((3 / 4)+(\nu / 2)-(s / 2)) \Gamma((3 / 4)-(\nu / 2)-(s / 2))} g^{*}(1-s) .
\end{align*}
$$

Because of condition (40) the function $g^{*}(1-s)$ equals 0 at the poles of the function $\Gamma((1 / 4)-(\nu / 2)-(s / 2)) \Gamma((3 / 4)+(\nu / 2)+(s / 2))$ in the strip $1-b<\mathcal{R} e s<1-a$, provided there exists one. Hence,
from formula (44) one can see that $f^{*}(s)$ is analytic in the strip $1-b<\mathcal{R}$ es $<1-a$. Furthermore, since the function $2^{s-1 / 2}[(\Gamma((1 / 4)-$ $(\nu / 2)-(s / 2)) \Gamma((3 / 4)+(\nu / 2)+(s / 2))] /[\Gamma((3 / 4)+(\nu / 2)-(s / 2)) \Gamma((3 / 4)-$ $(\nu / 2)-(s / 2))$ ] is uniformly bounded on any compact subdomain of the strip $1-b<\mathcal{R} e s<1-a$ containing no poles of the function $\Gamma((1 / 4)-(\nu / 2)-(s / 2)) \Gamma((3 / 4)+(\nu / 2)+(s / 2))$, and has at most only polynomial growth as $\mathcal{I} m s \rightarrow \pm \infty$, from formula (43) we see that the function $f^{*}(s)$ also decays exponentially

$$
f^{*}(s)= \begin{cases}O\left(e^{(\beta-\varepsilon) \mathcal{I} m s}\right) & \mathcal{I} m s \rightarrow-\infty  \tag{45}\\ O\left(e^{-(\alpha-\varepsilon) \mathcal{I} m s}\right) & \mathcal{I} m s \rightarrow \infty\end{cases}
$$

uniformly in any strip interior to $1-b<\mathcal{R}$ es $<1-a$ for every positive $\varepsilon$. Hence its inverse Mellin transform $f(z)$ is regular in the angle $-\beta<\arg z<\alpha$ and of the order $O\left(|z|^{b-1-\varepsilon}\right)$ for small $z$ and $O\left(|z|^{a-1+\varepsilon}\right)$ for large $z$ uniformly in any angle interior to the above angle, for every positive $\varepsilon[\mathbf{9}]$. Moreover, $f^{*}(s)$ has zeros at the poles of the function $\Gamma((3 / 4)+(\nu / 2)-(s / 2)) \Gamma((3 / 4)-(\nu / 2)-(s / 2))$ in the strip $1-b<\mathcal{R e s}<1-a$ (provided one exists); hence (41) holds.

Conversely, let $f(z)$ belong to the space $\mathcal{F}$. Then the restriction of the function $f(z)$ on $R_{+}$belongs to $L_{2}\left(R_{+}\right)$and its Mellin transform (42) $f^{*}(s)$ is analytic in the strip $1-b<\mathcal{R}$ es $<1-a$ and satisfies (45). Furthermore, from condition (41) we see that $f^{*}(s)$ has zeros at the poles of the function $\Gamma((3 / 4)+(\nu / 2)-(s / 2)) \Gamma((3 / 4)-(\nu / 2)-(s / 2))$ in the strip $1-b<\mathcal{R}$ es $<1-a$, provided one exists. Therefore, if we express $f^{*}(s)$ in the form (44), the function $g^{*}(s)$ is analytic in the strip $a<\mathcal{R}$ es $<b$ and has asymptotics (43) uniformly in any strip interior to $a<\mathcal{R}$ es $<b$ for every positive $\varepsilon$. Furthermore, $g^{*}(1-s)$ has zeros at the poles of the function $\Gamma((1 / 4)-(\nu / 2)-(s / 2)) \Gamma((3 / 4)+(\nu / 2)+(s / 2))$ in the strip $1-b<\mathcal{R} e s<1-a$. Consequently, the inverse Mellin transform $g(z)$ of $g^{*}(s)$ satisfies the conditions of Theorem 2 and $f$ is the Struve $\mathbf{H}_{\nu}$-transform of $g$.

If we take $\alpha=\beta$ and $0<a<\min \{|\nu|,|\nu+1|,|\nu+2|\}$, then in the strip $1 / 2-a<\mathcal{R}$ es $<1 / 2+a$ there are no poles and zeros of the function $2^{s-1 / 2}[\Gamma((1 / 4)-(\nu / 2)-(s / 2)) \Gamma((3 / 4)+(\nu / 2)+(s / 2))] /[\Gamma((3 / 4)+$ $(\nu / 2)-(s / 2)) \Gamma((3 / 4)-(\nu / 2)-(s / 2))]$. This leads to the following corollary.

Corollary 1. The $\mathbf{H}_{\nu}$-transform $(0<|\mathcal{R} e \nu+1|<1)$ is a bijection on the space of functions, regular in the angle $|\arg z|<\alpha, 0<\alpha \leq \pi$ of the order $O\left(|z|^{a-1 / 2-\varepsilon}\right)$ for small $z$ and $O\left(|z|^{-a-1 / 2+\varepsilon}\right)$ for large $z$ uniformly in any angle interior to the above, for every positive $\varepsilon$, where $0<a<\min \{|\nu|,|\nu+1|,|\nu+2|\}$.
4. $\mathbf{H}_{\nu}$-transform on some other space of functions. Let $\Phi$ be any linear subspace of either $L_{1}(R)$ or $L_{2}(R)$ having properties
(i) if $\phi(t) \in \Phi$ then $\phi(-t) \in \Phi$;
(ii) the functions $\varphi(t)=\left(2^{i t} \cosh (\pi / 2)(t-i \nu) \Gamma((1 / 2)+(\nu / 2)+\right.$ $(i t / 2))) /[\Gamma((1 / 2)+(\nu / 2)-(i t / 2))], 0<|1+\mathcal{R} e \nu|<1$ and $\varphi^{-1}(t)$ are multipliers of $\Phi$.

It is easy to see that $\varphi^{-1}(-t)$ is also a multiplier of $\Phi$. The multipliers $\varphi(t)$ and $\varphi^{-1}(t)$ are infinitely differentiable and uniformly bounded on $R$ and their derivatives grow logarithmically; therefore, many classical spaces on $R$ are special cases of $\Phi$ (for example, any $L_{1}$ or $L_{2}$ space with $L_{\infty}$-weights, the Schwartz space $\mathcal{S}(R)$ and the space of infinitely differentiable functions with compact support [12]). On $R_{+}$we define by $\mathcal{M}^{-1}(\Phi)$ the space of functions $g$ that can be represented in the form

$$
\begin{equation*}
g(x)=\int_{-\infty}^{\infty} \phi(t) x^{i t-1 / 2} d t \tag{46}
\end{equation*}
$$

almost everywhere, where $\phi \in \Phi$ (if $\phi \notin L_{1}(R)$ the integral should be understood as the inverse Mellin transform in $\left.L_{2}[\mathbf{9}]\right)$. The space $\mathcal{M}_{c, \gamma}^{-1}(L)[\mathbf{1 0}],[\mathbf{1 1}]$ as well as the space of functions considered in Corollary 3.1 are special cases of $\mathcal{M}^{-1}(\Phi)$.

Theorem 3. The $\mathbf{H}_{\nu}$-transform, $0<|1+\mathcal{R} e \nu|<1$, is a bijection on $\mathcal{M}^{-1}(\Phi)$.

Proof. From representation (46) we see that if $g \in \mathcal{M}^{-1}(\Phi)$ then $g$ can be expressed in the form of the inverse Mellin transform

$$
\begin{equation*}
g(x)=\frac{1}{2 \pi i} \int_{1 / 2-i \infty}^{1 / 2+i \infty} g^{*}(s) x^{-s} d s \tag{47}
\end{equation*}
$$

where $g^{*}(1 / 2+i t) \in \Phi$. The Mellin transform (42) of the function $k(x)=\sqrt{x} \mathbf{H}_{\nu}(x),-2<\mathcal{R} e \nu<0$, is $k^{*}(s)=-\varphi(i / 2-i s) \quad[\mathbf{1}]$. Applying the Parseval equation for the Mellin transform

$$
\begin{equation*}
\int_{0}^{\infty} k(x y) g(y) d y=\frac{1}{2 \pi i} \int_{1 / 2-i \infty}^{1 / 2+i \infty} k^{*}(s) g^{*}(1-s) x^{-s} d s \tag{48}
\end{equation*}
$$

we obtain

$$
\begin{align*}
\left(\mathbf{H}_{\nu} g\right)(x) & =\int_{0}^{\infty} \sqrt{x y} \mathbf{H}_{\nu}(x y) g(y) d y  \tag{49}\\
& =-\frac{1}{2 \pi} \int_{-\infty}^{\infty} \varphi(t) g^{*}(1 / 2-i t) x^{-i t-1 / 2} d t
\end{align*}
$$

The Parseval formula (48) has been proved for $g^{*}(1 / 2+i t) \in L_{2}(R)$ in $[\mathbf{9}]$ and $g^{*}(1 / 2+i t) \in L_{1}(R)$ in [10]. Since $\varphi(t)$ and $\varphi^{-1}(-t)$ are multipliers of $\Phi$, the function $\varphi(t) g^{*}(1 / 2-i t)$ belongs to $\Phi$ if and only if $g^{*}(1 / 2+i t)$ belongs to $\Phi$. Therefore, $\left(\mathbf{H}_{\nu} g\right)(x) \in \mathcal{M}^{-1}(\Phi)$ if and only if $g \in \mathcal{M}^{-1}(\Phi)$. Theorem 3 is proved.

## REFERENCES

1. M. Abramowitz and I.A. Stegun, Handbook of mathematical functions, with formulas, graphs, and mathematical tables, Dover Publications, New York, 1972.
2. P. Heywood and P.G. Rooney, On the Struve transformation, SIAM J. Math. Anal. 25 (1994), 450-461.
3. P.I. Lisorkin, Generalized Liouville differentiation and the functional spaces $L_{p}^{r}\left(E_{n}\right)$, Math. Sb. (N.S.) 60 (1963), 325-353.
4. P.G. Rooney, On the $\mathcal{Y}_{\nu}$ and $\mathcal{H}_{\nu}$ transformations, Canad. J. Math. 32 (1980), 1021-1044.
5.     - On the Hankel and some related transformations, Canad. J. Math. 40 (1988), 989-1009 .
6. S.G. Samko, A.A. Kilbas and O.I. Marichev, Functional integrals and derivatives. Theory and applications, Gordon and Breach Science Publishers, Switzerland et al., 1993.
7. E.M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.
8. E.C. Titchmarsh, A pair of inversion formulae, Proc. London Math. Soc. (2) 22 (1923), xxxiv-xxxv.
9.     - Introduction to the theory of Fourier integrals, Chelsea Publishing Company, New York, 1986.
10. Vu Kim Tuan, On the theory of generalized integral transforms in a certain function space, Soviet Math. Dokl. 33 (1986), 103-106 (translated from Russian).
11. Vu Kim Tuan, O.I. Marichev and S.B. Yakubovich, Composition structure of integral transformations, Soviet Math. Dokl. 33 (1986), 166-170 (translated from Russian).
12. K. Yosida, Functional analysis, 6th ed., Springer-Verlag, Berlin, 1980.

Hanoi Institute of Mathematics, P.O. Box 631, Bo Ho, Hanoi, Vietnam
Current address: Department of Mathematics and Computer Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
E-mail address: vu@math-1.sci.kuniv.edu.kw


[^0]:    Received by the editors on August 1, 1996.
    Key words and phrases. $\mathbf{H}_{\nu}$ - and $Y_{\nu}$-transforms, range of integral transforms.
    AMS Mathematics Subject Classification. 44.
    Supported by the Kuwait University research grant SM 112.

