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ON THREE CONSECUTIVE PRIME-GAPS

CLAUDIA A. SPIRO

ABSTRACT. We prove that the sequence of gaps in the
sequence of prime numbers contains infinitely many runs of
three terms, with the middle term exceeding both the first
and third, provided that there is at least one integer m
exceeding 3, and at least one set A of 2m−2 integers, with
infinitely many translations of this set n + A such that they
contain at least m primes.

1. Introduction. Let a, b, h, i, j and k denote integers, let m and n
be positive integers, let x be a (sufficiently-large) real number, and let p
and q signify primes. Denote the nth prime by pn and the nth prime-
gap by gn = pn+1 − pn. Paul Erdős and P. Turan [3] conjectured that,
given k exceeding 1, there are infinitely many values of n for which
the sequence of prime-gaps gn, gn+1, . . . , gn+k−1 is strictly increasing.
They also asked whether one could find infinitely many instances of
consecutive prime-gaps where the gaps were each greater than or less
than the preceding gap, for any fixed finite length of gaps, where greater
than or less than is specified in advance. As Granville noted in his
talk at the 2014 Joint Mathematics Meetings [2], the proof of this
result follows from the (independent) recent work of Maynard, Tao and
Zhang [9] on primes in intervals of bounded length. In this same talk,
he also noted that a very similar proof shows the existence of infinitely
many integers n for which the sequence of k consecutive prime-gaps is
strictly decreasing. Both of these results were established by Banks,
Freiberg and Turnage-Butterbaugh [1], along with the theorem that,
infinitely often, there are sequences of consecutive prime-gaps where
each gap is a divisor of the next, for any pre-specified length. In
addition, they have shown the existence of infinitely many sequences
of consecutive prime-gaps of any pre-specified length, where each gap
is a multiple of the next. However, Granville noted that it is an open
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problem whether there are infinitely many runs of four consecutive
primes with the middle prime-gap of this run exceeding both the first
and last. This is a generalization of the so-called decade primes, such as
11, 13, 17, 19. While the current numerical work on primes in intervals
of bounded length is not sufficient for us to establish that there are
infinitely many such integers n, we quantify the required necessary
improvement as our main theorem. In order to state it, we require the
following definition.

Definition 1.1. We call a subset A of the nonnegative integers admis-
sible if, for every prime p, there is a value of n such that the polynomial

f(n) =
∏
a∈A

(n+ a)

is not divisible by p. This set A is called admissible with respect
to the congruence h mod k if, for every prime p, there is a value of
n ≡ h mod k where the polynomial f(n) is not divisible by p.

We note that, to verify that a set A is admissible, it is sufficient to
find a translation n + A = {n + a : a ∈ A} for some fixed n, so that
each element of n + A is prime, and the smallest element exceeds the
cardinality of A.

In terms of admissible sets, the twin prime conjecture states that,
for infinitely many positive integers n, we have

|{a ∈ A : n+ a prime}| = 2,

for the admissible set A = {0, 2}. The Prime k-tuples conjecture asserts
that, if A is any admissible set, then there are infinitely many values
of n satisfying

(1.1) |{a ∈ A : n+ a prime}| = |A| = k.

The Schinzel-Sierpinski hypothesis implies that, for any set A that is
admissible with respect to the congruence h mod k, there are arbitrarily
large n for which (1.1) holds, and the Bateman-Horn conjecture gives
an asymptotic expression for the counting function of such positive
integers n in terms of the set A and the congruence h mod k.
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The Selberg sieve has yielded upper bounds for the average gap in
the sequence of n fulfilling (1.1), provided that this set is infinite, see
[5, page 175], which the Bateman-Horn conjecture implies are of the
right order of magnitude. However, until very recently, there were no
lower bounds for this function which even tended to infinity, for at
minimum one admissible set A with at least two elements. In 2014,
Zhang [9] showed that there are infinitely-many primes with a gap
of at most 70, 000, 000, and Maynard [6] and Tao [8], in independent
work, lowered this bound on the gap to 600. In related work, there
are now calculations that reduce this bound to 270 or lower. In order
to prove results of this type, Maynard and Tao [6, 8] independently
established the following theorem. Their numerical work is comparable
but slightly different. For more details on these differences, refer to
[2, 6, 7, 8].

Theorem 1.2. [6, 8]. Let k ≥ 2, and let m be sufficiently large,
depending upon k. In addition, let A be any admissible set of cardi-
nality m. Then, there is a positive effectively computable constant c,
depending possibly on k, so that the number of subsets B of A of car-
dinality k such that

(1.2) |{n : n+ b is prime for all b ∈ B}| = ∞

exceeds c times the number of subsets of A with cardinality k.

There is active collaborative work, see [7, 8], to improve the con-
stant c. Note that this theorem implies that a positive proportion of
k-tuples satisfy the Prime k-tuples conjecture [2, 4]. Granville dis-
cussed applying these methods to obtain comparable results where the
linear terms n+b in (1.2) are replaced by expressions of the form an+b.
This is equivalent to requiring that the set A be admissible subject to
a congruence h mod k. These kinds of sets have also been studied with
the Selberg lower-bound sieve, see [5, page 174]. Elsewhere in his pa-
per [6], Maynard applies this method to obtain the result that infinitely
often, there are m or more primes in an interval of length cm3e4m for
some positive constant c.

In order to state our main theorem we will need to assume the
following property of a positive integer.
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Property 1.3. The integer m > 3 is such that, for any set A which is
admissible subject to the congruence h mod j and satisfies |A| ≥ 2m−2,
there are arbitrarily large n with |{a ∈ A : n+ a prime}| ≥ m.

Theorem 1.4. Assume that there exists at least one integer m ex-
ceeding 3 with Property 1.3. Then there are infinitely many runs of
consecutive primes p, q, r, s such that r − q exceeds both q − p and
s− r. Equivalently, the sequence of gaps of consecutive prime numbers
contains infinitely many runs of three gaps for which the second exceeds
both the first and the third.

While the result of Theorem 1.4 depends upon the conjecture that
there is at least one value of m > 3 satisfying Property 1.3, we believe
that, at some point, this conjecture will be established. However, at
this point, we do not even know how to deduce it from the Elliott-
Halberstam conjecture, see [2, 4, 6]. Maynard [6] deduced from the
Elliott-Halberstam conjecture that a weaker theorem than Property 1.3
holds for all sufficiently largem, but there, instead of the base 2, he used
a substantially larger base. We require the side condition that A be
admissible subject to the congruence h mod j, to be able to guarantee
that we have consecutive primes.

2. Proof of the main theorem. We assume the hypotheses of
Theorem 1.4 and argue by induction on m. For m = 4, these condi-
tions imply that, for any admissible set A of cardinality 4, there are
infinitely many n such that (1.1) holds. For example, if we take
A = {11, 13, 17, 19}, then we immediately deduce from (1.1) that there
are infinitely many n such that the sequence [n+11, n+13, n+17, n+19]
gives four consecutive primes, in that n + 15 must be divisible by 3.
Now, assume that Theorem 1.4 holds for all values of m not exceeding
some integer M ≥ 4. We begin by recursively constructing a sequence
of admissible sets Ai, where |Ai| = 2i, for i ≥ 2.

Lemma 2.1. If we recursively define the sets Ai, for i ≥ 2, by

A2 = {2, 4, 8, 10};

(2.1) Ai+1 = Ai

∪
{(2i+1)! + a : a ∈ Ai}, if i > 2,
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then Ai is admissible and has cardinality 2i. The union in (2.1) is dis-

joint. In addition, all elements of Ai lie between 2 and 10 +
∑i

t=3 2
t!,

inclusive.

Proof. For i = 2, we observe that

{a+ 9 : a ∈ A2} = {11, 13, 17, 19}

is a set of four primes exceeding the cardinality of our set; thus, it
is admissible and has the asserted cardinality. By inspection, all the
elements in A2 lie in the required range. Now, assume the lemma for
all values of i not exceeding some integer I ≥ 2. By the induction
hypothesis, the largest element of AI+1 is at most

10 +

I∑
t=3

2t! + 2(I+1)! = 10 +

I+1∑
t=3

2t! ,

and this completes the proof of the last statement of Lemma 2.1. By
this last statement, the union in (2.1) is disjoint, and we conclude that
|AI+1| = 2|AI |, from which it follows that |Ai| = 2i for all i. It remains
to show that the set AI+1 is admissible. Thus, we need to show that,
given a prime p, there is a positive integer n such that

∏
a∈A n+ a is

relatively prime to p. If p exceeds |AI+1| = 2I+1, the result is clear.
Since the union in (2.1) is disjoint, the set AI is admissible by the
induction hypotheses, and we have

(2.2) (2I+1)! + a ≡ a mod p for p ≤ 2I+1.

We conclude that there is some n with
∏

a∈A (n+ a) is relatively prime

to p. This leaves the case where p lies between 2I and 2I+1. By (2.2),
the elements of the set on the right-hand side of (2.1) cover at most 2I

residue classes modulo p, and this verifies that our set AI+1 is, indeed,
admissible. This completes the induction. �

Next, we show that, if we have any i+2 elements of the set Ai, and
we arrange them in ascending order, then we can find a run of four
of them where the gap between the second and third exceeds the gap
between the first and second, as well as the gap between the third and
fourth. We may view this as a combinatorial lemma.
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Lemma 2.2. Assume that m ≥ 2. In the notation of Lemma 2.1, for
any subset B of Am with |B| ≥ m+2, there are elements b1, b2, b3, b4
of B so that

b1 < b2 < b3 < b4,

b3 − b2 > max(b4 − b3, b2 − b1),

and the interval [b1, b4] contains no other element of B except for these
four elements.

Proof. Again, we reason by induction on the integer m > 1. For
m = 2, the assumption implies that B = A2 = {2, 4, 8, 10}, which
satisfies the conclusion of our lemma. Now, assume that Lemma 2.2
holds for all m less than some integer M ≥ 3. Consider the decompo-
sition in (2.1) of AM into two disjoint sets. If there are at least M + 1
elements in AM−1, then we can deduce the conclusion of the lemma
from the induction hypothesis. Similarly, since the other set is a linear
translation of AM−1, we can apply the same reasoning. Thus, we are
left with the case in which there are at least two elements lying in each
of these sets. Take the four elements of B to be the largest two elements
in AM−1 together with the smallest two elements in the other set, and
label them in ascending order. Then by Lemma 2.1, we have

(2.3) b3 − b2 ≥ 2M ! + 2−
(
10 +

M−1∑
t=3

2t!

)
,

(2.4) max(b2 − b1, b4 − b3) < 10 +
M−1∑
t=3

2t!.

The left side of (2.3) exceeds the right side of (2.4) due to the growth
rate of the function 2t. �

In order to establish Theorem 1.2, we require that we have consec-
utive primes, and the next lemma allows us to do that.

Lemma 2.3. In the notation of Lemma 2.1, for every integer m > 1,
there is a congruence h mod j such that Am is admissible with respect
to the congruence h mod j, and such that, if n is a positive integer,
then the only primes between the minimal and maximal element of
{n+ a : a ∈ Am}, inclusive, are elements of {n+ a : a ∈ Am}.
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Proof. Fix m, and let the minimal element of Am be α and the
maximal element of Am be β. Denote the set of integers in [α, β] that
are not in Am by S. Then, select the first |S| primes exceeding 2+|Am|,
and call them p(s)s∈S . For each s ∈ S, consider the congruence

(2.5) n ≡ −s mod p(s).

By the Chinese remainder theorem, the set of congruences in (2.5) is
equivalent to the single congruence

(2.6) n ≡ h mod
∏
s∈S

p(s).

We claim that the set Am is admissible, subject to congruence (2.6).
Indeed, if p is any prime not in S, then the Chinese remainder theorem
and the definition of admissibility still imply that there is some integer n
for which p does not divide

∏
a∈Am

(n+ a). If p ∈ S, then n = 1 will
have this property by construction, and this establishes our claim. In
addition, we have arranged it so that whenever (2.6) holds, then so
does (2.5), and this guarantees that, for any n satisfying (2.6), the
prime elements of the set

{n+ a : a ∈ Am}

are consecutive. �

We are now ready to establish the main theorem.

Proof. Assume that there is an integer m > 2 fulfilling the hypothe-
ses. Let n be an integer so that the set {n + a : a ∈ Am} contains at
least 2m + 2 primes. By Lemma 2.2, there is a subset B of

{a ∈ Am : n+ a is prime}

of cardinality 4, so that the elements {bi}i=1,...,4 satisfy its conclusions.
In the above argument, there was no restriction on the value of n other
than at least 2m +2 primes in the set {n+ a : a ∈ Am}, and hence, we
can apply Lemma 2.3 to satisfy this for some integer n satisfying (2.6).
It then follows from Lemma 2.3 that the primes in

{n+ b : b ∈ B}

are consecutive. �
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3. Final remarks. The first three admissible sets in our construc-
tion are as follows:

A2 = {2, 4, 8, 10},

A3 = {2, 4, 8, 10, 40322, 40324, 40328, 40330},

A4 = {2, 4, 8, 10, 40322, 40324, 40328, 40330, 20922789888002,
20922789888004, 20922789888008, 20922789888010,

20922789928322, 20922789928324,

20922789928328, 20922789928320}

With care, we can find admissible sets with the same cardinality and
with much smaller elements that would suffice, if the purpose were more
computational in nature. For example, the set

A′
2 = {2, 4, 8, 10, 212, 214, 218, 220},

used in place of the set A2 that we have used, would still work to give
an admissible set of the correct cardinality so that the lemmas and the
main theorem would work for that case (and, of course, the bound on
the elements in our sets would need to be adjusted accordingly).

The configuration high, low, high of consecutive prime-gaps appears
to be a more difficult problem. Certainly, if there are infinitely many
values of n such that all of the elements of the set {n+ 7, n+ 11, n+
13, n + 17} are prime, then we will have infinitely many instances of
high, low, high gaps, but construction of additional admissible sets
Ai along the lines of the argument of this paper appears to yield a
requirement for significantly more prime elements of the corresponding
sets {n + a : a ∈ Ai} than we require in Theorem 1.2. Indeed, for all
other examples of gaps where no theorem is established (other than
the low, high, low run), and where there are at least four terms,
our methods give a linear relationship between the number of prime
elements of the set {a ∈ A : n+a} (for the best case) and the cardinality
of the set {a ∈ A : n + a}. The fact that we have an exponential
relationship in Property 1.3, sets the low, high, low case apart from
others.
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