
JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 13, Number 3, Fall 2001

WELL-POSEDNESS AND TIME DISCRETIZATION
OF A NONLINEAR VOLTERRA

INTEGRODIFFERENTIAL EQUATION

ULISSE STEFANELLI

ABSTRACT. This paper deals with a nonlinear abstract
evolution integrodifferential equation of Volterra type. This
equation contains two nonlinearities, namely, a maximal
monotone operator and a Lipschitz continuous operator, and
may arise from a Stefan problem in materials with memory.
Uniqueness of a solution to the associated Cauchy problem is
proved. Then, global existence is achieved via a semi-implicit
time discretization procedure. Moreover, some estimates for
the discretization error are established.

1. Introduction. The present analysis is concerned with a nonlinear
Volterra integrodifferential equation governing the evolution of two
unknown fields, u and ϑ. These must also satisfy a relation induced by
a maximal monotone graph γ : R → 2R. More precisely, letting Ω be
a bounded domain in Rd, d ≥ 1, with a smooth boundary ∂Ω, and T
some final time, we deal with the following equation and inclusion in
Q := Ω× (0, T )

ut −∆(ϑ+ k ∗ ϑ) = g(ϑ) + f a.e. in Q,(1.1)
ϑ+ γ(ϑ) � u a.e. in Q.(1.2)

Here, k stands for a time dependent memory kernel and ∗ denotes
the standard convolution product on (0, t), namely (k ∗ ϑ)(·, t) :=∫ t

0
k(t − s)ϑ(·, s) ds for t ∈ (0, T ). Moreover, g and f represent source

terms while γ is a completely arbitrary maximal monotone graph in
R × R.

The model (1.1)-(1.2) is of relevant interest within applications.
Referring to the theory of heat conduction in materials with memory
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(see, e.g., [9], [10] and references therein), we may interpret u and ϑ
as the enthalpy and the relative temperature, respectively. Then we
introduce the constitutive assumptions on the internal energy and the
heat flux

e(x, t) = u(x, t),

q(x, t) = −∇ϑ(x, t)−
∫ t

−∞
k(t− s)∇ϑ(x, s) ds

for any (x, t) ∈ Ω × (0, T ), and assume that the past history of ϑ is
known up to time t = 0. Within this setting, we may consider the
energy balance equation

et + divq = f̃ in Q,

where f̃ stands for the heat supply that can be assumed to depend
upon the actual value of the temperature as well. At a first glance,
it appears that (1.1) is nothing but the previous equation where the
above constitutive assumptions are plugged in, but we include in f also
the past history on ϑ and deal with a nonlinear contribution g(ϑ).

Regarding the memory kernel, we may ask k to be smooth enough
and such that the inequality

(1.3)
∫ t

0

(
v(s) + (k ∗ v)(s)

)
v(s) ds ≥ ω

∫ t

0

v2(s) ds,

is fulfilled for a suitable ω > 0, and for all v ∈ L2(0, T ) and t ∈ (0, T ).
It is worth recalling that condition (1.3) makes the model consistent
with the Second Principle of Thermodynamics (see, for instance, [14]).
However, we stress that the property (1.3) is not assumed in our
analysis. Indeed, we just ask for a suitably smooth kernel

k ∈ W 1,1(0, T ).

On the other hand, the inclusion (1.2) accounts for the phase transi-
tion occurring in the material. In particular, a significant example of
graph γ is γ(r) = H(r), where H denotes the Heaviside graph, namely
H(r) = 0 if r < 0, H(r) = [0, 1] if r = 0, and H(r) = 1 if r > 0. In-
deed, this choice corresponds to the Stefan problem for materials with
memory and has been investigated, for instance, in [2], [9], [10].
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The problem (1.1) (1.2) has to be supplied with initial and boundary
conditions. To this end, we prescribe

− ∂ν(ϑ+ k ∗ ϑ) = λ(ϑ− ϑb) + h on ∂Ω× (0, T ),(1.4)
u(·, 0) = u0 a.e. on Ω,(1.5)

where ∂ν indicates the outward normal derivative on the boundary ∂Ω,
λ is a positive constant, and ϑb, h : ∂Ω×(0, T ) −→ R, u0 : Ω −→ R are
given functions. Note that (1.4) comes from the law stating that the
normal component of the heat flux q on the boundary is proportional
to the difference of internal (ϑ|∂Ω) and external (ϑb) temperatures. In
this context, the supplementary datum h accounts for

∂ν

( ∫ 0

−∞
k(t− s)∇ϑ(x, s) ds

)
.

Various initial and boundary value problems concerning systems close
to (1.1) (1.2) have been examined. Indeed, the related results often
deal with more general integral equations, possibly including a memory
effect also on the enthalpy u, that is, e := u+ϕ∗u for a suitable kernel
ϕ.

Of course, in the case when k ≡ 0, the model reduces to a well-
known equation (see, for instance, [13], [21]). Moreover, accounting
for a nonvanishing kernel k but neglecting the nonlinearity g in (1.1),
existence and longtime behavior of solutions have been analyzed for a
wide class of problems; we refer, in particular, to [1], [6], [11] and
the references therein. Actually, an existence result for (1.1) (1.2)
(thus accounting for its doubly nonlinear character) has already been
obtained in [2], where, nevertheless, the authors impose restrictions on
the possible choice of the graph γ. Namely, the latter is asked to be at
most linear at infinity.

In order to specify our results and for the sake of convenience, let us
put problem (1.1) (1.2), (1.4) (1.5) in an abstract form from the very
beginning. To this end, set

H := L2(Ω) and V := H1(Ω),

and identify H with its dual space H ′, so that

V ⊂ H ⊂ V ′
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with dense and continuous embeddings. Denoting by 〈·, ·〉 the duality
pairing between V ′ and V , and assuming the function g to be Lipschitz
continuous, we introduce the operators A,B, and G defined by

A : V −→ V ′ 〈Av,w〉 :=
∫

Ω

∇v · ∇w + λ
∫

∂Ω

vw, ∀ v, w ∈ V,

B : V −→ V ′ 〈Bv,w〉 :=
∫

Ω

∇v · ∇w, ∀ v, w ∈ V,

G : H −→ H G(u)(·) := g(u(·)), ∀u ∈ H.

Observe that A is coercive, while B is not. Next, we include the
boundary data into the function F : (0, T ) → V ′ defined by

〈F (t), v〉 :=
∫

Ω

f(·, t)v +
∫

∂Ω

(λϑb + h)(·, t)v,

for a.e. t ∈ (0, T ), ∀ v ∈ V.

Moreover, let j : R →]−∞,+∞] be a convex, proper, and lower semi-
continuous function such that γ = ∂j. Then, we associate to j the
functionals JH and JV on H and V as follows

JH(u) :=

{ ∫
Ω
j(u(x))dx if u ∈ H and j(u) ∈ L1(Ω)

+∞ if u ∈ H and j(u) /∈ L1(Ω)

(1.6)

JV (v) := JH(v) if v ∈ V.
(1.7)

As it is well known, both JH and JV are convex, proper, and lower
semi-continuous on H and V , respectively. Thus, the subdifferential
∂V,V ′JV : V → 2V ′

turns out to be a maximal monotone operator.
Assuming also u0 ∈ V ′ and F ∈ L2(0, T ;V ′), and asking for the
regularities ϑ ∈ L2(0, T ;V ), u ∈ H1(0, T ;V ′), problems (1.1) (1.2),
(1.4) (1.5) can be set as

u′ +Aϑ+ k ∗Bϑ = G(ϑ) + F in V ′, a.e. in (0, T ),
(1.8)

ϑ+ ∂V,V ′JV (ϑ) � u in V ′, a.e. in (0, T ),(1.9)
u(0) = u0,(1.10)
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where the prime obviously stands for the derivative with respect to
time.

The main novelty of this paper is that of dealing with (1.9) (instead
of (1.2)) together with the nonlinear source term g. Note that in this
framework (1.9) is actually an extension of (1.2). Indeed, (1.9) entails
(1.2) whenever, for instance, u ∈ L2(0, T ;H) (cf. [12]) or γ is linearly
bounded (cf. [2]) as will be made precise later.

Hence, our existence result provides a solution to the problem above
for a completely arbitrary graph γ (thus, not requiring any linear
boundedness). Let us point out that this extension turns out to include
interesting applications. Indeed, we actually prove the existence of a
solution to some pseudo-parabolic problems of the form

(1.11) (ϑ−∆ϑ)t −∆(ϑ+ k ∗ ϑ) = f − g(ϑ)

which may occur in several diffusion processes [8], [15].

In addition, this paper provides an approximation of the abstract
Cauchy problem. Indeed, the existence proof for the continuous prob-
lem is carried out by making use of a semi-implicit time discretization
of (1.1) (1.2). The key point of this procedure is the approximation of
the term k ∗ Bϑ. In this direction, the reader is referred to the papers
[4], [17], [18], [19], where the authors carefully analyze the numerical
aspects of some discretization of memory terms. In particular, some
quadrature procedures are devised and the related error estimates are
deduced.

Here, the convolution product k ∗ Bϑ is treated in a natural way.
Namely, letting τ := T/N(N ∈ N) denote the time step and {ki}N

i=1 ∈
RN , and {Bϑi}N

i=1 ∈ V ′ be approximations of k and Bϑ, respectively,
we replace (k ∗Bϑ)(t), t ∈ (0, T ), by the quantities

τ
i∑

j=1

ki−j+1Bϑj , i = 1, . . . , N.

This choice turns out to be adequate for our case, since this kind
of approximation leads to a discrete version of inequality (1.3) (see,
e.g., [17, Section 4]), together with some interesting properties such
as a discrete Young’s inequality for convolutions. Moreover, there is a
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suitable convergence to the continuous counterpart as τ tends to zero
(cf. (4.14)).

As a by-product of our analysis, we provide some convergence results
of the discrete solution to the continuous one as the time step goes
to 0. Moreover, an a priori estimate for the discretization error is
recovered. This estimate depends solely on the data and requires no
additional regularity for the solution. Namely, denoting by ϑτ the
piecewise constant solution of the discretized problem with time step
τ , we obtain (see (5.36))

‖ϑ− ϑτ‖L2(0,T ;L2(Ω)) + ‖1 ∗ (ϑ− ϑτ )‖C0([0,T ];H1(Ω)) ≤ C
√
τ .

The remainder of the paper is organized as follows. In Section 2
the general assumptions on the data are stated and the main result
is rigorously established. Then, Section 3 is devoted to prove the
uniqueness of the solution, while Section 4 describes the details of the
time discretization. Finally, the global existence of a solution is proved
in Section 5, where we also provide the estimate for the discretization
error.

2. Main result. We start by listing our assumptions on the data.

(A1) H and V are real Hilbert spaces such that V ⊂ H densely,
compactly and continuously. Moreover, H is identified with its dual
space H ′, whence V ⊂ H ⊂ V ′ with dense and continuous embeddings.
The symbols 〈·, ·〉, (·, ·) and | · | will denote the duality pairing between
V ′ and V , the inner product in H, and the related norm in H,
respectively.

(A2) A : V −→ V ′ is a linear continuous symmetric operator.
Moreover A is also coercive in the sense that

〈Av, v〉 ≥ α‖v‖2
V ∀ v ∈ V,

for some positive constant α, where ‖ · ‖V stands for the natural norm
in V . We define the following

(2.1) ((u, v)) := 〈Au, v〉 ∀u, v ∈ V

as an inner product in V which is equivalent to the natural one, and
denote by ‖ · ‖, ((·, ·))∗, and ‖ · ‖∗ the corresponding norm in V , the
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induced inner product in V ′, and the related norm in V ′, respectively.
Hence, A may serve for the Riesz isomorphism between V and V ′.

(A3) B : V → V ′ is a linear continuous operator.

(A4) J : H →]−∞,+∞] is a convex, proper, and lower semi-continuous
function.

Now, let JV : V →] − ∞,+∞] be the restriction of J to V . It is a
standard matter to verify that JV is still convex, proper, and lower
semi-continuous. Thus, the subdifferential ∂V,V ′JV : V → 2V ′

is
defined. For the reader’s convenience, we recall here its definition

u ∈ ∂V,V ′JV (v) if and only if u ∈ V ′, v ∈ D(JV ),

and

JV (v) ≤ 〈u, v − w〉+ JV (w) ∀w ∈ V,

where D(JV ) represents the effective domain of JV . Indeed, ∂V,V ′JV

turns out to be a maximal monotone operator from V to V ′ (for the
theory of maximal monotone operators and convex functions we refer,
e.g., to [5]).

Next, let us introduce the conjugate function of JV , namely J∗
V :

V ′ →]−∞,+∞], defined as

(2.2) J∗
V (w∗) := sup

v∈V

(
〈w∗, v〉 − JV (v)

)
, ∀w∗ ∈ V ′.

Basic results on conjugate functions (see, e.g., [5, Section II.2.2])
ensure that J∗

V is still convex, proper and lower semi-continuous, and
that, denoting by ∂V ′,V J

∗
V : V ′ → 2V the subdifferential of J∗

V , we have
the following

v ∈ ∂V ′,V J
∗
V (u) if and only if

v ∈ V, u ∈ D(J∗
V ), and J∗

V (u) ≤ 〈u−w∗, v〉+J∗
V (w∗) ∀w∗∈V ′

if and only if u ∈ ∂V,V ′JV (v).(2.3)

Finally, set

(2.4) Γ := ∂V,V ′JV .
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Moreover, we assume that

(A5) G : H → H is a Lipschitz continuous operator. That is, there
exists a positive constant CG such that

(2.5) |G(u)−G(v)| ≤ CG|u− v| ∀u, v ∈ H.

(A6) k ∈W 1,1(0, T ).

(A7) F ∈ L2(0, T ;H) +W 1,1(0, T ;V ′).

(A8) u0 ∈ V ′ and there exists ϑ0 ∈ D(Γ)(⊆ V ) such that u0 ∈
(I + Γ)(ϑ0).

where I stands for the embedding of V into V ′.

Remark 2.1. We notice that, actually, our analysis does not require
the strong coerciveness property for A stated in (A2). Indeed, it suffices
to assume A weakly coercive, that is, there exists λ, α > 0 such that

〈Av, v〉+ λ|v|2 ≥ α‖v‖2
V , ∀ v ∈ V.

In this case, we can replace A by Ã := A + λId (where Id stands for
the identity in H) and incorporate the outcome into G (see (A5)). This
would allow us to treat other boundary conditions, different from (1.4),
including Neumann boundary conditions.

Remark 2.2. Observe that our set of assumptions does not contain
the property (1.3) for k. Indeed, such property, although physically
motivated, can be neglected in the forthcoming theory.

Remark 2.3. As regards the operator G, we point out that our results
hold for a wider class of nonlinearities. Namely, we may ask for a
G : L2(0, T ;H) → L2(0, T ;H) which is causal, i.e.,

if u1, u2 ∈ L2(0, T ;H), t ∈ (0, T ) and u1 = u2 a.e. in (0, t)
then G(u1) = G(u2) a.e. in (0, t),

and Lipschitz continuous, that is, there exists a positive constant CG,
fulfilling

‖G(u1)−G(u2)‖L2(0,t;H) ≤ CG‖u1 − u2‖L2(0,t;H)
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for any t ∈ (0, T ) and all u1, u2 ∈ L2(0, T ;H). Indeed, it would be
possible to adjust the argument devised here to operators G of the
type above which could, in particular, represent non-local (in time)
nonlinearities, e.g., including convolution terms.

We are now able to state the main result of the paper, which reads
as follows.

Theorem 2.4. Let assumptions (A1) (A8) hold. Then, there exists
a unique pair (ϑ, u) fulfilling

ϑ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ),(2.6)
u ∈ H1(0, T ;V ′),(2.7)

u′+Aϑ+k ∗Bϑ = G(ϑ)+F in V ′, a.e. in (0, T ),(2.8)
ϑ+Γ(ϑ) � u in V ′, a.e. in (0, T ),(2.9)

u(0) = u0.(2.10)

We stress that, under suitable assumptions on the graph γ (cf.
(1.2)), relation (2.9) entails the pointwise inclusion (1.2) as well. In
this context, let us take a convex, proper, and lower semi-continuous
function j : R →] − ∞,+∞] such that γ = ∂j and consider the
related functionals JH , JV and J∗

V defined as in (1.6) (1.7) and (2.2),
respectively. Referring to [6] for the details, we note that one can
deduce the equivalence between

u ∈ (I + Γ)(ϑ)

and
u ∈ D(J∗

V ) and u ∈ ϑ+ γ(ϑ) a.e. in Ω

for all ϑ ∈ V , u ∈ V ′, under the further assumption

(2.11) D(j) = R,

namely, j(ξ) < +∞ for any ξ ∈ R. We point out that the assumption
(2.11) is equivalent to either D(γ) = R or γ−1 is surjective or

lim
|ξ|→+∞

j∗(ξ)
|ξ| = +∞,
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where j∗ denotes the conjugate of j. In particular, (2.11) is fulfilled
whenever the graph γ is sublinear, namely

(2.12) |η| ≤ C0

(
1 + |ξ|

)
∀ ξ ∈ R, ∀ η ∈ γ(ξ),

for a suitable constant C0. This is, actually, the case of the Stefan
problem, where γ reduces to the Heaviside graph. Moreover, if (2.12)
holds, then (2.6) and (2.12) imply that u ∈ L∞(0, T ;H). In this
connection, we underline that the fact that the additional property
u ∈ L2(0, T ;H) (that we cannot prove in our framework) along with
2.9) would yield that

u ∈ ϑ+ γ(ϑ) a.e. in Q

whatever the maximal monotone graph γ is, as has been pointed out
in [12].

On the other hand, our assumption on the maximal monotone op-
erator Γ allows us to treat a wide range of problems including varia-
tional boundary conditions or nonlinear parabolic equations with the
additional term −∂t∆ϑ, which are known to arise in several diffusion
processes [8], [15] and are usually referred to as pseudo-parabolic equa-
tions. Indeed, we point out that the previous term may, for instance, be
replaced by the time derivative of an arbitrary elliptic operator acting
on ϑ.

Moreover, it is worth remarking that our result still holds when
we replace Γ = ∂V,V ′JV by a general maximal monotone operator
Γ̃ : V → 2V ′

, thus avoiding assumption (A4). In this way, one obtains a
significantly larger class of applications to partial differential equations,
especially to systems.

The forthcoming sections will provide both the theory for the ap-
proximation of the system (2.8) (2.10) and the proof of the previous
result.

3. Uniqueness. In this section, we prove the uniqueness result
contained in Theorem 2.4 by reasoning by contradiction. Let (ϑ1, u1)
and (ϑ2, u2) be two pairs satisfying (2.6) (2.10), and set

ϑ̃ := ϑ1 − ϑ2, ũ := u1 − u2, G̃ := G(ϑ1)−G(ϑ2).
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Taking the difference between equation (2.8), written for (ϑ1, u1), and
the same equation for (ϑ2, u2), one infers that

ũ′ +Aϑ̃+ k ∗Bϑ̃ = G̃ in V ′, a.e. in (0, T ).

Next, we integrate the previous equation over (0, t), and have

(3.1) ũ(t) + (1 ∗Aϑ̃)(t) + (1 ∗ k ∗Bϑ̃)(t) = (1 ∗ G̃)(t) in V ′,

for all t ∈ (0, T ). If we test (3.1) by ϑ̃(t) ∈ V (cf. (2.6)), integrate once
more in time, and recall (A5) and (2.1), we obtain

(3.2)
∫ t

0

〈ũ(s), ϑ̃(s)〉 ds+
∫ t

0

(((1 ∗ ϑ̃)(s), ϑ̃(s))) ds

= −
∫ t

0

〈(1 ∗ k ∗Bϑ̃)(s), ϑ̃(s)〉 ds+
∫ t

0

(
(1 ∗ G̃)(s), ϑ̃(s)

)
ds.

Due to the monotonicity of Γ, by (2.9) one immediately deduces that

∫ t

0

〈ũ(s), ϑ̃(s)〉 ds+
∫ t

0

(((1 ∗ ϑ̃)(s), ϑ̃(s))) ds

≥
∫ t

0

|ϑ̃(s)|2 ds+ 1
2
‖(1 ∗ ϑ̃)(t)‖2.

In order to control the first term in the righthand side of (3.2), we
recall the equality (cf. (A6))

(3.3) (k ∗ σ)′ = k(0)σ + k′ ∗ σ ∀σ ∈ L1(0, T ),

and use (3.3) in an integration by parts. Due to the elementary
inequality (which will be used in the sequel without any explicit
mention)

ab ≤ ε

2
a2 +

1
2ε
b2 ∀ a, b ∈ R, ∀ ε > 0,
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and by virtue of Young’s theorem, Hölder’s inequality and assumption
(A3), we deduce that

−
∫ t

0

〈(1 ∗ k ∗Bϑ̃)(s), ϑ̃(s)〉 ds

≤
∣∣〈(k ∗ 1 ∗Bϑ̃)(t), (1 ∗ ϑ̃)(t)〉∣∣
+

∣∣∣∣k(0) ∫ t

0

〈B(1 ∗ ϑ̃)(s), (1 ∗ ϑ̃)(s)〉ds
∣∣∣∣

+
∣∣∣∣ ∫ t

0

〈B(k′ ∗ 1 ∗ ϑ̃)(s), (1 ∗ ϑ̃)(s)〉 ds
∣∣∣∣

≤ 1
4
‖(1 ∗ ϑ̃)(t)‖2 + ‖k‖2

L2(0,T )‖B‖2
L(V,V ′)

∫ t

0

‖(1 ∗ ϑ̃)(s)‖2 ds

+ |k(0)| ‖B‖L(V,V ′)

∫ t

0

‖(1 ∗ ϑ̃)(s)‖2 ds

+ ‖k′‖L1(0,T )‖B‖L(V,V ′)

∫ t

0

‖(1 ∗ ϑ̃)(s)‖2 ds,

where ‖ · ‖L(V,V ′) denotes the standard norm in the space of linear
continuous operators from V to V ′, and |k(0)| stands for the absolute
value of k(0).

Concerning the last term in the righthand side of (3.2), due to (2.5)
we easily obtain∫ t

0

(
(1 ∗ G̃)(s), ϑ̃(s)

)
ds ≤ 1

2

∫ t

0

|(1 ∗ G̃)(s)|2 ds+ 1
2

∫ t

0

|ϑ̃(s)|2 ds

≤ 1
2

∫ t

0

|ϑ̃(s)|2 ds+ C2
GT

2

∫ t

0

‖ϑ̃‖2
L2(0,s;H) ds,

where the last inequality is ensured by the relation

(3.4) ‖a ∗ b‖2
L2(0,t;H) ≤ t‖a‖2

L∞(0,t)

∫ t

0

‖b‖2
L2(0,s;H) ds

for any a ∈ L∞(0, T ), b ∈ L2(0, T ;H), and t ∈ (0, T ). Hence, choosing
a proper positive constant C1, for instance

C1 := max
{
C2

GT

2
; ‖B‖L(V,V ′)

(
‖B‖L(V,V ′)‖k‖2

L2(0,T )

+ |k(0)|+ ‖k′‖L1(0,T )

)}
,
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and taking into account (3.2), one infers that

1
2

∫ t

0

|ϑ̃(s)|2 ds+ 1
4
‖(1 ∗ ϑ̃)(t)‖2

≤ C1

( ∫ t

0

‖ϑ̃‖2
L2(0,s;H) ds+

∫ t

0

‖(1 ∗ ϑ̃)(s)‖2 ds

)
.

Finally, an application of Gronwall’s lemma (see, e.g., the version
reported in [3, Theorem 2.1]) ensures that ϑ̃ = 0 almost everywhere
in Q, whence, by comparison in (3.1), it follows at once that ũ = 0 as
well, and the uniqueness proof is complete.

4. Time discretization. In this section, we present a semi-implicit
time discretization of (2.8) (2.9). As a first step, we prepare some
results in the direction of a discrete convolution procedure. Then we
state the discrete scheme and provide the existence and uniqueness of
a discrete solution.

We start by fixing a partition of the time interval [0, T ]. To this end,
we choose a constant time step τ = T/N , N ∈ N.

4.1 Discrete convolution. Our next aim is to introduce a
discrete version of the convolution product in (0, t) for t ∈ (0, T ). In
this context, we refer the reader to [4], [17], [18], [19] and references
therein for an exhaustive analysis of discrete convolution procedures.
Nevertheless, for the sake of clarity, here we recall the following

Definition 4.1. Let a = {ai}N
i=1 be a real vector, and let b =

{bi}N
i=1 ∈ WN , where W stands for a real linear space. Then, we define

the vector {(a∗τ b)i}N
i=0 ∈ WN+1 as

(4.1) (a∗τ b)i :=
{ 0 if i = 0
τ

∑i
j=1 ai−j+1bj if i = 1, . . . , N .

In the sequel, we will refer to the previous vector as the discrete
convolution product of vectors a and b with respect to the time step τ .

We stress that, in the definition of (a∗τ b)i, only the values {aj}i
j=1

and {bj}i
j=1 are involved (this is usually known as the causality prop-
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erty). Other properties of our discrete convolution product are listed
in the following lemma, whose proof is straightforward.

Lemma 4.2. Let {ai}N
i=1 , {bi}N

i=1 ∈ RN , {ci}N
i=1 ∈ WN , and the

discrete convolution product with respect to the time step τ be defined
as in (4.1). Then we have

(a∗τ b) = (b∗τa),(
(a∗τ b)∗τc

)
=

(
a∗τ (b∗τ c)

)
.

Now let us introduce some convenient notation. For the (N+1)−tuple
{wi}N

i=0∈WN+1, let the functions wτ , wτ : (0, T )→W be specified by

wτ (t) := wi, wτ (t) := αi(t)wi +
(
1− αi(t)

)
wi−1,(4.2)

where

αi(t) :=
(
t− (i−1)τ

)
/τ, for t ∈

(
(i−1)τ, iτ

]
, i = 1, . . . , N.

Let us also set

(4.3) δwi :=
wi − wi−1

τ
for i = 1, . . . , N.

Due to the previous notation, it is not difficult to check the following
equality

(4.4) (a∗τ b)τ (t) = (aτ ∗ bτ )(iτ) for t ∈
(
(i− 1)τ, iτ

]
.

For the sake of reproducing a discrete version of relation (3.3), it
suffices to observe that, given {ai}N

i=0 ∈ RN+1 and {bi}N
i=1 ∈ WN , we

have

(4.5)
δ(a∗τ b)i =

i∑
j=1

ai−j+1bj −
i−1∑
j=1

ai−jbj = a1bi +
i−1∑
j=1

τδai−j+1bj

= a1bi + (δa∗τ b)i − τδa1bi = a0bi + (δa∗τ b)i,

for i = 1, . . . , N .

Finally, we state a discrete Young theorem.
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Lemma 4.3 (Discrete Young theorem). Let {ai}N
i=1 ∈ RN ,

{bi}N
i=1 ∈ EN , where E denotes a linear space endowed with the norm

‖ · ‖E. Then the following inequalities hold

N∑
i=1

τ‖(a∗τ b)i‖E ≤
( N∑

i=1

τ |ai|
)( N∑

i=1

τ‖bi‖E

)
,(4.6)

( N∑
i=1

τ‖(a∗τ b)i‖2
E

)1/2

≤
( N∑

i=1

τ |ai|
)( N∑

i=1

τ‖bi‖2
E

)1/2

.

(4.7)

Proof. Let us recall definition (4.1) and write

(4.8)

N∑
i=1

τ‖(a∗τ b)i‖E ≤
N∑

i=1

τ
i∑

j=1

τ |ai−j+1| ‖bj‖E

= τ2
N∑

i,j=1
j≤i

|ai−j+1| ‖bj‖E .

On the other hand, we have that

( N∑
i=1

τ |ai|
)( N∑

i=1

τ‖bi‖E

)
= τ2

N∑
k,j=1

|ak| ‖bj‖E .

It turns out that every element in the sum in the righthand side of (4.8)
appears in the sum above as well. Thus, inequality (4.6) holds.

Moreover, arguing similarly and accounting for some additional intri-
cacy, one can also verify relation (4.7).

Let us note that, given a real vector {ki}N
i=0 and a vector {σi}N

i=1 ∈
EN , where E stands for a normed space, and according to definitions
(4.1) (4.3), we have that

(4.9) kτ ∗ στ is a piecewise linear continuous function.
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Indeed, in view of (4.2), it is a standard matter to check that

(kτ ∗ στ )(t) = αi(t)(k∗τσ)i +
(
1− αi(t)

)
(k∗τσ)i−1,

for t ∈ ((i− 1)τ, iτ ] and i = 1, . . . , N , since we have

(kτ ∗ στ )(t) =
i∑

j=2

(
ki−j+1σj

(
t− (i−1)τ

)
+ ki−j+1σj−1

(
iτ−t

))
+ kiσ1

(
t− (i− 1)τ

)
=

(
t− (i−1)τ

)
/τ

i∑
j=1

τki−j+1σj +
(
iτ−t

)
/τ

i−1∑
j=1

τki−jσj .

Note that the second sum in the above righthand side contributes only
if i > 1. As a by-product, due to (4.5) (4.6) and (4.9), one easily infers
that
(4.10)

V ar[0,T ];E[kτ ∗ στ ] =
N∑

i=1

‖(k∗τσ)i − (k∗τσ)i−1‖E

≤
N∑

i=1

τ
(
‖(δk∗τσ)i‖E + |k0| ‖σi‖E

)
≤

(
‖δkτ‖L1(0,T ) + ‖kτ‖L∞(0,T )

)
‖στ‖L1(0,T ;E),

where Var [0,T ];E [f ] denotes the total variation on the interval [0, T ]
of the function f : [0, T ] → E, where E is a normed space (see, for
instance, [7]).

4.2 Approximation. Now it is worth introducing our approxima-
tion of equations (2.8) (2.9). Let us set

(4.11) ki := k(iτ) for i = 0, 1, . . . , N,

whence it is a standard matter to verify that (cf. (A6))

‖k − kτ‖L1(0,T ) ≤ τVar [0,T ];R[k],(4.12)

and

‖δkτ‖L1(0,T ) ≤ Var [0,T ];R[k].(4.13)



NONLINEAR VOLTERRA INTEGRODIFFERENTIAL EQUATION 289

Moreover, we point out an estimate which will play a crucial role in the
next section.

Proposition 4.4. Let (A6) hold and {σi}N
i=1 ∈ EN , where E denotes

a linear space endowed with the norm ‖·‖E. Moreover, let {ki}N
i=0 , στ ,

and {(k∗τσ)i}N
i=1 be defined as in (4.11), (4.12) and (4.1), respectively.

Then, there exists a positive constant C2 which depends only on k and
fulfills

(4.14) ‖(k∗τσ)τ − k ∗ στ‖L1(0,T ;E) ≤ τC2‖στ‖L1(0,T ;E).

Proof. Easy calculations ensure that
(4.15)

‖(k∗τσ)τ −k ∗ στ‖L1(0,T ;E)

≤ ‖(k∗τσ)τ −kτ ∗ στ‖L1(0,T ;E) + ‖(kτ −k) ∗ στ‖L1(0,T ;E).

The first term in the righthand side above may be easily controlled by
virtue of relation (4.4) as follows

‖(k∗τσ)τ − kτ ∗ στ‖L1(0,T ;E)

=
N∑

i=1

∫ iτ

(i−1)τ

‖(kτ ∗ στ )(iτ)− (kτ ∗ στ )(t)‖E dt

≤
N∑

i=1

∫ iτ

(i−1)τ

Var [(i−1)τ,iτ ];E [kτ ∗ στ ]

= τ Var [0,T ];E [kτ ∗ στ ].

According to (4.10) (4.11) and (4.13), the previous inequality yields

(4.16)
‖(k∗τσ)τ − kτ ∗ στ‖L1(0,T ;E)

≤ τ
(
Var [0,T ];R[k] + ‖k‖L∞(0,T )

)
‖στ‖L1(0,T ;E).

As regards the second term in the righthand side of (4.15), the Young
theorem along with relation (4.12) ensures that

‖(kτ − k) ∗ στ‖L1(0,T ;E) ≤ ‖kτ − k‖L1(0,T )‖στ‖L1(0,T ;E)

≤ τVar [0,T ];R[k]‖στ‖L1(0,T ;E).
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Therefore relation (4.14) is satisfied with, for instance, the choice

C2 := 2 Var [0,T ];R[k] + ‖k‖L∞(0,T ).

Remark 4.5. We stress that, if we are given a positive, non-increasing,
and convex k, a positivity inequality, analogous to (1.3) may be simply
deduced. The reader is referred to [17, Section 4] for the details.

Regarding F , we decompose F = F1 + F2, with F1 ∈ L2(0, T ;H),
and F2 ∈W 1,1(0, T ;V ′), and set

F1,i :=
1
τ

∫ iτ

(i−1)τ

F1(t) dt ∈ H for i = 1, . . . , N,

(4.17)

F2,i := F2(iτ) ∈ V ′, for i = 0, 1, . . . , N.
(4.18)

Moreover, we define

(4.19) Fi := F1,i + F2,i for i = 1, . . . , N.

Note that ‖F 1,τ‖L2(0,T ;H) ≤ ‖F1‖L2(0,T ;H), and the following conver-
gence is straightforward

(4.20) F 1,τ −→ F1 strongly in L2(0, T ;H).

In addition, we have that (cf. (4.12) (4.13))

‖F2 − F 2,τ‖L1(0,T ;V ′) ≤ τVar [0,T ];V ′ [F2],(4.21)
and

‖δF 2,τ‖L1(0,T ;V ′) ≤ Var [0,T ];V ′ [F2].(4.22)

Then the approximation scheme may be formulated by making use of
an auxiliary unknown ξi as

δui+Aϑi+(k∗τBϑ)i = G(ϑi−1)+Fi in V ′, for i = 1, . . . , N,
(4.23)

ui = ϑi + ξi in V ′, for i = 1, . . . , N,(4.24)
ξi ∈ Γ(ϑi) for i = 1, . . . , N,(4.25)
u0 = u0,(4.26)
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with the obvious notation Bϑ = (Bϑ)i := Bϑi.

Next, we state and prove an existence and uniqueness result for the
solution to the scheme (4.23) (4.26).

Theorem 4.6. Let assumptions (A1) (A8), (4.11) and (4.17) (4.19)
hold, and let the time step τ be small enough. Then, there exists a
unique triplet of vectors {ϑi, ui, ξi}N

i=0 ∈ (V × V ′ × V ′)N+1 fulfilling
relations (4.23) (4.26).

Proof. Recalling (A8), we set ϑ0 := ϑ0 ∈ V and define ξ0 :=
u0 − ϑ0. Thus, it suffices to prove that, for any given triplet of
vectors {ϑj , uj , ξj}i−1

j=0 ∈ (V × V ′ × V ′)i, there exists a unique triplet
{ϑi, ui, ξi} ∈ V × V ′ × V ′ which fulfills (4.23) (4.25). To this end, put

ϕi := τ

(
Fi +G(ϑi−1)− τ

i−1∑
j=1

ki−j+1Bϑj

)
+ ui−1.

Then, our aim is to verify that, for any given ϕi ∈ V ′, the equation

Iϑi + Γ(ϑi) + τAϑi � − τ2k1Bϑi + ϕi

has a unique solution ϑi ∈ V . In fact, ui and ξi will then be uniquely
determined by (4.23) (4.24). As I is monotone and continuous from V
to V ′, the result in [5, p. 48] ensures that I+Γ is a maximal monotone
operator from V to V ′. Hence, thanks to (A2), it is possible to define
the operator S : V → V , which maps ϑ into the unique solution
S(ϑ) ∈ V to the equation(

A+
1
τ

(I + Γ)
)(
S(ϑ)

)
� − τk1Bϑ+ ϕi/τ.

Now, let ϑ1, ϑ2 ∈ V . Then, by virtue of the Lipschitz continuity of
the resolvent

J1/τ :=
(
A+

1
τ
(I + Γ)

)−1

with Lipschitz constant equal to 1 (see [7, p. 23]) and, due to assump-
tion A3), we have

‖S(ϑ1)−S(ϑ2)‖ = ‖J1/τ

(
− τk1Bϑ1+ϕi/τ

)
−J1/τ

(
− τk1Bϑ2+ϕi/τ

)
‖

≤ τ |k1|‖B(ϑ1 − ϑ2)‖∗
≤ τ |k1|‖B‖L(V,V ′)‖ϑ1 − ϑ2‖.
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Finally, choosing τ small enough, S turns out to be a contraction
mapping in V . Hence, Theorem 4.6 follows as a consequence of
the contraction mapping principle. Moreover, note that relations
(2.3), (A8) and (4.25) entail ϑi ∈ D(JV ) and ξi ∈ D(J∗

V ), for any
i = 0, 1, . . .N , as well.

Next, let Tτ be the translation operator defined on the piecewise
constant functions

ψ(t) =
{
ψ0 for t ≤ 0
ψi for t ∈ ((i− 1)τ, iτ ], i = 1, . . . , N .

as follows

(4.27) Tτψ(t) = ψi−1 for t ∈
(
(i− 1)τ, iτ

]
, i = 1, . . . , N.

Then, for the sake of clarity and due to Theorem 4.6, we may rewrite
(4.23) (4.25) as

u′τ + Aϑτ + (k∗τBϑ)τ = G(Tτϑτ ) + F τ in V ′, a.e. in (0, T ),
(4.28)

uτ = ϑτ + ξτ in V ′, a.e. in (0, T ),(4.29)
ξτ ∈ Γ

(
ϑτ

)
in V ′, a.e. in (0, T ),(4.30)

where the notation in (4.2), (4.4) and (4.27) has been used and the
function ϑτ is defined to take the value ϑ0 in ]−∞, 0].

5. Existence. This section concludes the proof of Theorem 2.4. As
a first step, some boundedness estimates, uniform with respect to τ ,
are deduced. Then, passage to the limit in (4.28) (4.30) is achieved via
compactness, monotonicity and a direct Cauchy argument. As a by-
product of this analysis, an a priori error estimate for the discretization
error is recovered.

5.1 A priori estimates. Henceforth, let C denote any constant
dependent on the data, but not on the time step τ . Of course, C may
vary from line to line.
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First estimate. Testing equation (4.23) by ϑi −ϑi−1∈V , one infers

(5.1)
τ 〈δui, δϑi〉+ ((ϑi, ϑi − ϑi−1))

= −〈(k∗τBϑ)i, ϑi − ϑi−1〉+ (G(ϑi−1), ϑi − ϑi−1)
+ 〈Fi, ϑi − ϑi−1〉.

By exploiting the monotonicity of Γ, it is straightforward to deduce
that

τ 〈δui, δϑi〉 ≥ τ |δϑi|2.

Moreover, the last two terms in the righthand side of (5.1) can be
handled as follows, see (A5), (A7) and (4.19).

(G(ϑi−1), ϑi − ϑi−1) ≤ τ

4
|δϑi|2 + 2τ

(
C2

G|ϑi−1|2 + |G(0)|2
)
,

〈Fi, ϑi − ϑi−1〉 ≤ (F1,i, ϑi − ϑi−1) + 〈F2,i, ϑi − ϑi−1〉

≤ τ

4
|δϑi|2 + τ |F1,i|2 + 〈F2,i, ϑi − ϑi−1〉.

Hence, summing up for i = 1, . . . ,m in (5.1), we have

1
2

m∑
i=1

τ |δϑi|2 +
1
2
‖ϑm‖2 +

1
2

m∑
i=1

‖ϑi − ϑi−1‖2 − 1
2
‖ϑ0‖2

≤ 2C2
G

m−1∑
i=0

τ |ϑi|2 + 2T |G(0)|2 +
N∑

i=1

τ |F1,i|2

+
m∑

i=1

〈F2,i, ϑi − ϑi−1〉 −
m∑

i=1

〈(k∗τBϑ)i, ϑi − ϑi−1〉,

and, according to (A1), (A5), and (A7) (A8), one infers that

(5.2)

1
2

m∑
i=1

τ |δϑi|2 +
1
2
‖ϑm‖2 +

1
4

m∑
i=1

‖ϑi − ϑi−1‖2

≤ C

(
1 +

m−1∑
i=0

τ‖ϑi‖2

)
+

m∑
i=1

〈F2,i, ϑi − ϑi−1〉

−
m∑

i=1

〈(k∗τBϑ)i, ϑi − ϑi−1〉.
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Our next aim is to control the righthand side above, in particular the
last two terms. To achieve this, we make use of a discrete integration
by parts. Namely, note that

m∑
i=1

〈F2,i, ϑi− ϑi−1〉 = 〈F2,m, ϑm〉 − 〈F2,1, ϑ0〉+
m−1∑
i=1

〈F2,i− F2,i+1, ϑi〉,

−
m∑

i=1

〈(k∗τBϑ)i, ϑi − ϑi−1〉

= −〈(k∗τBϑ)m, ϑm〉+ 〈(k∗τBϑ)1, ϑ0〉

−
m−1∑
i=1

〈(k∗τBϑ)i − (k∗τBϑ)i+1, ϑi〉.

Then, we obtain

(5.3)

m∑
i=1

〈F2,i, ϑi − ϑi−1〉 ≤ 1
8
‖ϑm‖2 +

5
2
‖F 2,τ‖2

L∞(0,T ;V ′)

+
1
2
‖ϑ0‖2 +

m−1∑
i=1

τ‖δF2,i+1‖∗‖ϑi‖.

Moreover, applying the identity (4.5), one infers that

−
m∑

i=1

〈(k∗τBϑ)i,ϑi − ϑi−1〉

= −〈(k∗τBϑ)m, ϑm〉+ 〈(k∗τBϑ)1, ϑ0〉

+
m−1∑
i=1

τ 〈(δk∗τBϑ)i+1, ϑi〉+ k0

m−1∑
i=1

τ 〈Bϑi+1, ϑi〉.

Now, it is easy to check that (see (4.2))

‖(k∗τBϑ)m‖∗ ≤ ‖(k∗τBϑ)τ‖L∞(0,mτ ;V ′)

≤ ‖B‖L(V,V ′)

i∗∑
j=1

τ |ki∗−j+1|‖ϑj‖

≤ ‖B‖L(V,V ′)‖k‖L∞(0,T )

m∑
j=1

τ‖ϑj‖
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for some i∗ ≤ m. Then easy calculations ensure that

−
m∑

i=1

〈(k∗τBϑ)i, ϑi − ϑi−1〉

≤ 1
4
‖ϑm‖2 + ‖B‖2

L(V,V ′)

(
‖k‖2

L∞(0,T )T
m∑

i=1

τ‖ϑi‖2 +
|k1|2
2

τ2‖ϑ1‖2

)

+
1
2
‖ϑ0‖2 +

1
2
‖B‖L(V,V ′)

m−1∑
i=1

τ
(
‖(δk∗τϑ)i+1‖2 + ‖ϑi‖2

)
+

1
2
|k0|‖B‖L(V,V ′)

m−1∑
i=1

τ
(
‖ϑi‖2 + ‖ϑi+1‖2

)
,

and, recalling Lemma 4.3 and (4.13), we finally deduce that

(5.4) −
m∑

i=1

〈(k∗τBϑ)i, ϑi−ϑi−1〉 ≤ 1
4
‖ϑm‖2+

1
2
‖ϑ0‖2+C

m∑
i=1

τ‖ϑi‖2.

Combining (5.3) (5.4) with (5.2) and taking into account (A8), one
achieves

m∑
i=1

τ |δϑi|2 + ‖ϑm‖2 +
m∑

i=1

‖ϑi − ϑi−1‖2

≤ C

(
1 +

m−1∑
i=1

τ‖δF2,i+1‖∗‖ϑi‖+
m∑

i=1

τ‖ϑi‖2

)
.

Finally, upon choosing τ small enough, applying the discrete Gronwall
lemma (see, e.g., the version reported in [16, Proposition 2.2.1]) and
due to (4.22), we conclude that

‖ϑτ‖H1(0,T ;H) + ‖ϑτ‖L∞(0,T ;V ) ≤ C,(5.5)

N∑
i=1

‖ϑi − ϑi−1‖2 ≤ C.(5.6)

Related estimates. Owing to 4.3, assumptions (A3), (A5) (A7),
and bound (5.5), a comparison in (4.28) ensures that

(5.7) ‖u′τ‖L2(0,T ;V ′) ≤ C
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Moreover, from (A8), (4.26) and (4.28) we recover

(5.8) ‖uτ‖H1(0,T ;V ′) + ‖ξτ‖L∞(0,T ;V ′) ≤ C

as well.

Before passing to the limit, we collect below other properties of the
approximating sequences.

Lemma 5.1. The following estimates hold

‖ϑτ − ϑτ‖L2(0,T ;H) ≤ Cτ,(5.9)

‖ϑτ − ϑτ‖L∞(0,T ;H) ≤ C
√
τ ,(5.10)

‖ϑτ − Tτϑτ‖L2(0,T ;H) ≤ Cτ,(5.11)

‖ϑτ − Tτϑτ‖L∞(0,T ;H) ≤ C
√
τ ,(5.12)

‖uτ − uτ‖L2(0,T ;V ′) ≤ Cτ,(5.13)

‖uτ − uτ‖L∞(0,T ;V ′) ≤ C
√
τ .(5.14)

Proof. Regarding (5.9) (5.11), it is straightforward to see that (4.2)
and (5.5) yield

‖ϑτ − ϑτ‖2
L2(0,T ;H) =

N∑
i=1

∫ iτ

(i−1)τ

(
αi(t)− 1

)2|ϑi − ϑi−1|2 dt

≤ τ2

3

N∑
i=1

τ |δϑi|2 ≤ Cτ2,

‖ϑτ − ϑτ‖2
L∞(0,T ;H) = sup

1≤i≤N
|ϑi − ϑi−1|2 ≤

N∑
i=1

|ϑi − ϑi−1|2

≤ τ

N∑
i=1

τ |δϑi|2 ≤ Cτ,

‖ϑτ − Tτϑτ‖L2(0,T ;H) =
N∑

i=1

∫ iτ

(i−1)τ

|ϑi − ϑi−1|2 dt

≤ τ2
N∑

i=1

τ |δϑi|2 ≤ Cτ2.
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Moreover, taking into account (5.5) and (5.8), estimates (5.12) (5.14)
may be proved in a similar way.

5.2 Passage to the limit. Thanks to assumption (A6), Lemma 4.3,
estimates (5.5), (5.8), (5.10) and well-known compactness results, one
infers that there exists at least a sequence of time steps (still denoted
by τ ) and four functions ϑ, u, ξ, and ϕ such that

ϑτ −→ ϑ weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ),(5.15)

ϑτ −→ ϑ weakly star in L∞(0, T ;V ),(5.16)

uτ −→ u weakly in H1(0, T ;V ′),(5.17)

ξτ −→ ξ weakly star in L∞(0, T ;V ′),(5.18)

(k∗τBϑ)τ −→ ϕ weakly in L2(0, T ;V ′),(5.19)

as τ tends to 0. Besides, from (A2) and (5.16), in particular, one
deduces that

(5.20) Aϑτ −→ Aϑ weakly star in L∞(0, T ;V ′).

In addition, the generalized Ascoli theorem (see, e.g., [20, Corollary 4])
and relations (5.10) and (5.12) ensure that

ϑτ −→ ϑ strongly in C0([0, T ];H),(5.21)

ϑτ −→ ϑ strongly in L∞(0, T ;H),(5.22)

Tτϑτ −→ ϑ strongly in L∞(0, T ;H),(5.23)

whence, owing to (A5), we have

(5.24) G(Tτϑτ ) −→ G(ϑ) strongly in L∞(0, T ;H).

Moreover, note that, due to relations (4.14), (5.5), (5.16) and (5.22),
the following convergences hold

(k∗τBϑ)τ − k ∗Bϑτ −→ 0 strongly in L1(0, T ;V ′)
k ∗Bϑτ −→ k ∗Bϑ weakly in L2(0, T ;V ′);



298 U. STEFANELLI

thus (cf. (5.19)) ϕ = k ∗ Bϑ. Therefore, recalling also (A7) and
(4.20) (4.21), we can take the weak limit in (4.28) and (4.29) obtaining
(2.8) and

(5.25) u = ϑ+ ξ in V ′, a.e. in (0, T ),

respectively.

Remark 5.2. We point out that, since the continuous problem
(2.8) (2.10) has a unique solution, the convergences listed above hold
not only for a subsequence but for the whole family of partitions, as
the time step τ tends to 0.

With the aim of concluding the proof of Theorem 2.4, it suffices to
show that

(5.26) ξ(t) ∈ Γ(ϑ(t)) in V ′, for a.e. t ∈ (0, T ).

To this end, we recover some further strong convergence by virtue of a
direct Cauchy argument. As a first step, take the sum over i in (4.23).
By virtue of definitions (4.1) and (4.2), one easily obtains

uτ (t)− u0 +
(
1 ∗Aϑτ

)
(t) +

(
1 ∗ k ∗Bϑτ

)
(t)

=
(
1 ∗G(Tτϑτ )

)
(t) +

(
1 ∗ F τ

)
(t) +Rτ (t),

for all t ∈ (0, T ), where the residual term is specified by

Rτ (t) :=
(
1 ∗Aϑτ − (1∗τAϑ)τ

)
(t) +

(
1 ∗ k ∗Bϑτ − (1∗τk∗τBϑ)τ

)
(t)

+
(
(1∗τG(Tτϑ))τ − 1 ∗G(Tτϑτ )

)
(t) +

(
(1∗τF )τ − 1 ∗ F τ

)
(t),

with the obvious notations 1 := (1, 1, . . . , 1) ∈ RN and
(
G(Tτϑ)

)
i
:=

G(ϑi−1) for i = 1, . . . , N . Due to assumption (A5), (A7), and estimates
(4.14) and (5.5), it is a standard matter to verify that a positive
constant C3 exists which depends only on the data and fulfills

(5.28) ‖Rτ‖L1(0,T ;V ′) ≤ C3τ.
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Indeed, arguing as in Proposition 4.4 and accounting for (A5), (A7),
and (5.5), we easily check that

‖1 ∗Aϑτ − (1∗τAϑ)τ‖L1(0,T ;V ′) ≤ τ‖ϑτ‖L1(0,T ;V ) ≤ Cτ,

‖1 ∗G(Tτϑτ )− (1∗τG(Tτϑ))τ‖L1(0,T ;V ′) ≤ τC‖G(Tτϑτ )‖L1(0,T ;H) ≤ Cτ,

‖1 ∗ F τ − (1∗τF )τ‖L1(0,T ;V ′) ≤ τ‖F τ‖L1(0,T ;V ′) ≤ Cτ.

On the other hand, due to Lemma 4.2, we see that

‖1 ∗ k ∗Bϑτ−(1∗τk∗τBϑ)τ‖L1(0,T ;V ′)

≤ ‖k ∗ 1 ∗Bϑτ − k ∗ (1∗τBϑ)τ‖L1(0,T ;V ′)

+ ‖(k − kτ ) ∗ (1∗τBϑ)τ‖L1(0,T ;V ′)

+ ‖kτ ∗ (1∗τBϑ)τ − (k∗τ1∗τBϑ)τ‖L1(0,T ;V ′).

Then, taking into account (4.12), (4.16) and exploiting the same
argument developed in the proof of Proposition 4.4, we have

‖1 ∗ k ∗Bϑτ − (1∗τk∗τBϑ)τ‖L1(0,T ;V ′)

≤ τ‖B‖L(V,V ′)

(
‖k‖L1(0,T ) Var [0,T ];V [1 ∗ ϑτ ]

+ Var [0,T ],R[k]‖(1∗τϑ)τ‖L1(0,T ;V )

+Var [0,T ];V [kτ ∗ (1∗τϑ)τ ]
)
,

and finally, due to (4.10) and (5.5), we obtain

‖1 ∗ k ∗Bϑτ − (1∗τk∗τBϑ)τ‖L1(0,T ;V ′) ≤ Cτ.

Next, write (5.27) for two different choices of time steps, say τ and
µ, take the difference between the two and test it by ϑτ − ϑµ. If we
define

ϑ̃ := ϑτ − ϑµ, ũ := uτ − uµ, G̃ := G(Tτϑτ )−G(Tµϑµ),

and integrate the resulting equation in time, we may reproduce the
same argument developed in Section 3. In particular, we handle the
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term containing 1∗ (F τ −Fµ) by making use of an integration by parts
and of Young’s theorem as∫ t

0

〈(1 ∗ (F τ − Fµ))(s), ϑ̃(s)〉 ds

= 〈(1 ∗ (F τ − Fµ))(t), (1 ∗ ϑ̃)(t)〉

−
∫ t

0

〈(F τ − Fµ)(s), (1 ∗ ϑ̃)(s)〉ds

≤ 1
8
‖(1 ∗ ϑ̃)(t)‖2 + 2 ‖(1 ∗ (F τ − Fµ))(t)‖2

∗

+
∫ t

0

‖(F τ − Fµ)(s)‖∗‖(1 ∗ ϑ̃)(s)‖ ds

≤ 1
8
‖(1 ∗ ϑ̃)(t)‖2 + 2 ‖F τ − Fµ‖2

L1(0,T ;V ′)

+
∫ t

0

‖(F τ − Fµ)(s)‖∗‖(1 ∗ ϑ̃)(s)‖ ds.

Then by virtue of (5.5), (5.11) and (5.28), we obtain

1
2

∫ t

0

|ϑ̃(s)|2 ds+ 1
4
‖(1 ∗ ϑ̃)(t)‖2

≤ C1

( ∫ t

0

‖ϑ̃‖2
L2(0,s;H) ds+

∫ t

0

‖(1 ∗ ϑ̃)(s)‖2 ds

)
+

∫ t

0

〈(1 ∗ (F τ − Fµ))(s), ϑ̃(s)〉 ds+
∫ t

0

〈(Rτ −Rµ)(s), ϑ̃(s)〉 ds

≤ C

( ∫ t

0

‖ϑ̃‖2
L2(0,s;H) ds+

∫ t

0

‖(1 ∗ ϑ̃)(s)‖2 ds+ ‖F τ − Fµ‖2
L1(0,T ;V ′)

+
∫ t

0

‖(F τ − Fµ)(s)‖∗‖(1 ∗ ϑ̃)(s)‖ ds+ τ + µ
)
.

Finally, an application of Gronwall’s lemma yields

(5.29)
1
2

∫ t

0

|ϑ̃(s)|2 ds+ 1
4
‖(1 ∗ ϑ̃)(t)‖2

≤ C4

(
‖F τ − Fµ‖2

L1(0,T ;V ′) + τ + µ
)
,
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for a proper positive constant C4, depending only on the data. Since
we have (4.20) (4.21), 1 ∗ ϑτ turns out to be a Cauchy sequence in
C0([0, T ];V ). Therefore, due to (4.20) (4.21) and (5.15), we conclude
that

(5.30) 1 ∗ ϑτ −→ 1 ∗ ϑ strongly in C0([0, T ];V ).

This convergence allows, in particular, the following (cf. (A2) (A3))

1 ∗Aϑτ −→ 1 ∗Aϑ strongly in C0([0, T ];V ′),(5.31)
1 ∗ k ∗Bϑτ −→ 1 ∗ k ∗Bϑ strongly in C0([0, T ];V ′).(5.32)

Moreover, the argument devised above entails an a priori error
estimate for the discretization error as well. Indeed, under a further
assumption on time regularity of F1, namely,

(5.33) F1 ∈ BV ([0, T ];V ′),

we achieve the result

Proposition 5.3 (Error estimate). Let assumptions (A1) (A8) and
(5.33) hold and τ be small enough. Moreover, let ϑ be as in Theorem
2.4, {ϑi}N

i=0 as in Theorem 4.6 and ϑτ be defined as in (4.2). Then
there exists a positive constant C5, depending only on data, such that
the following estimate holds

(5.34) ‖ϑ− ϑτ‖L2(0,T ;H) + ‖1 ∗ (ϑ− ϑτ )‖C0([0,T ];V ) ≤ C5

√
τ .

Proof. Note that,

(5.35)

‖F1−F 1,τ‖L1(0,T ;V ′)

≤
N∑

i=1

∫ iτ

(i−1)τ

∥∥∥∥F1(t)−
1
τ

∫ iτ

(i−1)τ

F1(s) ds
∥∥∥∥
∗
dt

≤
N∑

i=1

∫ iτ

(i−1)τ

(
1
τ

∫ iτ

(i−1)τ

‖F1(t)− F1(s)‖∗ ds
)
dt

≤ τ

N∑
i=1

Var [(i−1)τ,iτ ];V ′ [F1] = τVar [0,T ];V ′ [F1].
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Then, passing to the limit in (5.29) as µ tends to 0 and taking into
account (A7) and (4.21), one infers that

(5.36) ‖ϑ− ϑτ‖L2(0,t;H) + ‖(1 ∗ (ϑ− ϑτ ))(t)‖ ≤ C5

√
τ ,

for t ∈ (0, T ) and a proper C5 > 0. Whence, the assertion follows.

Remark 5.4. We stress that the previous a priori estimate depends
solely on the data, in particular, exponentially on T , since we prove
(5.29) by using Gronwall’s lemma. Referring to the present literature on
this argument, in [4], [17], [18], [19], the authors deal with a simplified
model since both γ and g vanish, and devise an error control procedure
which relies on strong assumptions with respect to the regularity of
solutions. Indeed, the estimate depends on the H2(0, T ;H)-norm of ϑ,
which is actually not a priori bounded (cf. (2.6)). In contrast, we note
that our estimate requires no further assumption on ϑ.

Moreover, let us observe that the above estimate is suboptimal with
respect to the rate of convergence. Indeed, we only achieve the order
1/2 instead of 1, which is the expected rate since we used the backward
Euler’s method to approximate the time derivative in (2.8). We believe
the discrepancy can be attributed to the inner structure of the problem
itself, particularly to its strongly nonlinear features. Relation (4.14)
shows that neither the approximation used for the convolution product
nor the regularity of the ingredients of the problem can be responsible
for the low rate of convergence.

Taking advantage of (5.30) it is now possible to achieve the desired
inclusion (5.26). We test (4.29) by ϑτ ∈ V and integrate on (0, T ). One
has ∫ T

0

〈ξτ (t), ϑτ (t)〉 dt =
∫ T

0

〈uτ (t), ϑτ (t)〉 dt−
∫ T

0

|ϑτ (t)|2 dt.

Due to (5.27) it is now possible to compute that∫ T

0

〈ξτ (t), ϑτ (t)〉 dt

=
∫ T

0

〈(u0 − 1 ∗Aϑτ − 1 ∗ k ∗Bϑτ )(t), ϑτ (t)〉 dt

+
∫ T

0

〈(1 ∗G(Tτϑτ ) + 1 ∗ F τ +Rτ )(t), ϑτ (t)〉 dt−
∫ T

0

|ϑτ (t)|2 dt.
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Now, we take the lim sup as τ tends to 0 on both sides of (5.37). Since
we have (4.20) (4.21), (5.15), (5.24), (5.28) and (5.31) (5.32), it is
straightforward to check that

lim sup
τ↘0

∫ T

0

〈ξτ (t), ϑτ (t)〉 dt

≤
∫ T

0

(u0 − 1 ∗Aϑ− 1 ∗ k ∗Bϑ+ 1 ∗G(ϑ) + 1 ∗ F )(t), ϑ(t)〉dt

−
∫ T

0

|ϑ(t)|2 dt.

Then, by considering the integral in time of (2.8), it is a standard
matter to deduce that the previous inequality entails, in particular, the
following

lim sup
τ↘0

∫ T

0

〈ξτ (t), ϑτ (t)〉 dt ≤
∫ T

0

〈ξ(t), ϑ(t)〉dt,

and the inclusion (5.26) is ensured by (5.15), (5.18) and the well-known
result [7, p. 27]. Finally, the proof of Theorem 2.4 is complete.
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