
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 48, Number 4, 2018

AN ANALYTIC NOVIKOV
CONJECTURE FOR SEMIGROUPS

PAUL D. MITCHENER

ABSTRACT. In this article, we formulate a version of
the analytic Novikov conjecture for semigroups rather than
groups and show that the descent argument from coarse
geometry generalizes effectively to this new situation.

1. Introduction. For the purposes of this article, a semigroup is a
set P equipped with an associative binary operation P × P → P , such
that we have a unit element e ∈ P where pe = ep = p for all p ∈ P ,
and the left cancellation property holds, that is to say, pq = pr implies
q = r for all p, q, r ∈ P . Note that the left cancellation property tells
us that the unit element e is unique.

In [7], both the reduced and maximal C∗-algebras associated to a
semigroup are defined, issues associated to amenability examined and
K-theory groups computed. The computations ofK-theory groups lead
to a natural question, namely, whether a version of the Baum-Connes
conjecture [1] could be formulated for semigroups.

In this paper, we make a first step towards such a conjecture,
formulating an analytic assembly map

β : KP
n (EP ) −→ KnC

∗
r (P ),

where C∗
r (P ) is the reduced C∗-algebra of the semigroup P , and EP is

the classifying space for free P -actions. We conjecture that this map is
injective for torsion-free semigroups.

We also show that the descent argument from the coarse Baum-
Connes conjecture, as explained, for example, in [12], or, more gen-
erally, in [11], still works in the semigroup case. Thus, the analytic
Novikov conjecture holds for semigroups where the space EP is a fi-
nite P -CW -complex and has a compatible coarse structure where the
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coarse Baum-Connes conjecture is satisfied. We conclude the article by
looking at some simple examples where the descent argument applies.

The descent argument works in the same way as it does for groups;
however, to carry it out, we need to generalize parts of the general
theory of equivariant homology for group actions to the semigroup case.
These generalizations are fortunately mainly straightforward, and the
details may be found in Sections 4 and 5.

The broad strategy of the proof is as follows.

• We define a notion of generalized homology theory for P -spaces,
where P is a semigroup.

• We prove that a natural transformation of generalized homology
theories for P -spaces is an isomorphism for finite P -CW -complexes if
it is an isomorphism for homogeneous P -spaces.

• We show that the K-homology of homotopy fixed-point defines a
generalized homology theory for P -spaces and that there is a natural
transformation from P -equivariant K-homology to the K-homology
of homotopy fixed point sets. We use the above argument to prove
that this natural transformation is an isomorphism for finite P -CW -
complexes.

• A commutative diagram relates the above transformation to the
analytic assembly map and the coarse Baum-Connes conjecture, from
which we deduce the descent result.

2. Semigroup actions. Let P be a semigroup. Let X be a set. A
left P -action on X is a map P × X → X, written (p, x) 7→ px, such
that p(qx) = (pq)x for all p, q ∈ P and x ∈ X.

Similarly, a right P -action on X is a map X × P → X, written
(x, p) 7→ xp, such that (xp)q = x(pq) for all p, q ∈ P and x ∈ X.

For a set X equipped with a left P -action, and a subset A ⊆ X, we
write

pA = {pa | a ∈ A}, PA =
∪
p∈P

pA.

Given sets X and Y with left P -actions, a map f : X → Y is called
equivariant if f(px) = pf(x) for all x ∈ X and p ∈ P . We similarly talk
about equivariant maps between sets equipped with right P -actions.
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A P -space is a topological space equipped with a continuous right P -
action. Similarly as for groups acting on spaces, we distinguish certain
types of P -spaces. Given P -spaces X and Y , we write MapP (X,Y ) to
denote the set of all continuous equivariant maps from X to Y . It is a
topological space, with the compact open topology.

Definition 2.1. Let X be a P -space. Then, we call X:

• free if, for all x ∈ X, there is an open neighborhood U ∋ x such
that Up ∩ U = ∅ for all p ∈ P\{e}, where e is the unit element of P ;

• cocompact if there is a compact subset K ⊆ X such that X = KP .

A fundamental domain in a P -space X is a subset D ⊆ X such that
every element x ∈ X can be written uniquely as x = sp, where s ∈ D
and p ∈ P .

We call an equivariant continuous map f : X → Y proper if, when-
ever Z ⊆ Y is cocompact, the inverse image f−1[Z] ⊆ X is also cocom-
pact.

Example 2.2. We call a subset S ⊆ P a generating set if every element
of P is a product of elements of S. The Cayley graph Cay(P ;S) is an
oriented labeled graph with set of vertices P . The element s ∈ S is
an oriented edge from p to q if p = sq. There is a right P -action
on the space Cay(P ;S) defined by right-multiplication on the vertices
and extending to be linear on the edges. The P -space Cay(P ;S) is
cocompact if S is finite. The P -action on the vertices is free; it is also
free on the edges if P contains no elements of order 2.

Example 2.3. The infinite join, see [8], P ∗ P ∗ P ∗ · · · of countably
many copies of the semigroup P is a free and weakly contractible P -
space.

Let X and Y be metric spaces. Recall (see [13]) that a (not neces-
sarily continuous) map f : X → Y is called a coarse map if:

• for all R > 0, there exists an S > 0 such that, if d(x, y) < R, then
d(f(x), f(y)) < S;

• let B ⊆ Y be bounded. Then, f−1[B] ⊆ X is also bounded.

A coarse P -space is a proper metric space X equipped with a P -
action such that, for each p ∈ P , the map p : X → X is both coarse
and continuous.
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Note that, for a generating set S, the Cayley graph Cay(P ;S) is an
example of a coarse P -space.

Definition 2.4. Let P be a semigroup. We call an equivalence relation
∼ on P a right congruence if, whenever p ∼ q and p, q, r ∈ P , we have
pr ∼ qr.

Observe that, if we have a right congruence ∼ we have a right
P -action on the set of equivalence classes P/ ∼ defined by writing
([p])q = [pq], where [r] is the equivalence class containing an element
r ∈ P . The quotient P/ ∼ can be considered a P -space with the
discrete topology.

Definition 2.5. A homogeneous P -space is a P -space X such that
there is an equivariant homeomorphism X → P/ ∼ for some right
congruence ∼.

We now define a class of P -spaces of particular importance to us,
called P -CW -complexes. Firstly, write

Dn+1 = {(x0, . . . , xn) ∈ Rn+1 | x2
0 + · · ·+ x2

n ≤ 1}

and

Sn = {(x0, . . . , xn) ∈ Rn+1 | x2
0 + · · ·+ x2

n = 1}.

Note that Sn ⊆ Dn+1. An n-dimensional P -cell is a P -space of the
form X×Dn, where X is a homogeneous P -space, and P acts trivially
on Dn.

Given a P -space Y and P -cell X ×Dn equipped with a continuous
equivariant map f : X × Sn−1 → Y , we can form a P -space

(X ×Dn) ∪X×Sn−1 Y =
(X ×Dn)⨿ Y

∼
,

where (x, s) ∼ f(x, s) if (x, s) ∈ X × Sn−1.

We call the P -space (X×Dn)∪X×Sn−1 Y the space obtained from Y
by attaching the P -cell X ×Dn by the map f .
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Definition 2.6. A finite P -CW -complex is a P -space X together with
a sequence of subspaces

X0 ⊆ X1 ⊆ · · · ⊆ Xn = X

such that:

• each inclusion Xi ↪→ Xi+1 is equivariant;

• the space X0 is a finite disjoint union of homogeneous P -spaces;

• the space Xk is equivariantly homeomorphic to the space obtained
from Xk−1 by attaching finitely many k-dimensional P -cells.

The above sequence X0 ⊆ X1 ⊆ · · · ⊆ Xn = X is called a CW -
decomposition of X. Assuming Xn ̸= Xn−1, the number n is called
the dimension of the cell decomposition.

Note that any finite P -CW -complex is cocompact. The following is
fairly clear.

Proposition 2.7. Let X be a finite P -CW -complex. Then, X is free
if and only if it has a CW -composition in which, for all k, every k-
dimensional P -cell takes the form P ×Dn.

3. The coarse Baum-Connes conjecture. Let X be a proper
metric space. Recall that a Hilbert space H is called an X-module if
the C∗-algebra of bounded linear operators L(H) is equipped with a
∗-homomorphism ρ : C0(X) → L(H).

Let K(H) be the C∗-algebra of compact operators on H. Then, we

call an X-module H ample if ρ[C0(X)]H = H and ρ(f) ∈ K(H) implies
f = 0.

Definition 3.1. Let H be an X-module, and let T ∈ L(H). Then:

• we call T locally compact if ρ(f)T, Tρ(f) ∈ K(H) for all f ∈ C0(X);

• we call T pseudolocal if ρ(f)T − Tρ(f) ∈ K(H) for all f ∈ C0(X);

• we define the support of T , Supp(T ) ⊆ X × X, to be the set of
pairs (x, y) ∈ X ×X such that, for all open sets U ∋ x and V ∋ y, we
have f ∈ C0(U) and g ∈ C0(V ) such that ρ(f)Tρ(g) ̸= 0;
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• we call T controlled if the support Supp(T ) is contained in a neigh-
borhood of the diagonal, ∆R = {(x, y) ∈ X × X | d(x, y) < R}, for
some R > 0.

Definition 3.2. LetH be an ampleX-module. Then, we defineD∗(X)
to be the smallest C∗-subalgebra of L(H) containing all pseudolocal
and controlled operators. We define C∗(X) to be the smallest C∗-
subalgebra of L(H) containing all locally compact and controlled op-
erators.

Now, C∗(X) is a C∗-ideal in D∗(X), so that we have a short exact
sequence

0 −→ C∗(X) −→ D∗(X) −→ D∗(X)

C∗(X)
−→ 0.

Further, as shown in [6, 12], the K-theory group of the quotient,
Kn(D

∗(X)/C∗(X)), is isomorphic to the K-homology group Kn−1(X),
and the K-theory group KnC

∗(X) does not depend on a particular
choice of X-module. Thus, looking at the boundary maps in the long
exact sequence of K-theory groups [14, 16], we obtain a map

α : K∗(X) −→ K∗C
∗(X),

called the coarse assembly map.

The coarse Baum-Connes conjecture asserts that this map is an
isomorphism whenever the space X has bounded geometry and is
uniformly contractible; the reader is again referred to [6, 12] for details,
including precisely what the terms bounded geometry and uniformly
contractible mean.

The coarse Baum-Connes conjecture is known to be true for a
vast number of spaces, perhaps most notably, bounded geometry and
uniformly contractible spaces which can be uniformly embedded in
Hilbert space, see [17], but, as shown in [5], is false in general.

4. Equivariant homology.

Definition 4.1. Let f, g : X → Y be equivariant maps between P -
spaces. A P -homotopy between f and g is an equivariant continuous
map H : X × [0, 1] → Y such that H(−, 0) = f and H(−, 1) = g.
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We call H a proper P -homotopy if H is a proper equivariant contin-
uous map.

Above, the space X × [0, 1] is given the P -action defined by the
formula (x, t)p = (xp, t) where p ∈ P , x ∈ X and t ∈ [0, 1].

If a P -homotopy exists between maps f and g, we call them P -
homotopic, and write f ≃P g. The notion of being P -homotopic is
an equivalence relation. The equivalence relation of being properly
P -homotopic is similarly defined.

A continuous equivariant map f : X → Y is called a P -homotopy
equivalence if there is a continuous equivariant map g : Y → X such
that g ◦ f ≃P idX and f ◦ g ≃P idY . We write X ≃P Y when a
P -homotopy equivalence X → Y exists.

Definition 4.2. A locally finite P -homology theory, hP
∗ , graded over Z,

consists of a sequence of functors, hP
n (where n ∈ Z), from the category

of P -spaces and proper equivariant maps to the category of abelian
groups satisfying the following axioms.

• Let f, g : X → Y be equivariant continuous maps that are properly
P -homotopic. Then, the maps f∗, g∗ : hP

n (X) → hP
n (Y ) induced by the

functor hP
n are equal for all n.

• Let X = A ∪ B be a P -space, where A,B ⊆ X are open,
and PA ⊆ A, PB ⊆ B. Consider the inclusions i : A ∩ B ↪→ A,
j : A ∩B ↪→ B, k : A ↪→ X and l : B ↪→ X. Let

α = (i∗,−j∗) : h
P
n (A ∩B) −→ hP

n (A)⊕ hP
n (B)

and

β = k∗ + l∗ : hP
n (A)⊕ hP

n (B) −→ hP
n (X).

Then, we have natural maps ∂ : hP
n (X) → hP

n−1(A ∩ B) fitting into a
long exact sequence

−→ hP
n (A∩B)

α−→ hP
n (A)⊕ hP

n (B)
β−→ hP

n (X)
∂−→ hP

n−1(A∩B) −→ .

• hn(∅) = {0} for all n.



1238 PAUL D. MITCHENER

We call the first of these axioms homotopy invariance. The long ex-
act sequence in the second axiom is called the Mayer-Vietoris sequence
associated to the decomposition X = A ∪B.

We can also talk about locally finite P -homology theories on sub-
categories of the category of P -spaces and proper equivariant maps, for
instance, on the category of free P -spaces.

Lemma 4.3. Let X and Y be P -spaces, let f : X × Sn−1 → Y be
proper equivariant continuous map, and let Z = (X ×Dn)∪X×Sn−1 Y .
Then, we have a natural long exact sequence

−→ hP
n (X × Sn−1) −→ hP

n (X)⊕ hP
n (Y ) −→ hP

n (Z)

∂−→ hP
n−1(X × Sn−1) −→ .

Further, the map ∂ arises from a Mayer-Vietoris sequence associated
to a decomposition of Z.

Proof. Let π : (X × Dn) ⨿ Y → Z be the quotient map. We can
choose open sets U ⊆ π[X ×Dn] and V ⊇ π[Y ] such that:

• U ∪ V = Z;

• PU ⊆ U , PV ⊆ V ;

• U ≃P X ×Dn ≃P X;

• V ≃P Y ;

• U ∩ V ≃P X × Sn−1.

Applying the Mayer-Vietories sequence of the decomposition X =
U ∪ V along with homotopy invariance, we get a long exact sequence

−→ hP
n (X × Sn−1) −→ hP

n (X)⊕ hP
n (Y ) −→ hP

n (Z)

∂−→ hP
n−1(X × Sn−1) −→ . �

Definition 4.4. Let hP
∗ and kP∗ be locally finite P -homology theories.

A natural transformation τ : hP
∗ → kP∗ is a sequence of natural

transformations τ : hP
n → kPn which preserve Mayer-Vietoris sequences.

Lemma 4.5. Let X be a P -space, and let τ : hP
∗ → kP∗ be a natural

transformation between P -homology theories such that the maps τ :
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hP
n (X) → kPn (X) are isomorphisms. Then, the maps τ : hP

n (X×Sk) →
kPn (X × Sk) are all isomorphisms.

Proof. Observe that

X × S0 = X1 ⨿X2,

where X1 and X2 are both equivariantly homeomorphic to X. Cer-
tainly, X1 ∩X2 = ∅; thus, hP

n (X1 ∩X2) = 0 for all n, and the Mayer-
Vietoris sequence provides that hP

n (X × S0) = hP
n (X)⊕ hP

n (X). Simi-
larly, kPn (X × S0) = kPn (X)⊕ kPn (X).

It immediately follows that the map τ : hP
n (X × S0) → kPn (X × S0)

is an isomorphism.

Now suppose the map τ : hP
n (X × Sk−1) → kPn (X × Sk−1) is an

isomorphism for all n. We can write Sk = A ∪ B, where A ∼= Dn,
B ∼= Dn and A ∩ B ≃ Sk−1, so that X × A ≃P B × A ≃P X. Then,
we have a commutative diagram of Mayer-Vietoris sequences

hP
n(X×Sk−1)→hP

n(X)⊕hn(X)→hP
n(S

k×X)→hP
n−1(S

k−1×X)→hP
n−1(X)⊕hP

n−1(X)

↓ ↓ ↓ ↓ ↓
kPn(X×Sk−1)→kPn(X)⊕kn(X)→kPn(S

k×X)→kPn−1(S
k−1×X)→kPn−1(X)⊕hP

n−1(X).

By the five lemma [15], we see the map τ : hP
n (X × Sk) →

kPn (X×Sk) is an isomorphism for all n. The desired result now follows
by induction. �

Theorem 4.6. Let τ : hP
∗ → kP∗ be a natural transformation of P -

homology theories such that τ : hP
m(X) → kPm(X) is an isomorphism

whenever X is a homogeneous P -space. Then, τ : hP
m(Z) → kPm(Z) is

an isomorphism whenever Z is a finite P -CW -complex.

Proof. Let Z be a finite P -CW -complex. Then, we have subsets

Z0 ⊆ Z1 ⊆ · · · ⊆ Zn = Z,

where Z0 is a finite disjoint union of homogeneous P -spaces, and Zk

is equivariantly homeomorphic to the space obtained from Zk−1 by
attaching finitely many k-dimensional P -cells. Certainly, the map τ :
hP
m(Z0) → kPm(Z0) is an isomorphism for all m.

Let Y be a P -space such that the map τ : hP
m(Y ) → hP

m(Y ) is
an isomorphism for all m. Suppose that we have an attaching map
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f : X × Sn−1 → Y for a homogeneous P -space X. Let Y ′ = (X ×Dn)
∪X×Sn−1 Y . Then, it follows by Lemma 4.3, Lemma 4.5 and the five
lemma [15] that the map τ : hP

m(Y ′) → hP
m(Y ′) is an isomorphism for

all m.

Hence, this proves the desired result by induction. �

The following is proved similarly.

Theorem 4.7. Let τ : hP
∗ → kP∗ be a natural transformation of P -

homology theories such that τ : hP
m(P ) → kPm(P ) is an isomorphism for

all m. Then, τ : hP
m(Z) → kPm(Z) is an isomorphism whenever Z is a

free finite P -CW -complex.

5. Homotopy fixed point sets. Let E be a P -space. Given an
equivariant continuous map f : X → Y , we have an induced map
f∗ : MapP (E,X) → MapP (E, Y ) defined by the formula f∗(g)(λ) =
f(g(λ)) where g ∈ MapP (E,X) and λ ∈ E.

Proposition 5.1. Let E be a finite free P -CW -complex. Let X be
(non-equivariantly) weakly contractible. Then, the space MapP (E,X)
is also weakly contractible.

Proof. Let E be a zero-dimensional free P -CW -complex. Then, E
is a disjoint union of finitely many, say k, copies of P . Hence,

Map
P

(E,X) = Map
P

(P,X)k ∼= Xk,

which is weakly contractible since so is X.

More generally, if E is a free P -CW -complex, it is obtained by
attaching finitely many cells to a zero-dimensional P -CW -complex.
Thus, to prove the result, it suffices to show by induction that, if Y
is a free P -space where MapP (Y,X) is weakly contractible, and E is
a space obtained by attaching a free P -cell to Y , then MapP (E,X) is
weakly contractible.

Let f : P × Sn−1 → Y be a continuous equivariant map, and let

E = (P ×Dn) ∪P×Sn−1 Y.



AN ANALYTIC NOVIKOV CONJECTURE 1241

It is a standard example from algebraic topology, for example, [15],
that the inclusion Sn−1 → Dn is a cofibration. Hence, the inclusion
P × Sn−1 → P × Dn has the homotopy extension property for P -
homotopies, and thus, the push-out Y → E also has this property.
Now, the cofibration Y → E has cofibre

E/Y ∼=
P ×Dn

P × Sn−1
∼= P × Sn.

Hence, we have a fibration MapP (E,X) → MapP (Y,X), with fibre
MapP (P × Sn, X). Pick f0 ∈ MapP (Y,X). Then, the fibre is the
inverse image of f0, that is, the set of P -equivariant maps f : E → X
which, restrict to f0 on Y , which, by definition of E, is

Map
P

(
E

Y
,X

)
∼= Map

P
(P × Sn, X).

Now, by hypothesis, the space MapP (Y,X) is weakly contractible.
We know that the space X is weakly contractible, and MapP (P ×
Sn, X) = Map(Sn, X); thus, the homotopy groups of Map(Sn, X)
are all zero, as those of the space X are all zero. Therefore, by the
long exact sequence of homotopy groups associated to a fibration, the
homotopy groups of the space MapP (E,X) are all zero, that is to say,
MapP (E,X) is weakly contractible, and we are finished. �

The next corollary immediately follows from the above by looking
at mapping fibres.

Corollary 5.2. Let E be a finite free P -CW -complex. Let X and Y
be P -spaces, and let f : X → Y be an equivariant map that is
(non-equivariantly) a weak equivalence. Then, the induced map f∗ :
MapP (E,X) → MapP (E, Y ) is a weak equivalence.

Definition 5.3. We define a classifying space for free P -actions EP
to be a free P -space that is weakly contractible.

Proposition 5.4. A classifying space EPalways exists. If we can
choose EP to be a finite free P -CW -complex, then it is unique up
P -homotopy equivalence.
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Proof. By Example 2.3, a free and weakly contractible P -space EP
exists. Suppose that we can choose EP to be a finite free P -CW -
complex. Let X be another free and weakly contractible P -CW -
complex. Then, by Proposition 5.1, the spaces MapP (EP,X) and
MapP (X,EP ) are weakly contractible. In particular, they are non-
empty; thus, we have continuous equivariant maps f : EP → X and
g : X → EP .

Similarly, the spaces MapP (EP,EP ) and MapP (X,X) are weakly
contractible; thus, the sets π0 MapP (EP,EP ) and π0 MapP (X,X) are
trivial. Since g◦f, idEP ∈ MapP (EP,EP ), they must be P -homotopic.
Similarly, f ◦ g and idP ∈ MapP (X,X) are P -homotopic. In other
words, the composites g ◦ f and f ◦ g are both P -homotopic to identity
maps, and we are done. �

Note that, if G is a group with torsion, then the classifying space
BG is never a finite CW -complex, and thus, the universal cover EG
is never a finite G-CW -complex. The same is true in the semigroup
world since, if a semigroup has torsion, it contains a finite subgroup,
which, of course, is a subgroup with torsion.

Definition 5.5. Let X be a P -space. We define the homotopy fixed
point set of X to be the space XhP = MapP (EP,X).

By the above, if EP is a finite free P -CW -complex, then, up to
homotopy, the space XhP does not depend on the version of the space
EP chosen. Furthermore, by Proposition 5.1 and Corollary 5.2, if X
is weakly contractible, then so is XhP , and, if f : X → Y is a weak
equivalence, then so is f∗ : XhP → Y hP .

Now, let X be a cocompact coarse P -space. Then, the C∗-algebra
C0(X) is equipped with a left P -action defined by writing (pf)(x) =
f(xp) for all f ∈ C0(X), p ∈ P and x ∈ X.

LetH be a Hilbert space equipped with a left P -action by isometries.
Let vp : H → H be the isometry associated to the element p ∈ P .
Then, the C∗-algebra L(H) comes equipped with a left P -action by
homomorphisms defined by writing

pT = vpTv
∗
p, p ∈ P, T ∈ L(H).
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We call H an equivariant X-module if it comes equipped an equi-
variant ∗-homomorphism ρ : C0(X) → L(H).

Now, observe in the case of an ample equivariant X-module that the
semigroup P acts on the C∗-algebras C∗(X) and D∗(X) on the left by
∗-homomorphisms. We can, therefore, form homotopy fixed point sets
C∗(X)hP and D∗(X)hP . If EP is a finite P -CW -complex, then the
space EP is cocompact, and these sets are C∗-algebras, with addition,
multiplication and involution defined pointwise, and the norm defined
by taking the supremum

∥f∥ = sup{∥f(x)∥ | x ∈ EP}

for g ∈ C∗(X)hP or g ∈ D∗(X)hP . Further, C∗(X)hP is a C∗-ideal in
D∗(X)hP ; thus, we can form the quotient D∗(X)hP /C∗(X)hP .

We write

KhP
n (X) = Kn+1

(
D∗(X)hP

C∗(X)hP

)
.

By the open mapping theorem, the quotient map D∗(X) → D∗(X)/
C∗(X) has a continuous section (though not one that is a ∗-homomor-
phism). This implies that we have a natural isomorphism

KhP
n (X) ∼= Kn+1

(
D∗(X)

C∗(X)

)hP

.

Proposition 5.6. The sequence of functors KhP
∗ is a locally finite P -

homology theory.

Proof. Let U(X) be the stable unitary group of the C∗-algebra
D∗(X)/C∗(X). Then, the groups Kn−1(X) and KhP

n−1(X) are the

homotopy groups of U(X) and U(X)hP , respectively.

By proper homotopy-invariance ofK-homology, the inclusions i0, i1 :
X → X×[0, 1] defined by the formulae i0(x) = (x, 0) and i1(x) = (x, 1),
respectively, induce weak equivalences U(X) → U(X × [0, 1]). From
Corollary 5.2, these maps both induce weak equivalences U(X)hG →
U(X × [0, 1])hG, and thus, isomorphisms KhP

n (X) → KhP
n (X × [0, 1]).

Proper P -homotopy-invariance of the functors KhP
n now follows.

Let X = A ∪ B be a P -space, where A,B ⊆ X are open, and
PA ⊆ A, PB ⊆ B. Then, by looking at Mayer-Vietoris sequences in
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K-homology, we have a weak fibration sequence

U(A ∩B) −→ U(A) ∨ U(B) −→ U(X)

and so, by Corollary 5.2, a weak fibration sequence

U(A ∩B)hP −→ U(A)hP ∨ U(B)hP −→ U(X)hP .

The existence of Mayer-Vietoris sequences for the sequence of func-
tors KhP

∗ now also follows. �

6. Semigroup C∗-algebras and assembly. Let P be a semigroup.
Let l2(P ) be the Hilbert space with an orthonormal basis indexed by
P , that is to say, we have an orthonormal basis {ep | p ∈ P}.

Given p ∈ P , we have an isometry

vp : l2(P ) −→ l2(P )

defined by the formula vp(eq) = epq. Note that, for this to be an
isometry, we need the left-cancelation property. The semigroup P acts
on the space l2(P ) by the formula pw = vp(w) where p ∈ P and
w ∈ L2(P ).

The next definition comes from [7].

Definition 6.1. The reduced semigroup C∗-algebra C∗
r (P ) is the small-

est C∗-subalgebra of the space of bounded linear operators L(l2(P ))
that contains the set of isometries {vp | p ∈ P}.

Note that reduced group C∗-algebras are an obvious special case.

More generally, let H be a Hilbert space equipped with a right P -
action by isometries. Let vp : H → H be the isometry associated to
the element p ∈ P . Then, C∗

r (P ) is isomorphic to the smallest C∗-
subalgebra of L(H) containing the set of isometries {vp | p ∈ P}.

As noted in the previous section, the C∗-algebra L(H) has a left
P -action defined by writing pT = vpTv

∗
p, p ∈ P, T ∈ L(H).

Let X be a free cocompact P -space. Then, we can write

X = U1 ∪ · · · ∪ Un,

where each Ui is an open P -space that is equivariantly homeomorphic
to P ×Wi for some space Wi with trivial P -action.
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Now, let H be an equivariant X-module, meaning H is a Hilbert
space with a P -action and an equivariant ∗-homomorphism ρ : C0(X) →
L(H). Then, on each set Ei, H restricts to an equivariant Ui-
module through composing the ∗-homomorphism ρ with the inclusion
C0(Ui) ↪→ C0(X).

Definition 6.2. We call an equivariant X-module H P -adequate if X
is a finite union of open P -spaces U , where:

• each U is an open P -space that is equivariantly homeomorphic to
P ×W for some space W with trivial P -action.

• The restriction ofH is U is equivariantly isomorphic to a U -module
of the form l2(P )⊗H ′

W , where H ′
W is an ample W -module. Here, the

∗-homomorphism C0(U) → L(l2(P )⊗H ′
W ) is the composite

C0(U) −→ C0(P ×W ) −→ L(l2(P )⊗H ′
W ),

defined in the obvious way.

Definition 6.3. Let H be a P -adequate X-module. We define D∗
P (X)

to be the smallest C∗-subalgebra of L(H) containing all pseudolocal,
controlled operators that are fixed under the action of P . We define
C∗

P (X) to be the smallest C∗-subalgebra of L(H) containing all locally
compact, controlled operators that are fixed under the action of P .

Theorem 6.4. Let P be a semigroup. Let X be a cocompact free
coarse P -space. Then, the C∗-algebras C∗

r (P ) and C∗
P (X) are Morita

equivalent.

Proof. LetH be a P -adequate equivariantX-module. DecomposeX
into a finite union of n open P -sets U as in Definition 6.2. Let

T : H −→ H

be P -fixed, locally compact and controlled. Then, by definition of
locally compact, and the P -action, when restricted to U , T can be
considered to be a P × P matrix of compact operators. Overall, T is
an n × n matric (Tij) where each Tij is a P × P matrix of compact
operators. Since T is translation-invariant under P , so is each Tij .
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Since T is also controlled, we see that T ∈ C∗
r (Γ)⊗K. More generally,

taking limits, if T ∈ C∗
P (X), then T ∈ C∗

r (Γ)⊗K.

Conversely, any operator of the form vP ⊗ k, where p ∈ P and k
is compact, is both controlled and locally compact. Any element
Mn(C

∗
r (Γ)⊗K) is a limit of sums of such operators, and thus,

Mn(C
∗
r (Γ)⊗K) ⊆ C∗

P (X).

The desired result now follows. �

The above argument was essentially made for groups in [12, Lemma
5.14]. Although the cited argument was problematic, it works here since
we have restricted ourselves to free actions.

Now, let X be any P -space. Then, we have a short exact sequence

0 −→ C∗
P (X) −→ D∗

P (X) −→ D∗
P (X)

C∗
P (X)

−→ 0.

By the above, when X is cocompact, we can identify the K-theory
groups K∗(C

∗
P (X)) and K∗C

∗
r (P ). Thus, looking at the boundary

maps in the long exact sequence of K-theory groups (see, for example,
[14, 16]), we obtain a map

β : K∗+1

(
D∗

P (X)

C∗
P (X)

)
−→ K∗C

∗
r (P )

called the analytic assembly map. This assembly map is a generalization
of the corresponding map for groups, see, for example, [12].

Definition 6.5. Let X be a coarse P -space. Then, we define the P -
equivariant K-homology groups of X by writing

KP
n (X) = Kn+1

(
D∗

P (X)

C∗
P (X)

)
.

Definition 6.6. We say that a torsion-free semigroup P satisfies the
analytic Novikov conjecture if we have a cocompact classifying space
EP such that the map

β : KP
n (EP ) −→ KnC

∗
r (P )

is injective.
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We restrict our attention to torsion-free semigroups, since, in the
case of groups, the map β is not, in general, injective for groups with
torsion, although it is conjectured to be rationally injective. However,
all of our arguments here are for torsion-free semigroups.

Furthermore, the equivariant K-homology groups KP
n (EP ) are not

necessarily easy to compute. The issue is that, unlike the group case,
even if X is a free P -space, we do not have the formula KP

n (X) ∼=
Kn(X/P ), which holds in the classical case. We go into further detail
on this issue in the final section when we look at examples.

7. Descent. The descent argument, outlined in this section, tells us
that the coarse Baum-Connes conjecture, along with certain mild extra
conditions, implies the analytic Novikov conjecture.

Lemma 7.1. We have a natural transformation θ∗ : KP
n (X) →

KhP
n (X) that is an isomorphism whenever X is a finite free P -CW -

complex.

Proof. Let U(X) and UP (X) be the stable unitary groups of the C∗-
algebras D∗(X)/C∗(X) and D∗

P (X)/C∗
P (X), respectively. Since the

space EP is weakly contractible, we have a natural weak equivalence

j : UP (X) ≃ Map(EP,UP (X))

= Map(EP,Map
P

(P,UP (X)))

= Map
P

(EP,Map(P,UP (X)))

= Map(P,UP (X))hG.

Let
i : D∗

P (X)/C∗
P (X) −→ D∗(X)/C∗(X)

be defined by the inclusions

C∗
P (X) ↪→ C∗(X) and D∗

P (X) ↪→ D∗(X).

Then, we have a natural map

k : Map(P,UP (X)) −→ U(X),
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defined by writing k(f) = i∗f(e), where e is the identity element of the
semigroup P .

Taking homotopy fixed point sets, we obtain a natural map

k′ : Map(P,UP (X))hP −→ U(X)hP .

Composing with the map j, we have a natural map

θ = k′ ◦ j : UP (X) −→ U(X)hP ,

and thus, a natural induced map θ∗ : KP
n (X) → KhP

n (X).

Let c : P → + be the constant map onto the one-point space. Then,
the composition

c∗ ◦ i∗ = i∗ ◦ c∗ : UP (P ) −→ U(+)

is certainly a homotopy-equivalence, and the map

k : Map(P,UP (+)) −→ U(P )

is a homeomorphism, and thus, a weak equivalence. By Corollary 5.2,
the map k′ is also a weak equivalence. Thus, the map θ is a weak
equivalence in this case, making the induced map θ∗ : KP

n (P ) →
KhP

n (P ) an isomorphism.

By Theorem 4.7, the map θ∗ : KP
n (X) → KhP

n (X) is, therefore, an
isomorphism whenever X is a finite free P -CW -complex. �

Now, let X be a cocompact coarse P -space. We can define a map

η∗ : Kn(D
∗
P (X)) −→ Kn(D

∗(X)hP )

in much the same way as the map θ∗ in the above lemma, and thus,
whenever X is a cocompact coarse P -space, we have a commutative
diagram

Kn(D
∗
P (X))

vP−→ KP
n (X)

β−→ KnC
∗
r (P )

↓ ↓
Kn(D

∗(X)hP )
vhP−→ KhP

n (X),

where β is the analytic assembly map.

Theorem 7.2. Let X be a free coarse P -space that is a free finite
P -CW -complex as a topological space. Suppose that the coarse Baum-
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Connes conjecture holds for X. Then, the analytic assembly map β is
split-injective for P .

Proof. The coarse Baum-Connes conjecture for X implies that
KnD

∗(X) = 0 for all n. Hence, by Proposition 5.1, Kn(D
∗(X)hP ) = 0

for all n.

Now, by Lemma 7.1, the map θ∗ : KP
n (X) → KhP

n (X) in the above
commutative diagram is an isomorphism. It follows that the map vp is
zero; thus, the map β is split-injective as required. �

Corollary 7.3. Let P be a semigroup with a classifying space EP
that is a coarse P -space and a finite P -CW -complex. Suppose that
the coarse Baum-Connes conjecture holds for the space EP . Then, the
analytic Novikov conjecture holds for the semigroup P .

8. Ore semigroups.

Definition 8.1. A semigroup P is a left Ore semigroup if:

• for all p, q, r ∈ P , if pq = pr, or qp = rp, then q = r;

• for all p, q ∈ P , we have pP ∩ qP ̸= ∅.

It is shown in [2] that a semigroup P can be embedded into a group
G such that G = P−1P = {q−1p | p, q ∈ P} if and only if P is a left
Ore semigroup.

One of the main results of [4] is a computation of the K-theory
of the reduced C∗-algebra of an Ore semigroup. It is more precise
than Corollary 7.3 but covers what appears to be a smaller class of
semigroups. In order to state it, we need some more terminology.

Definition 8.2. Let P be a semigroup. A right ideal of P is a subset
X ⊆ P such that, for all x ∈ X and p ∈ P , we have xp ∈ X.

We write

pX = {px | x ∈ X}, p−1X = {q ∈ P | pq ∈ X}.

Let J be the smallest family of right ideals of P such that:



1250 PAUL D. MITCHENER

• ∅, P ∈ J .

• If X ∈ J and p ∈ P , then pX, p−1X ∈ J .

• If X,Y ∈ J , then X ∩ Y ∈ J .

The following comes from [7].

Definition 8.3. We call elements of J the constructible right ideals of
P . We say that the constructible right ideals of P are independent if,
for all right ideals X1, . . . , Xn ∈ J , if the union

X =

n∪
j=1

Xj

is a right ideal, then X = Xj for some j.

We refer to [7] for examples and further analysis. Now, let P be
an Ore semigroup, and let G = P−1P . For a right ideal X, form the
group

GX = {g ∈ G | gX = X}.

Let EX be the orthogonal projection from the Hilbert space l2(P )
to the Hilbert space l2(E). Let D∞

r (P ) be the smallest C∗-subalgebra
of the space of bounded linear operators L(l2(P )) that contains the set
of projections {Ep−1X | p ∈ P,X ∈ J \{∅}}.

For an index set I, we write c0(I) = ⊕i∈IC. Let χ ⊆ J \{∅} be a
set containing precisely one representative for each set in the collection
G\(P−1(J \{∅}).

Theorem 7.3 of [4] states the following.

Theorem 8.4. Let P be a left Ore semigroup whose constructible
right ideals are independent. Suppose that the group G = P−1P
satisfies the Baum-Connes conjecture with coefficients in the G-C∗-
algebras c0(P

−1(J\{∅})) and D∞
r (P ). Then, the groups Kn(C

∗
r (P ))

and ⊕X∈χKn(C
∗
r (GX)) are isomorphic.

See [1] for more details on the Baum-Connes conjecture.
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9. Examples. We conclude this article by looking at some simple
examples where Corollary 7.3 applies. We can use Yu’s theorem from
[17] that the coarse Baum-Connes conjecture holds for any bounded
geometry coarse space which can be uniformly embedded in Hilbert
space. Of course, Yu’s theorem is a heavy piece of machinery for this
example; the author’s proof of the coarse Baum-Connes conjecture for
coarse CW -complexes in [9, 10] also suffices.

The explicit examples all satisfy the conditions of Theorem 8.4, so
the result applies to them. In particular, by split-injectivity, we know
that the K-theory group KP

∗ (EP ) embeds as a subgroup of the K-
theory group K∗(C

∗
rP ), which the techniques from [4] can be used to

compute.

9.1. The semigroup N. The semigroup N acts freely on R+ by
writing (n, x) 7→ n + x, where n ∈ N, and x ∈ R+. With the coarse
structure defined by the metric, the space R+ is certainly uniformly
embeddable in Hilbert space; thus, the coarse Baum-Connes conjecture
holds.

Now, R+ is a finite free N-CW -complex, with a single 0-cell, N, and
1-cell N× [0, 1], with attaching map f : N× {0, 1} → N defined by the
formula f(n, k) = n+ k.

Then, R+ is weakly contractible, so we can take EN = R+, and, by
Corollary 7.3, the analytic Novikov conjecture holds for N.

Similarly, let N× be the group of non-zero natural numbers with
group operation defined by multiplication. Then, EN = [1,∞), with
free N-action defined by writing (n, x) 7→ nx. As above, the analytic
Novikov conjecture holds for N×.

In actuality, the first example shows us why we do not have
KP

∗ (EP ) ∼= K∗(EP/P ) in general. In order to see this, observe, first
of all, that the C∗-algebra C∗

r (N) is simply the Toeplitz algebra. It is
well known from basic K-theory, see [14, 16], that we, therefore, have
K1C

∗
r (N) = 0. It follows from the analytic Novikov conjecture for N

that KN
1 (EN) = 0.

On the other hand, R+/N = S1, and K1(S
1) = Z; thus, KN

∗ (R+) ̸∼=
K∗(R+/N).

9.2. Free semigroups. The free semigroup on n generators Vn is
the set of words in an alphabet with n letters, say e1, . . . , en. Let
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S = {e1, . . . , en}. Then, Vn certainly acts freely on the Cayley graph
Cay(Vn;S), which is weakly contractible. Therefore, we can take
EVn = Cay(Vn;S).

The space EVn is a finite Vn-CW -complex, with a single 0-cell,
the set of vertices, and 1-cells P × {e1} × [0, 1], . . . , P × {en} × [0, 1].
The attaching map f : P × {ei} × {0, 1} → P is defined by writing
f(p, ei, 0) = p and f(p, ei, 1) = pei.

The space EVn is certainly uniformly embeddable in an infinite-
dimensional Hilbert space; thus, by Corollary 7.3, the analytic Novikov
conjecture holds for the free semigroup Vn.

9.3. Products. Let P and Q be semigroups such that EP and EQ
are finite free P - and Q-CW -complexes, respectively, and EP and EQ
have compatible coarse structures where P and Q act, respectively,
by coarse continuous maps. Suppose that EP and EQ are uniformly
embeddable in Hilbert spaces HP and HQ, respectively. Then, we can
take E(P ×Q) = EP ×EQ. The space EP ×EQ is a free finite P ×Q-
CW -complex, which is a coarse P ×Q-space uniformly embeddable in
HP ×HQ. Thus, the analytic Novikov conjecture holds for P ×Q. In
particular, by the above, the analytic Novikov conjecture holds for the
semigroup Nm × (N×)n for all m and n.

9.4. The ax + b semigroup over N. The ax + b semigroup over N
is defined in [3] as the set

PN =

{(
1 k
0 n

)
| n ∈ N×, k ∈ N

}
,

with group operation defined by matrix multiplication. The group PN
acts freely and cocompactly on the space [0,∞)× [1,∞) by the formula(

1 k
0 n

)(
x
y

)
=

(
x+ ky
ny

)
.

As above, the space [0,∞)× [1,∞) has the structure of a finite PN-
CW -complex. As a coarse space, it is uniformly embeddable in Hilbert
space. Therefore, the analytic Novikov conjecture holds for PN.
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