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ROUGH SINGULAR INTEGRALS
ASSOCIATED TO SURFACES OF REVOLUTION

ON TRIEBEL-LIZORKIN SPACES

FENG LIU

ABSTRACT. In this paper, we establish the boundedness
of rough singular integrals associated to surfaces of revolu-
tion generated by two polynomial mappings on the Triebel-
Lizorkin spaces and Besov spaces.

1. Introduction. Throughout this paper, let n ≥ 2 and An denote
the class of polynomials of n variables with real coefficients. For N ≥ 1,
let An,N be the collection of polynomials in An which have degrees not
exceeding N , and let Vn,N be the collection of polynomials in An,N

which are homogeneous of degree N .

Let Rn be the n-dimensional Euclidean space, and let Sn−1 denote
the unit sphere in Rn equipped with the induced Lebesgue measure dσ.
For any nonzero vector y ∈ Rn, we shall let

y′ =
y

|y|
= (y′1, . . . , y

′
n).

Let d, m ≥ 1 and ΓΦ,Ψ = {(Φ(y),Ψ(|y|)) : y ∈ Rn} be surfaces gener-
ated by two suitable mappings

Φ : Rn −→ Rd and Ψ : [0,∞) −→ Rm.

2010 AMS Mathematics subject classification. Primary 42B20, 42B25.
Keywords and phrases. Singular integrals, rough kernels, surfaces of revolution,

Triebel-Lizorkin spaces, Besov spaces.
This work is supported by the NNSF of China, grant No. 11701333, the Sci-

entific Research Foundation of Shandong University of Science and Technology
for Recruited Talents, grant No. 2015RCJJ053, the Research Award Fund for
Outstanding Young Scientists of Shandong Province, grant No. BS2015SF012, and
the Support Program for Outstanding Young Scientific and Technological Top-notch
Talents of College of Mathematics and Systems Science, grant No. Sxy2016K01.

Received by the editors on September, 8, 2015, and in revised form on Janu-
ary 11, 2016.
DOI:10.1216/RMJ-2017-47-5-1617 Copyright c⃝2017 Rocky Mountain Mathematics Consortium

1617



1618 FENG LIU

Let K be a kernel of Calderón-Zygmund type on Rn, given by

(1.1) K(y) =
Ω(y)h(|y|)

|y|n
,

where Ω is homogeneous of degree zero, integrable over Sn−1 and
satisfies

(1.2)

∫
Sn−1

Ω(u) dσ(u) = 0

and h ∈ ∆1(R+). Define the singular integral operator Th,Ω,Φ,Ψ in
Rd+m along ΓΦ,Ψ by

(1.3) Th,Ω,Φ,Ψf(u, v) := p.v.

∫
Rn

f(u− Φ(y), v −Ψ(|y|))K(y) dy,

where (u, v) ∈ Rd×Rm = Rd+m and f ∈ S(Rd+m) (the Schwartz class).
Here, ∆γ(R+), γ > 0, denotes the set of all measurable functions h
defined on R+ := (0,∞), satisfying

∥h∥∆γ(R+) := sup
R>0

(
R−1

R∫
0

|h(t)|γdt
)1/γ

<∞.

Clearly, L∞(R+) = ∆∞(R+) ( ∆γ2(R+) ( ∆γ1(R+) for 0 < γ1 < γ2
<∞.

In this paper, we aim to establish some new results concerning rough
singular integral operators Th,Ω,Φ,Ψ associated to certain surfaces of
revolution on the Triebel-Lizorkin and Besov spaces. As is well known,
the Triebel-Lizorkin and Besov spaces contain many important function
spaces, such as Lebesgue, Hardy, Sobolev and Lipschitz spaces.

Here, we recall some definitions. For α ∈ R, 0 < p, q ≤ ∞, p ̸= ∞,
the homogeneous Triebel-Lizorkin spaces Ḟ p,q

α (Rn) and homogeneous

Besov spaces Ḃp,q
α (Rn) are defined, respectively, by

(1.4) Ḟ p,q
α (Rn) :=

{
f ∈ S ′(Rn) : ∥f∥Ḟp,q

α (Rn)

=

∥∥∥∥(∑
i∈Z

2−iαq|Ψi ∗ f |q
)1/q∥∥∥∥

Lp(Rn)

<∞
}
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and

(1.5) Ḃp,q
α (Rn) :=

{
f ∈ S ′(Rn) : ∥f∥Ḃp,q

α (Rn)

=

(∑
i∈Z

2−iαq∥Ψi ∗ f∥qLp(Rn)

)1/q

<∞
}
,

where S ′(Rn) denotes the tempered distribution class on Rn, Ψ̂i(ξ) =
ϕ(2iξ) for i ∈ Z, and ϕ ∈ C∞

c (Rn) satisfies the conditions:

0 ≤ ϕ(x) ≤ 1;

supp (ϕ) ⊂ {x : 1/2 ≤ |x| ≤ 2};
ϕ(x) > c > 0 if 3/5 ≤ |x| ≤ 5/3.

Clearly, Ḟ p,p
α (Rn) = Ḃp,p

α (Rn) for any α ∈ R and 1 < p <∞. Moreover,
it is well known that

(1.6) Ḟ p,2
0 (Rn) = Lp(Rn)

for any 1 < p < ∞, see [16, 17, 28], etc., for additional properties of

Ḟ p,q
α (Rn) and Ḃp,q

α (Rn).

The nonhomogeneous versions of Triebel-Lizorkin and Besov spaces,
denoted by F p,q

α (Rn) and Bp,q
α (Rn), respectively, are obtained by

adding the term ∥Θ ∗ f∥Lp(Rn) to the right hand side of (1.4) or (1.5)
with

∑
i∈Z replaced by

∑
i≥1, where Θ ∈ S(Rn) and

supp (Θ̂) ⊂ {ξ ∈ Rn : |ξ| ≤ 2}, Θ̂(x) > c > 0

if |x| ≤ 5/3. The following properties are well known, see [16, 17], for
example, for any 1 < p, q <∞:

(1.7) F p,q
α (Rn) ∼ Ḟ p,q

α (Rn) ∩ Lp(Rn)

and
∥f∥Fp,q

α (Rn) ∼ ∥f∥Ḟp,q
α (Rn) + ∥f∥Lp(Rn), α > 0;

(1.8) Bp,q
α (Rn) ∼ Ḃp,q

α (Rn) ∩ Lp(Rn)

and
∥f∥Bp,q

α (Rn) ∼ ∥f∥Ḃp,q
α (Rn) + ∥f∥Lp(Rn), α > 0.
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When Ψ(t) ≡ (0, . . . , 0) ∈ Rm, the operator Th,Ω,Φ,Ψ essentially
reduces to the lower-dimensional singular integral

Th,Ω,Φf(x) := p.v.

∫
Rn

f(x− Φ(y))K(y) dy, x ∈ Rd,

where K(·) is as in (1.1). When n = d, h ≡ 1 and Φ(y) = y,
the operator Th,Ω,Φ reduces to the classical singular integral operator
denoted by TΩ. The boundedness of TΩ on the Triebel-Lizorkin spaces
has been extensively investigated by many authors. For example,
see [8] for the case Ω ∈ Lr(Sn−1) with some r > 1, [2, 9] for the
case Ω ∈ Fβ(S

n−1) with some β > 1, [5] for the case Ω ∈ H1(Sn−1),

[20] for the case Ω ∈ L log+ L(Sn−1) and [21] for the case Ω ∈
L(log+ L)α(Sn−1) with some 0 < α < 1. Here, H1(Sn−1) denotes the
Hardy space on the unit sphere Sn−1 which contains L log+ L(Sn−1)
as a proper space, see [11, 26]. First introduced by Grafakos and
Stefanov [18], Fβ(S

n−1), β > 0, denotes the set of all L1(Sn−1)
functions Ω satisfying

sup
ξ∈Sn−1

∫
Sn−1

|Ω(y′)|
(
log

1

|ξ · y′|

)β

dσ(y′) <∞.

Note that ∪
q>1

Lq(Sn−1) (
∩
β>0

Fβ(S
n−1)

and ∩
β>1

Fβ(S
n−1) * L log+ L(Sn−1).

Moreover, ∩
β>1

Fβ(S
n−1) * H1(Sn−1) *

∪
β>1

Fβ(S
n−1);

L(log+ L)β1(Sn−1) ( L(log+ L)β2(Sn−1), for all β1 > β2 > 0;

L(log+ L)β(Sn−1) * H1(Sn−1) * L(log+ L)β(Sn−1),

for all 0 < β < 1.
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When n = d, m = 1, h ≡ 1 and Φ(y) = y, the operator Th,Ω,Φ,Ψ

reduces to the classical singular integral operator associated to surfaces
of revolution denoted by TΩ,Ψ. The L

p mapping properties of TΩ,Ψ were
first given by Kim, et al. [19] under the stronger assumption that Ψ
is a convex increasing function with Ψ(0) = 0 and Ω ∈ C∞(Sn−1). It
should be pointed out that the above result can be extended to the
case Ω ∈ Lq(Sn−1) for some q > 1 by modifying the proof of [19,
Theorem 1], see [27, pages 372, 373], as well as [7]. Later on, the
result of [19] was extended to the case Ω ∈ L log+ L(Sn−1) by Al-
Salman and Pan [3]. In 2001, Lu, Pan and Yang [24] extended the
above results to the case Ω ∈ H1(Sn−1), see [24, Theorem 1] for a more
general result. Moreover, it follows from [24, Theorem 1] that TΩ,Ψ is
bounded on Lp(Rn+1) for 1 < p < ∞, provided that Ω ∈ H1(Sn−1)
and Ψ ∈ A1. In 2002, Cheng and Pan [10] studied the Lp bounds
for the operator TΩ,Ψ with Ω ∈ Fβ(S

n−1) and Ψ ∈ A1. Recently, Al-
Balushi and Al-Salman [1] generalized the result of [10] and proved
the following result.

Theorem A ([1]). Let n = d, m = 1, h ≡ 1,

Φ(y) = (P1(|y|)y′1, . . . , Pn(|y|)y′n)
with P = (P1, . . . , Pn) ∈ (A1)

n

and Ψ ∈ A1. Suppose that Ω satisfies (1.2) and Ω ∈ Fβ(S
n−1)

for some β > 1. Then, Th,Ω,Φ,Ψ is bounded on Lp(Rn+1) for p ∈
(2β/(2β − 1), 2β).

A question which naturally arises is whether the condition Ω ∈
L(log+ L)α(Sn−1) is also sufficient for the Lp boundedness of Th,Ω,Φ,Ψ

with Φ, Ψ as in Theorem A. An affirmative answer is given by proving
a more general result. More precisely, we shall establish the following
result.

Theorem 1.1. Let n = d,

Φ(y) = (P1(|y|)y′1, . . . , Pn(|y|)y′n) with (P1, . . . , Pd) ∈ (A1)
d

and
Ψ = (Q1, . . . , Qm) ∈ (A1)

m.

Suppose that one of the following conditions holds:
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(a) h ∈ ∆γ(R+) for some γ > 1 and Ω ∈ L log+ L(Sn−1) satisfy-
ing (1.2);

(b) h ∈ Hγ(R+) for some γ > 1 and Ω ∈ L(log+ L)1/γ
′
(Sn−1)

satisfying (1.2), where Hγ(R+), γ > 0 is the set of all measurable
functions h : R+ → C satisfying

∥h∥Hγ(R+) :=

( ∞∫
0

|h(t)|γ dt
t

)1/γ

<∞.

Then,

(i) Th,Ω,Φ,Ψ is bounded on Ḟ p,q
α (Rd+m) for α ∈ R and (1/p, 1/q) ∈

Rγ , where Rγ is the set of all interiors of the convex hull of three
squares (

1

2
,
1

2
+

1

max{2, γ′}

)2

,

(
1

2
− 1

max{2, γ′}
,
1

2

)2

and (
1

2γ
, 1− 1

2γ

)2

.

(ii) Th,Ω,Φ,Ψ is bounded on Ḃp,q
α (Rd+m) for α ∈ R, 1 < q <∞ and∣∣∣∣1p − 1

2

∣∣∣∣ < min

{
1

2
,
1

γ′

}
.

See Figures 1–3 for Rγ .

Here,

P1 =

(
1

2
− 1

max{2, γ′}
,
1

2
− 1

max{2, γ′}

)
,

P2 =

(
1

2
,
1

2
− 1

max{2, γ′}

)
,

P3 =

(
1

2
+

1

max{2, γ′}
,
1

2

)
,

P4 =

(
1

2
+

1

max{2, γ′}
,
1

2
+

1

max{2, γ′}

)
,
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Figure 1. (1 < γ ≤ 2).

Figure 2. (2 < γ < ∞).

P5 =

(
1

2
,
1

2
+

1

max{2, γ′}

)
, P6 =

(
1

2
− 1

max{2, γ′}
,
1

2

)
,

Q1 = (0, 0), Q2 = (1, 0), Q3 = (1, 1) and Q4 = (0, 1)

R1 =

(
1− 1

2γ
,

1

2γ

)
, R2 =

(
1

2γ
, 1− 1

2γ

)
.
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Figure 3. (γ = ∞).

Remark 1.2. Note that Hγ(R+) ( ∆γ(R+) for 0 < γ < ∞ and
H∞(R+) = L∞(R+). From Figures 1–3, we see that Rλ1 ( Rλ2 for
λ2 > λ1 > 1 and R∞ = (0, 1)2.

When Ψ(t) ≡ (0, . . . , 0) ∈ Rm and Φ(y) = P(y) ∈ (An)
d, the

operator Th,Ω,Φ,Ψ essentially reduces to the class of singular radon
transforms Th,Ω,P , defined by

Th,Ω,Pf(x) := p.v.

∫
Rn

f(x− P(y))K(y) dy,

where x ∈ Rd and K(·) is as in (1.1).

The investigation of boundedness of Th,Ω,P on Triebel-Lizorkin
spaces has attracted the attention of many authors. For relevant re-
sults, one may consult [6, 22, 23].

We now give the results of [6, 22] as follows:

Theorem B. Let P = (P1, . . . , Pd) ∈ (An)
d and Ω satisfy (1.2).

Suppose that one of the following conditions holds:

(i) h ∈ ∆γ(R+) for some γ > 1 and Ω ∈ H1(Sn−1) [6];
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(ii) h ∈ Hγ(R+) for some γ > 1 and Ω ∈ L(log+ L)1/γ
′
(Sn−1) [22].

Then, Th,Ω,P is bounded on Ḟ p,q
α (Rd) for α ∈ R and max{|1/p −

1/2|, |1/q − 1/2|} < min{1/2, 1/γ′}.

Remark 1.3. There is a gap in Theorem B, see [29, Remark 1]. That
proof works in the same region as in our main theorems below.

The remainder of the results of this paper may be stated as follows.

Theorem 1.4. Let Φ = (P1, . . . , Pd) ∈ (An)
d and Ψ = (Q1, . . . , Qm) ∈

(A1)
m. Suppose that h ∈ ∆γ(R+) for some γ > 1 and Ω ∈ H1(Sn−1)

satisfying (1.2). Then,

(i) Th,Ω,Φ,Ψ is bounded on Ḟ p,q
α (Rd+m) for α ∈ R and (1/p, 1/q) ∈

Rγ , where Rγ is as in Theorem 1.1.

(ii) Th,Ω,Φ,Ψ is bounded on Ḃp,q
α (Rd+m) for α ∈ R, 1 < q < ∞, and

|1/p− 1/2| < min{1/2, 1/γ′}.

Theorem 1.5. Let Φ, Ψ and Rγ be as in Theorem 1.4. Suppose that

h ∈ Hγ(R+) for some γ > 1 and Ω ∈ L(log+ L)1/γ
′
(Sn−1) satisfy-

ing (1.2). Then,

(i) Th,Ω,Φ,Ψ is bounded on Ḟ p,q
α (Rd+m) for α ∈ R and (1/p, 1/q) ∈

Rγ .

(ii) Th,Ω,Φ,Ψ is bounded on Ḃp,q
α (Rd+m) for α ∈ R, 1 < q < ∞, and

|1/p− 1/2| < min{1/2, 1/γ′}.

Remark 1.6.

(i) It should be pointed out that the range of (p, q) in our main
results was first given by Yabuta [29];

(ii) It follows from our main results and (1.6) that, under the as-
sumptions on h, Ω, Φ and Ψ in Theorems 1.1 and 1.4–1.5, the operators
Th,Ω,Φ,Ψ are bounded on Lp(Rd+m) for |1/p − 1/2| < min{1/2, 1/γ′},
which are new;

(iii) Theorems 1.1 and 1.3 do not hold when replacing h ∈ Hγ(R+)

by h ∈ ∆γ(R+) for γ > 1 due to L∞(R+) ⊂ ∆γ(R+), L log+ L(Sn−1) (
L(log+ L)α(Sn−1) for any 0 < α < 1, and Calderón and Zygmund’s
well-known result [4];
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(iv) Our main results are new, even in the special cases n = d,
Φ(y) = y or m = 1 and Ψ(|y|) = |y|.

Corollary 1.7 immediately follows from (1.6)–(1.8) and Theorems 1.1
and 1.4–1.5.

Corollary 1.7. Under the same conditions as Theorems 1.1 and 1.4–
1.5 with α > 0, these operators are bounded on F p,q

α (Rd+m) and
Bp,q

α (Rd+m).

The paper is organized as follows. Section 2 is devoted to presenting
some auxiliary lemmas. In Section 3, we shall prove Theorems 1.1
and 1.5. The proof of Theorem 1.4 will be given in Section 4. Finally,
we shall give some further results in Section 5. We remark that the
main method employed in this paper is a combination of ideas and
arguments from [6, 13, 14, 23] (although we use the standard methods
of Fourier transform and Littlewood-Paley theory, they are non-trivial).
We would like to point out that our proofs have two main ingredients:

(i) a criterion of boundedness for the operators of convolution type
on Triebel-Lizorkin spaces, see Lemma 2.5;

(ii) a refined estimate of vector-valued inequality, see Lemma 2.4,
which is a major factor in obtaining our main results.

Throughout the paper, we denote p′ by the conjugate index of p, which
satisfies 1/p + 1/p′ = 1. The letters C or c, sometimes with certain
parameters, will stand for positive constants, not necessarily the same
at each occurrence, but independent of the essential variables. We shall
use δRn to denote the Dirac delta function on Rn; J−1 denotes the
inverse transform of linear transformation J ; Dt denotes the transpose
of the linear transformation D and πd

n denotes a projection operator
from Rd to Rn when n ≤ d. In what follows, we set∑

j∈∅

aj = 0 and
∏
j∈∅

aj = 1.

2. Preliminary lemmas. We begin with the following lemma of
van der Corput type, which was proven by Ricci and Stein [25].
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Lemma 2.1. ([25, page 186, Corollary]). Let l ∈ N \ {0}, µ1, . . . , µl

∈ R, d1, . . . , dl, be distinct positive real numbers. Let ψ ∈ C1([0, 1]).
Then there exists a C > 0 independent of {µj}lj=1 such that∣∣∣∣

τ∫
δ

ei(µ1t
d1+...+µlt

dl )ψ(t) dt

∣∣∣∣ ≤ C|µ1|−ϵ

(
|ψ(τ)|+

τ∫
δ

|ψ′(t)| dt
)

holds for 0 ≤ δ < τ ≤ 1 and ϵ = min{1/d1, 1/l}.

Next, we recall two important vector-valued norm inequalities.

Lemma 2.2. ([22, Proposition 2.3]). Let {ak}k∈Z be a lacunary se-
quence of positive numbers with the property

inf
k∈Z

ak+1

ak
≥ a > 1.

Let 0 < M ≤ N and

H : RM −→ RM and G : RN −→ RN

be two nonsingular linear transformations. Let Υ(ξ) ∈ S(RM ) with

Υ̂(0) = 0 and Υk(ξ) = a−M
k Υ(ξ/ak). Define the transformations J

and Xk by

J(f)(x) = f(Gt(Ht ⊗ idRN−M )x)

and

Xk(f)(x) = J−1(Υk ⊗ δRN−M ) ∗ J(f))(x).

Then, for 1 < p, q < ∞, {gj}j∈Z ∈ Lp(RN , ℓq) and {gk,j}k, j∈Z ∈
Lp(RN , ℓq(ℓ2)), there exists a CM,a > 0 such that∥∥∥∥(∑

j∈Z

(∑
k∈Z

|Xk(gj)|2
)q/2)1/q∥∥∥∥

Lp(RN )

≤ CM,a

∥∥∥∥(∑
j∈Z

|gj |q
)1/q∥∥∥∥

Lp(RN )

,
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∥∥∥∥(∑
j∈Z

(∑
k∈Z

|Xk(gk,j)|2
)q/2)1/q∥∥∥∥

Lp(RN )

≤ CM,a

∥∥∥∥(∑
j∈Z

(∑
k∈Z

|gk,j |2
)q/2)1/q∥∥∥∥

Lp(RN )

.

Lemma 2.3. ([6, Theorem 1.4]). Let P = (P1, . . . , Pd) ∈ (An)
d.

Then, for 1 < p, q <∞, the operator MP given by

MPf(x) = sup
r>0

1

rn

∫
|y|≤r

|f(x− P(y))| dy

satisfies the following Lp(Rd, ℓq) inequality∥∥∥∥(∑
j∈Z

|MPfj |q
)1/q∥∥∥∥

Lp(Rd)

≤ Cp,q

∥∥∥∥(∑
j∈Z

|fj |q
)1/q∥∥∥∥

Lp(Rd)

,

where Cp,q is independent of the coefficients of Pj for all 1 ≤ j ≤ d.

In what follows, for any µ ∈ N, we set

(2.1) ∥|h|∥µ,γ = sup
k∈Z

( 2(µ+1)(k+1)∫
2(µ+1)k

|h(t)|γ dt
t

)1/γ

, γ > 1.

For a suitable mapping Γ : Rn → Rd, define the sequence of measures
{σk,µ,Γ,Ω}k∈Z by

(2.2)

∫
Rd

f dσk,µ,Γ,Ω =

∫
Dµ,k

f(Γ(x))K(x) dx,

where K(·) is as in (1.1) and

Dµ,k = {x ∈ Rn : 2(µ+1)k ≤ |x| < 2(µ+1)(k+1)}.

Next is a crucial lemma, which will play a key role in the proofs of
the main results.
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Lemma 2.4. Let

Γ(y) =

(
P1(|y|)a1

(
y

|y|

)
, . . . , Pd(|y|)ad

(
y

|y|

))
,

where (P1, . . . , Pd) ∈ (A1)
d and a1, . . . , am are arbitrary functions

defined on Sn−1. Suppose that Ω ∈ L1(Sn−1) and ∥|h|∥µ,γ < ∞ for
some µ ∈ N and γ > 1. If (1/p, 1/q) belongs to the interior of the
convex hull of three squares(

1

2
,
1

2
+

1

max{2, γ′}

)2

,

(
1

2
− 1

max{2, γ′}
,
1

2

)2

and

(
1

2γ
, 1− 1

2γ

)2

,

then, for arbitrary functions {gk,j}k,j∈Z ∈ Lp(Rd, ℓq(ℓ2)), there exists
a C > 0 independent of µ and γ such that

(2.3)

∥∥∥∥(∑
j∈Z

(∑
k∈Z

|σk,µ,Γ,Ω ∗ gk,j |2
)q/2)1/q∥∥∥∥

Lp(Rd)

≤ CAµ,γ

∥∥∥∥(∑
j∈Z

(∑
k∈Z

|gk,j |2
)q/2)1/q∥∥∥∥

Lp(Rd)

,

where Aµ,γ = (µ+ 1)1/γ
′∥|h|∥µ,γ∥Ω∥L1(Sn−1).

Proof. We shall prove the lemma by considering the following two
cases.

Case 1. 1 < γ ≤ 2. We begin by proving (2.3) for 2 < p, q <
2γ/(2− γ). By duality, there exists an {fj}j∈Z satisfying

∥{fj}∥L(p/2)′ (Rd,ℓ(q/2)′ ) ≤ 1

such that

(2.4)

∥∥∥∥(∑
j∈Z

(∑
k∈Z

|σk,µ,Γ,Ω ∗ gk,j |2
)q/2)1/q∥∥∥∥2

Lp(Rd)

=

∫
Rd

∑
j∈Z

∑
k∈Z

|σk,µ,Γ,Ω ∗ gk,j(x)|2fj(x) dx.
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By a similar argument as in [14, (7.7)], we have

(2.5)

∫
Rd

|σk,µ,Γ,Ω ∗ gk,j(x)|2fj(x) dx

≤ C∥Ω∥L1(Sn−1)∥|h|∥γµ,γ
∫
Rd

|gk,j(x)|2HΓ(fj)(x) dx,

where

HΓ(fj)(x) = sup
k∈Z

2(µ+1)(k+1)∫
2(µ+1)k

∫
Sn−1

|fj(x+ Γ(ty′))||Ω(y′)| dσ(y′)|h(t)|2−γ dt

t
.

By Hölder’s inequality, we have

HΓ(fj)(x)

≤ ∥|h|∥2−γ
µ,γ

∫
Sn−1

(
sup
k∈Z

2(µ+1)(k+1)∫
2(µ+1)k

|fj(x+ Γ(ty′))|γ
′/2 dt

t

)2/γ′

|Ω(y′)|dσ(y′)

≤ ∥|h|∥2−γ
µ,γ

∫
Sn−1

( µ∑
i=0

sup
k∈Z

2(µ+1)k+i+1∫
2(µ+1)k+i

|fj(x+Γ(ty′))|γ
′/2 dt

t

)2/γ′

|Ω(y′)|dσ(y′)

≤ (µ+ 1)2/γ
′
∥|h|∥2−γ

µ,γ

∫
Sn−1

|Ω(y′)|

·
(
sup
r>0

1

r

∫
|t|≤r

|fj(x+ Γ(ty′))|γ
′/2dt

)2/γ′

dσ(y′).

Invoking Lemma 2.3 and Minkowski’s inequality, we have, for γ′/2 <
u, v <∞,

∥∥∥∥(∑
j∈Z

|HΓ(fj)|v
)1/v∥∥∥∥

Lu(Rd)

≤ (µ+ 1)2/γ
′
∥|h|∥2−γ

µ,γ

(2.6)

· ∥Ω∥L1(Sn−1)

∥∥∥∥(∑
j∈Z

|fj |v
)1/v∥∥∥∥

Lu(Rd)

.
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It follows from (2.4)–(2.6) that∥∥∥∥(∑
j∈Z

(∑
k∈Z

|σk,µ,Γ,Ω ∗ gk,j |2
)q/2)1/q∥∥∥∥2

Lp(Rd)

≤ C∥Ω∥L1(Sn−1)∥|h|∥γµ,γ
∫
Rd

∑
j∈Z

∑
k∈Z

|gk,j(x)|2HΓ(fj)(x) dx

≤ C∥Ω∥L1(Sn−1)∥|h|∥γµ,γ
∥∥∥∥(∑

j∈Z

|HΓ(fj)|v
)1/v∥∥∥∥

Lu(Rd)

·
∥∥∥∥(∑

j∈Z

(∑
k∈Z

|gk,j |2
)q/2)1/q∥∥∥∥2

Lp(Rd)

≤ C(µ+ 1)2/γ
′
∥Ω∥2L1(Sn−1)∥|h|∥

2
µ,γ

·
∥∥∥∥(∑

j∈Z

(∑
k∈Z

|gk,j |2
)q/2)1/q∥∥∥∥2

Lp(Rd)

,

where we take u = (p/2)′ and v = (q/2)′. Thus, (2.3) holds for
2 < p, q < 2γ/(2− γ). We also obtain (2.3) for 2γ/(3γ − 2) < p,
q < 2, by the duality. Interpolating these two cases, we obtain (2.3) for
(1/p, 1/q) belonging to the interior of the convex hull of two squares
(1/2 − 1/γ′, 1/2)2 and (1/2, 1/2 + 1/γ′)2. Note that, in this case, the
interior of the square (1/2γ, 1 − 1/2γ)2 is contained in the interior of
the convex hull of two squares (1/2−1/γ′, 1/2)2 and (1/2, 1/2+1/γ′)2.

Case 2. γ > 2. Since ∥|h|∥µ,2 ≤ (µ+1)1/2−1/γ∥|h|∥µ,γ for γ > 2, we
can get (2.3) for (1/p, 1/q) belonging to the interior of the convex hull
of two squares (0, 1/2)2 and (1/2, 1)2.

Below, we shall prove (2.3) for (1/p, 1/q) belonging to the interior of
the square (1/2γ, 1− (1/2γ))2. For convenience, we define the measure
|σk,µ,Γ,Ω| in the same way as σk,µ,Γ,Ω, but with Ω and h replaced by |Ω|
and |h|, respectively, for any arbitrary functions {gj}j∈Z ∈ Lp(Rd, ℓq)
with p, q > γ′. By a change of variables, and Hölder’s inequality,

|σk,µ,Γ,Ω| ∗ |gj |(x)

≤
2(µ+1)(k+1)∫
2(µ+1)k

∫
Sn−1

|gj(x− Γ(ty′))||Ω(y′)| dσ(y′)|h(t)| dt
t
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≤ ∥|h|∥µ,γ
( 2(µ+1)(k+1)∫

2(µ+1)k

∣∣∣∣ ∫
Sn−1

|gj(x− Γ(ty′))||Ω(y′)| dσ(y′)
∣∣∣∣γ′
dt

t

)1/γ′

≤ ∥|h|∥µ,γ∥Ω∥1/γL1(Sn−1)

×
( ∫
Sn−1

2(µ+1)(k+1)∫
2(µ+1)k

|gj(x− Γ(ty′))|γ
′ dt

t
|Ω(y′)| dσ(y′)

)1/γ′

≤ (µ+ 1)1/γ
′
∥|h|∥µ,γ∥Ω∥1/γL1(Sn−1)

×
( ∫
Sn−1

sup
r>0

1

r

∫
|t|≤r

|gj(x− Γ(ty′))|γ
′
dt|Ω(y′)| dσ(y′)

)1/γ′

,

which, combining Minkowski’s inequality with Lemma 2.3, implies that,
for any p, q > γ′,

(2.7)

∥∥∥∥(∑
j∈Z

(
sup
k∈Z

|σk,µ,Γ,Ω| ∗ |gj |
)q)1/q∥∥∥∥

Lp(Rd)

≤ Cp,qAµ,γ

∥∥∥∥(∑
j∈Z

|gj |q
)1/q∥∥∥∥

Lp(Rd)

.

It follows that

∥∥∥∥(∑
j∈Z

(
sup
k∈Z

|σk,µ,Γ,Ω ∗ gk,j |
)q)1/q∥∥∥∥

Lp(Rd)

(2.8)

≤
∥∥∥∥(∑

j∈Z

(
sup
k∈Z

|σk,µ,Γ,Ω| ∗ sup
k∈Z

|gk,j |
)q)1/q∥∥∥∥

Lp(Rd)

≤ Cp,qAµ,γ

∥∥∥∥(∑
j∈Z

(
sup
k∈Z

|gk,j |
)q)1/q∥∥∥∥

Lp(Rd)

for any p, q > γ′. On the other hand, for any 1 < p, q < γ, then
p′, q′ > γ′. By the dual argument, there exists {hj}j∈Z ∈ Lp′

(Rd, ℓq
′
)
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with ∥{hj}∥Lp′ (Rd,ℓq′ ) = 1 such that∥∥∥∥(∑
j∈Z

(∑
k∈Z

|σk,µ,Γ,Ω ∗ gk,j |
)q)1/q∥∥∥∥

Lp(Rd)

=
∑
j∈Z

∫
Rd

∑
k∈Z

|σk,µ,Γ,Ω ∗ gk,j(x)|hj(x) dx

≤
∑
j∈Z

∫
Rd

∑
k∈Z

|gk,j(x)||σk,µ,Γ,Ω| ∗ |h̃j |(−x) dx

≤
∥∥∥∥(∑

j∈Z

(∑
k∈Z

|gk,j |
)q)1/q∥∥∥∥

Lp(Rd)

×
∥∥∥∥(∑

j∈Z

(
sup
k∈Z

|σk,µ,Γ,Ω| ∗ |h̃j |
)q′)1/q′∥∥∥∥

Lp′ (Rd)

,

where h̃j(x) = hj(−x). Combining this with (2.7) implies that

(2.9)

∥∥∥∥(∑
j∈Z

(∑
k∈Z

|σk,µ,Γ,Ω ∗ gk,j |
)q)1/q∥∥∥∥

Lp(Rd)

≤ Cp,qAµ,γ

∥∥∥∥(∑
j∈Z

(∑
k∈Z

|gk,j |
)q)1/q∥∥∥∥

Lp(Rd)

for any {gk,j}k, j∈Z ∈ Lp(Rm, ℓq(ℓ∞)) with 1 < p, q < γ. Interpolation
between (2.8) and (2.9) yields (2.3) for (1/p, 1/q) belonging to the
interior of the square (1/2γ, 1− (1/2γ))2. Again, by interpolation, we
obtain (2.3) for the case γ > 2 and complete the proof of Lemma 2.4.

�

A criterion on the bounds of the convolution operators in Triebel-
Lizorkin spaces is now given, which is the heart of our proofs.

Lemma 2.5. Let Λ, v ∈ N \ {0}. For 1 ≤ s ≤ Λ, let {ak,s,v}k∈Z be a
lacunary sequence of positive numbers with the property :

inf
k∈Z

ak+1,s,v

ak,s,v
≥ ηvs for some ηs > 1.



1634 FENG LIU

For 1 ≤ s ≤ Λ, let δs > 0, ℓs ∈ N \ {0} and Ls : Rd → Rℓs be linear
transformations. Let {σs,k : 0 ≤ s ≤ Λ and k ∈ Z} be a family of
measures on Rd with σ0,k = 0 for every k ∈ Z. Suppose that some
p0, q0 > 1 exist satisfying (p0, q0) ̸= (2, 2) and c, B > 0 independent of
v and {Ls}Λs=1 such that the following conditions are satisfied for any
1 ≤ s ≤ Λ, k ∈ Z, ξ ∈ Rd and {gk,j} ∈ Lp0(Rd, ℓq0(ℓ2)):

(i) |σ̂s,k(ξ)| ≤ cBmin{1, |ak,s,vLs(ξ)|−δs/v};
(ii) |σ̂s,k(ξ)− σ̂s−1,k(ξ)| ≤ cB|ak,s,vLs(ξ)|1/v;
(iii)

∥∥∥∥(∑
j∈Z

(∑
k∈Z

|σs,k ∗ gk,j |2
)q0/2)1/q0∥∥∥∥

Lp0 (Rd)

≤ cB

∥∥∥∥(∑
j∈Z

(∑
k∈Z

|gk,j |2
)q0/2)1/q0∥∥∥∥

Lp0 (Rd)

.

Then, for α ∈ R and (1/p, 1/q) ∈ A1A2\{(1/p0, 1/q0), (1/2, 1/2)},
there exists a constant C > 0 independent of v and {Ls}ls=1 such that

(2.10)

∥∥∥∥∑
k∈Z

σΛ,k ∗ f
∥∥∥∥
Ḟp,q

α (Rd)

≤ CB∥f∥Ḟp,q
α (Rd),

where A1 = (1/2, 1/2), A2 = (1/p0, 1/q0) and A1A2 is the line segment
from A1 to A2.

Proof. For any 1 ≤ s ≤ Λ, let rs = rank(Ls). By [14, Lemma 6.1],
there exist two nonsingular linear transformations Hs : Rrs → Rrs and
Gs : Rd → Rd such that

(2.11) |Hsπ
d
rsGsξ| ≤ |Ls(ξ)| ≤ ℓs|Hsπ

d
rsGsξ|.

Let ζ ∈ C∞
0 (R) be such that ζ(t) ≡ 1 for |t| ≤ 1/2 and ζ(t) ≡ 0 for

|t| ≥ 1. Let ϑ(t) = ζ(t2). For k ∈ Z and 1 ≤ s ≤ Λ, define the family
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of measures {µs,k} by

µ̂s,k(ξ) = σ̂s,k(ξ)
Λ∏

j=s+1

ϑ(|ak,j,vHjπ
d
rjGjξ|)

− σ̂s−1,k(ξ)

Λ∏
j=s

ϑ(|ak,j,vHjπ
d
rjGjξ|).

It can easily be verified that

(2.12) σΛ,k =

Λ∑
s=1

µs,k,

(2.13) |µ̂s,k(ξ)| ≤ CBmin{1, |ak,s,vLs(ξ)|1/v},

(2.14) |µ̂s,k(ξ)| ≤ CB|ak,s,vLs(ξ)|−δs/v, if |ak,v,sHsπ
d
rsGsξ| ≥ 1.

From (2.12), we can write∑
k∈Z

σΛ,k ∗ f =
∑
k∈Z

Λ∑
s=1

µs,k ∗ f(2.15)

=

Λ∑
s=1

∑
k∈Z

µs,k ∗ f

=:

Λ∑
s=1

As(f).

Thus, to prove Lemma 2.5, it suffices to prove that, for 1 ≤ s ≤ Λ,
there exists a C > 0 independent of v and {Ls}Λs=1 such that

(2.16) ∥As(f)∥Ḟp,q
α (Rd) ≤ CB∥f∥Ḟp,q

α (Rd)

for α ∈ R and p, q satisfying the conditions in Lemma 2.5.

Let ς ∈ S(R+) be such that

ς(0) = 0, 0 ≤ ς(t) ≤ 1;

supp (ς) ⊂ [η−vγs
s , ηvγs

s ];∑
k∈Z

ς2k(t) = 1,
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where ςk(t) = ς(ak,s,vt). Define the family of operators {Sk,s}k∈Z by

(2.17) Ŝk,sf(ξ) =: ςk(|Hsπ
d
rsGsξ|)f̂(ξ).

We can write

As(f) =
∑
k∈Z

µs,k ∗
(∑

j∈Z

Sj+k,sSj+k,sf

)
(2.18)

=
∑
j∈Z

∑
k∈Z

Sj+k,s(µs,k ∗ Sj+k,sf)

=:
∑
j∈Z

As,j(f).

By the Littlewood-Paley theory, Plancherel’s theorem and (2.13)–
(2.14),

∥As,j(f)∥L2(Rd)

(2.19)

≤ CB

(∑
k∈Z

∫
{ξ∈Rd:a

−1
k+j,s,v

η
−vγs
s ≤|Hsπd

rs
Gsξ|≤a

−1
k+j,s,v

η
vγs
s }

|µ̂s,k(ξ)|2|f̂(ξ)|2dξ
)1/2

≤ CBη−c|j|
s ∥f∥L2(Rd),

where c > 0 is independent of v. In view of (1.6) and (2.19), we have

(2.20) ∥As,j(f)∥Ḟ 2,2
0 (Rd) ≤ CAη−c|j|

s ∥f∥Ḟ 2,2
0 (Rd).

Now, we estimate ∥As,j(f)∥Ḟp0,q0
α (Rd) for any α ∈ R. Let ξ = (ξ1, ξ2)

with ξ1 = (ξ1, . . . , ξrs) and ξ
2 = (ξrs+1, . . . , ξd). We set

ẑk(ξ
1) = ẑ(ak,s,vξ

1) = ζk(|πd
rsξ|),

where ςk is as in (2.17). It may be easily verified that z ∈ S(Rrs) and
ẑ(0) = 0. Define the nonsingular linear transformation J on Rd by
J = G−1

s (H−1
s ⊗ δRd−rs ). It is easy to see that

(2.21) Sk,s(f)(x) = |J |zk ⊗ δRd−rs ∗ fJ (J tx),

where fJ(x) = |J |−1f((J t)−1x). By a change of variables, (2.21) and
Lemma 2.2, we have that, for any 1 < p, q < ∞ and {gi}i∈Z ∈
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Lp(Rd, ℓq), there exists a C > 0 such that
(2.22)∥∥∥∥(∑

i∈Z

(∑
k∈Z

|Sk,s(gi)|2
)q/2)1/q∥∥∥∥

Lp(Rd)

≤ C

∥∥∥∥(∑
i∈Z

|gi|q
)1/q∥∥∥∥

Lp(Rd)

.

On the other hand, by assumption (iii), Lemma 2.2 and similar argu-
ments as in [6, Proposition 2.3], we can obtain

(2.23)

∥∥∥∥(∑
i∈Z

(∑
k∈Z

|µs,k ∗ gi,k|2
)q0/2)1/q0∥∥∥∥

Lp0 (Rd)

≤ CB

∥∥∥∥(∑
i∈Z

(∑
k∈Z

|gi,k|2
)q0/2)1/q0∥∥∥∥

Lp0 (Rd)

.

It follows from (2.22)–(2.23) that there exists a C > 0 such that
(2.24)∥∥∥∥(∑

i∈Z
|As,j(gi)|q0

)1/q0∥∥∥∥
Lp0 (Rd)

= sup
∥{fi}∥

L
p′0 (Rd,ℓ

q′0 )
≤1

×
∣∣∣∣∫
Rd

∑
i∈Z

∑
k∈Z

Sj+k,s(µs,k∗Sj+k,s(gi))(x)fi(x)dx

∣∣∣∣
≤ sup

∥{fi}∥
L
p′0 (Rd,ℓ

q′0 )
≤1

∥∥∥∥(∑
i∈Z

(∑
k∈Z

|S∗
j+k,s(fi)|2

)q′0/2
)1/q′0

∥∥∥∥
Lp′0 (Rd)

×
∥∥∥∥(∑

i∈Z

(∑
k∈Z

|µs,k ∗ Sj+k,s(gi)|2
)q0/2)1/q0∥∥∥∥

Lp0 (Rd)

≤ CB

∥∥∥∥(∑
i∈Z

|gi|q0
)1/q0∥∥∥∥

Lp0 (Rd)

,

which leads to

∥As,j(f)∥Ḟp0,q0
α (Rd) =

∥∥∥∥(∑
i∈Z

2−iαq0 |Ψi ∗ As,j(f)|q0
)1/q0∥∥∥∥

Lp0 (Rd)

(2.25)
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≤
∥∥∥∥(∑

i∈Z
|As,j(2

−iαΨi ∗ f)|q0
)1/q0∥∥∥∥

Lp0 (Rd)

= CB∥f∥Ḟp0,q0
α (Rd)

for any α ∈ R. Then, interpolation [15, 17] between (2.20) and (2.25)
implies that, for α ∈ R, p, q satisfying(

1

p
,
1

q

)
∈ A1A2 \

{(
1

p0
,
1

q0

)
,

(
1

2
,
1

2

)}
and 1 ≤ s ≤ Λ, there exists an ϵ > 0 such that

(2.26) ∥As,j(f)∥Ḟp,q
α (Rd) ≤ CBη−cϵ|j|

s ∥f∥Ḟp,q
α (Rd),

which, together with (2.18), yields (2.16) and completes the proof of
Lemma 2.5. �

3. Proofs of Theorems 1.1 and 1.5. Let Ω ∈ L(log+ L)α(Sn−1)
for α > 0 satisfy (1.2). Employing the notation in [3], let

E0 = {y′ ∈ Sn−1 : |Ω(y′)| < 2}

and

Eµ = {y′ ∈ Sn−1 : 2µ < |Ω(y′)| ≤ 2µ+1}

for µ ∈ N \ {0}. Let ΛΩ = {µ ∈ N \ {0} : σ(Eµ) > 2−4µ} and
Ω0 = Ω−

∑
µ∈ΛΩ

Ωµ, where

Ωµ = ΩχEµ − σ(Sn−1)−1

∫
Eµ

Ω(y′) dσ(y′), µ ≥ 1.

It is easy to verify that

(3.1)

∫
Sn−1

Ωµ(y
′) dσ(y′) = 0,

∥Ωµ∥L1(Sn−1) ≤ C∥Ω∥L1(Eµ),(3.2)

∥Ωµ∥L2(Sn−1) ≤ C22µ∥Ω∥L1(Eµ)(3.3)
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for µ ∈ Λµ ∪ {0}, and

(3.4)
∑

µ∈ΛΩ∪{0}

(µ+ 1)α∥Ω∥L1(Eµ) ≤ C∥Ω∥L(log+ L)α(Sn−1).

Clearly,

(3.5) Th,Ω,Φ,Ψ(f) =
∑

µ∈ΛΩ∪{0}

Th,Ωµ,Φ,Ψ(f).

In what follows, we let Rγ be as in Theorem 1.1 and σk,µ,Γ,Ω as

in (2.2). For γ > 1, we denote γ̃ = max{2, γ′} and A = (µ + 1)1/γ
′

∥Ω∥L1(Eµ)∥|h|∥µ,γ , where ∥|h|∥µ,γ is as in (2.1).

Proof of Theorem 1.1. We first prove part (i). Let N1 = max1≤i≤n

deg(Pi). There exist N ∈ N, some integers 0 = d0 < d1 < d2 < · · · <
dN = N1 and {ai,j : 1 ≤ i ≤ n, 0 ≤ j ≤ N} such that

(a1,j , a2,j , . . . , an,j) ̸= (0, . . . , 0) for 1 ≤ j ≤ N ,

and

(P1(t), P2(t), . . . , Pn(t)) =

( N∑
j=0

a1,jt
dj ,

N∑
j=0

a2,jt
dj , . . . ,

N∑
j=0

an,jt
dj

)
.

For 0 ≤ s ≤ N and (x, y) ∈ Rn × Rm, the linear transformation
Ls : Rn × Rm → Rn is defined by

Ls(x, y) = (a1,sx1, a2,sx2, . . . , an,sxn),

where x = (x1, . . . , xn). For any 0 ≤ s ≤ N , let

Ps(t, x) =

( s∑
j=0

a1,jt
djx1,

s∑
j=0

a2,jt
djx2, . . . ,

s∑
j=0

an,jt
djxn

)
.

For k ∈ Z, µ ∈ ΛΩ ∪ {0} and 0 ≤ s ≤ N , we denote σµ
k,s by σk,µ,Γ,Ω

with Ω replaced by Ωµ and Γ(y) = (Ps(|y|, y′),Ψ(|y|)). Obviously,

(3.6) σµ
k,0 = 0,

(3.7) Th,Ωµ,Φ,Ψ(f) =
∑
k∈Z

σµ
k,N ∗ (f).
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By a change of variables and Hölder’s inequality,

|σ̂µ
k,s(ξ, η)| =

∣∣∣∣
2(k+1)(µ+1)∫
2k(µ+1)

∫
Sn−1

e−2πi(Ps(t,y
′)·ξ+Ψ(t)·η)Ωµ(y

′)dσ(y′)h(t)
dt

t

∣∣∣∣
(3.8)

≤ ∥|h|∥µ,γ
( 2(k+1)(µ+1)∫

2k(µ+1)

∣∣∣∣ ∫
Sn−1

e−2πi(Ps(t,y
′)·ξ+Ψ(t)·η)Ωµ(y

′)dσ(y′)

∣∣∣∣γ′
dt

t

) 1
γ′

≤ ∥|h|∥µ,γ
( µ∑

j=0

2k(µ+1)+j+1∫
2k(µ+1)+j

∣∣∣∣ ∫
Sn−1

e−2πi(Ps(t,y
′)·ξ+Ψ(t)·η)Ωµ(y

′)dσ(y′)

∣∣∣∣γ′
dt

t

) 1
γ′

≤ C∥|h|∥µ,γ
( µ∑

j=0

∥Ωµ∥max{0,γ′−2}
L1(Sn−1)

·
(2k(µ+1)+j+1∫
2k(µ+1)+j

∣∣∣∣ ∫
Sn−1

e−2πi(Ps(t,y
′)·ξ+Ψ(t)·η)Ωµ(y

′)dσ(y′)

∣∣∣∣2dtt
)min{2,γ′}

2
)1
γ′

≤ C∥|h|∥µ,γ∥Ωµ∥max{0,1−(2/γ′)}
L1(Sn−1)

( µ∑
j=0

(Is,j(ξ, η))(min{2,γ′}/2)
)1/γ′

,

where

Is,j(ξ, η) :=
2k(µ+1)+j+1∫
2k(µ+1)+j

∣∣∣∣ ∫
Sn−1

e−2πi(Ps(t,y
′)·ξ+Ψ(t)·η)Ωµ(y

′) dσ(y′)

∣∣∣∣2 dtt .
Invoking Lemma 2.1 and Hölder’s inequality, we have

Is,j(ξ, η)

(3.9)

=

2k(µ+1)+j+1∫
2k(µ+1)+j

∫∫
(Sn−1)2

e−2πi(Ps(t,y
′)−Ps(t,θ))·ξΩµ(y

′)Ωµ(θ) dσ(y
′)dσ(θ)

dt

t
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≤
∫∫

(Sn−1)2

∣∣∣∣
2k(µ+1)+j+1∫
2k(µ+1)+j

e−2πi(Ps(t,y
′)−Ps(t,θ))·ξ dt

t

∣∣∣∣
· |Ωµ(y

′)Ωµ(θ)| dσ(y′) dσ(θ)

≤
∫∫

(Sn−1)2

min{1, |2(k(µ+1)+j+1) dsLs(ξ, η) · (y′ − θ)|−1/ds}

· |Ωµ(y
′)Ωµ(θ)| dσ(y′) dσ(θ)

≤∥Ωµ∥2L2(Sn−1)

(∫∫
(Sn−1)2

min{1,|2(k(µ+1)+j+1) dsLs(ξ, η)(y
′−θ)|−

2
ds}dσ(y′)dσ(θ)

)1
2

≤C∥Ωµ∥2L2(Sn−1)|2
(k(µ+1)+j+1) dsLs(ξ, η)|−1/4ds ,

where the last inequality of (3.9) is obtained by the inequality∫∫
(Sn−1)2

|y′ · (θ − w)|−αdσ(θ) dσ(w) <∞,

for y′ ∈ Sn−1 and 0 < α < 1. Then, by (3.3), (3.8) and (3.9), we have

|σ̂µ
k,s(ξ, η)| ≤ C24µ/γ̃A|2k(µ+1) dsLs(ξ, η)|−1/(4dsγ̃),

which, combined with the trivial estimate |σ̂µ
k,s(ξ, η)| ≤ CA, yields

(3.10) |σ̂µ
k,s(ξ, η)| ≤ CAmin{1, |2kds(µ+1)Ls(ξ, η)|−1/(4dsγ̃(µ+1))}.

On the other hand, by a change of variables, (3.2) and Hölder’s
inequality, we have

|σ̂µ
k,s(ξ, η)− σ̂µ

k,s−1(ξ, η)|

(3.11)

=

∫
2k(µ+1)≤|y|<2(k+1)(µ+1)

(e-2πi(Ps(t,y
′)·ξ+Ψ(t)·η)-e-2πi(Ps−1(t,y

′)·ξ+Ψ(t)·η))
Ωµ(y)h(|y|)

|y|n dy
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≤ C

2(k+1)(µ+1)∫
2k(µ+1)

∫
Sn−1

min{1, |tdsLs(ξ, η) · y′|}|Ωµ(y
′)| dσ(y′)|h(t)|dt

t

≤ CA|2ds(k+1)(µ+1)Ls(ξ, η)|1/µ+1.

Invoking Lemma 2.4, we obtain from (3.2) that∥∥∥∥(∑
j∈Z

(∑
k∈Z

|σµ
k,s ∗ gk,j |

2

)q/2)1/q∥∥∥∥
Lp(Rn+m)

≤ CA

∥∥∥∥(∑
j∈Z

(∑
k∈Z

|gk,j |2
)q/2)1/q∥∥∥∥

Lp(Rn+m)

for {gk,j}k,j∈Z ∈ Lp(Rn+m, ℓq(ℓ2)) with (1/p, 1/q) ∈ Rγ . Then, by
(3.6), (3.7), (3.10)–(3.12) and Lemma 2.5, we have

(3.12) ∥Th,Ωµ,Φ,Ψf∥Ḟp,q
α (Rn+m) ≤ CA∥f∥Ḟp,q

α (Rn+m)

for any α ∈ R and (1/p, 1/q) ∈ Rγ (the point (1/2, 1/2) may be
obtained by interpolation). Theorem 1.1 (i) follows from (3.4), (3.5),
(3.13) and the inequality

∥|h|∥µ,γ ≤ Cmin{(µ+ 1)1/γ∥h∥∆γ(R+), ∥h∥Hγ(R+)}. �

Now, we prove Theorem 1.1 (ii). The proof is similar to the argu-
ments in the proof of [6, Theorem 1.2]. By Remark 1.3 (ii), we have

∥Th,Ω,Φ,Ψ(f)∥Ḃp,q
α (Rn+m) =

(∑
i∈Z

2−iαq∥Ψi ∗ Th,Ω,Φ,Ψ(f)∥qLp(Rn+m)

)1/q

(3.13)

=

(∑
i∈Z

∥Th,Ω,Φ,Ψ(2
−iαΨi ∗ f)∥qLp(Rn+m)

)1/q

≤ C

(∑
i∈Z

2−iαq∥Ψi ∗ f∥qLp(Rn+m)

)1/q

= C∥f∥Ḃp,q
α (Rn+m)

for α ∈ R, |1/p−1/2| < min{1/2, 1/γ′} and 1 < q <∞. This completes
the proof of Theorem 1.1.
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Proof of Theorem 1.5. We only prove part (i), since part (ii) may
be obtained from Remark 1.6 (ii) and the same arguments as in the
proof of Theorem 1.1 (ii). Following [14], we first recall some notation.
Let N2 = max1≤j≤d deg(Pj). Then, there are N ∈ N, integers 0 <
l1 < l2 < · · · < lN ≤ N1 and polynomials P s

j ∈ Vn,ls , Rj ∈ A1 with
deg(Rj) ≤ N1 for 1 ≤ s ≤ N , 1 ≤ j ≤ d, such that

Φ(x) =

N∑
s=1

Ps(x) +R(|x|),

where Ps = (P s
1 , . . . , P

s
d ) and R = (R1, . . . , Rd). For each s ∈

{1, . . . ,N}, there is at least one j ∈ {1, . . . , d} such that P s
j ̸= 0.

For j = 1, . . . , d and 1 ≤ s ≤ N , write

P s
j (x) =

∑
|β|=ls

bsjβx
β =

d(s)∑
i=1

b′sjix
β(s,i),

where d(s) = dim(Vn,ls). For 1 ≤ s ≤ N , we define the linear

transformations Ls : Rd → Rd(s) by

Ls(ξ) =

( d∑
j=1

b′sj1ξj , . . . ,
d∑

j=1

b′sjd(s)ξj

)
.

For 0 ≤ s ≤ N , we define Ps by

Ps(x) = R(|x|) +
s∑

u=1

Pu(x).

For k ∈ Z, µ ∈ ΛΩ ∪ {0} and 0 ≤ s ≤ N , we denote σµ
k,s by σk,µ,Γ,Ω

with Ω replaced by Ωµ and Γ(y) = (Ps(y),Ψ(|y|)). Obviously,

(3.14) σµ
k,0 = 0;

(3.15) Th,Ωµ,Φ,Ψ(f) =
∑
k∈Z

f ∗ σµ
k,N .

By a change of variables, Hölder’s inequality and (3.2),
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(3.16)

|σ̂µ
k,s(ξ, η)− σ̂µ

k,s−1(ξ, η)|

=

∣∣∣∣
2(µ+1)(k+1)∫
2(µ+1)k

∫
Sn−1

Ωµ(y
′)(e−2πi(Ps(ty

′)·ξ+Ψ(t)·η)

− e−2πi(Ps−1(ty
′)·ξ+Ψ(t)·η)) dσ(y′)h(t)

dt

t

∣∣∣∣
≤ C|2(µ+1)(k+1)lsLs(ξ)|∥Ωµ∥L1(Sn−1)

2(µ+1)(k+1)∫
2(µ+1)k

|h(t)| dt
t

≤ CA|2(µ+1)(k+1)lsLs(ξ)|.

It is easily verified that

(3.17) |σ̂µ
k,s(ξ, η)| ≤ CA.

Combining this with (3.16) yields

(3.18) |σ̂µ
k,s(ξ, η)− σ̂µ

k,s−1(ξ, η)| ≤ CA|2(µ+1)klsLs(ξ)|1/(µ+1).

On the other hand, by a change of variables, (3.2) and Hölder’s
inequality,

|σ̂µ
k,s(ξ, η)|

(3.19)

=

∣∣∣∣
2(µ+1)(k+1)∫
2(µ+1)k

∫
Sn−1

Ωµ(y
′)e−2πi(Ps(ty

′)·ξ+Ψ(t)·η)dσ(y′)h(t)
dt

t

∣∣∣∣
≤ ∥|h|∥µ,γ

( 2(µ+1)(k+1)∫
2(µ+1)k

∣∣∣∣ ∫
Sn−1

Ωµ(y
′)e−2πi(Ps(ty

′)·ξ+Ψ(t)·η)dσ(y′)

∣∣∣∣γ′
dt

t

)1/γ′

≤ ∥|h|∥µ,γ
( µ∑

j=0

2(µ+1)k+j+1∫
2(µ+1)k+j

∣∣∣∣ ∫
Sn−1

Ωµ(y
′)e−2πi(Ps(ty

′)·ξ+Ψ(t)·η)dσ(y′)

∣∣∣∣γ′
dt

t

)1
γ′
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≤ ∥|h|∥µ,γ
( µ∑

j=0

∥Ω∥max{γ′−2,0}
L1(Eµ)

×
( 2(µ+1)k+j+1∫

2(µ+1)k+j

∣∣∣∣ ∫
Sn−1

Ωµ(y
′)e−2πi(Ps(ty

′)·ξ+Ψ(t)·η)dσ(y′)

∣∣∣∣2dtt
)γ′/γ̃) 1

γ′

.

Applying [14, Corollary 4.3] with ϵ = 1/(8ls) and p = 2, we have that,
for any r > 0,

(3.20)

( 2r∫
r

∣∣∣∣ ∫
Sn−1

Ωµ(y
′)e−2πi(Ps(ty

′)·ξ+Ψ(t)·η)dσ(y′)

∣∣∣∣2 dtt
)1/2

≤ C∥Ωµ∥L2(Sn−1)|rlsLs(ξ)|−1/(8ls).

Combining (3.3) with (3.19)–(3.20) implies

(3.21) |σ̂µ
k,s(ξ, η)| ≤ C24µ/γ̃A|2(µ+1)klsLs(ξ)|−1/(4lsγ̃).

It follows from (3.17) and (3.21) that

(3.22) |σ̂µ
k,s(ξ, η)| ≤ CAmin{1, |2(µ+1)klsLs(ξ)|}−1/(4(µ+1)lsγ̃).

Invoking Lemma 2.5, we have

(3.23)

∥∥∥∥(∑
j∈Z

(∑
k∈Z

|σµ
k,s ∗ gk,j |

2

)q/2)1/q∥∥∥∥
Lp(Rd+m)

≤ CA

∥∥∥∥(∑
j∈Z

(∑
k∈Z

|gk,j |2
)q/2)1/q∥∥∥∥

Lp(Rd+m)

for (1/p, 1/q) ∈ Rγ .

For 1 ≤ s ≤ N1, define the linear transformation Ls : Rd+m → Rd(s)

by Ls(ξ, η) = Ls(ξ) for any (ξ, η) ∈ Rd+m. It follows from (3.14)–
(3.16), (3.22), (3.23) and Lemma 2.5 that

(3.24) ∥Th,Ωµ,Φ,Ψ(f)∥Ḟp,q
α (Rd+m) ≤ CA∥f∥Ḟp,q

α (Rd+m)

for any α ∈ R and (1/p, 1/q) ∈ Rγ (the point (1/2, 1/2) is obtained by
interpolation). Inequality (3.24), together with equations (3.4), (3.5)
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and the fact that

∥|h|∥µ,γ ≤ ∥h∥Hγ(R+) for any γ > 0,

yields Theorem 1.5 (i). �

4. Proof of Theorem 1.4. Recall the Hardy space on Sn−1 and
its atomic decomposition. The Hardy space H1(Sn−1) is the set of all
L1(Sn−1) functions Ω satisfying ∥Ω∥H1(Sn−1) <∞, where

∥Ω∥H1(Sn−1) =

∫
Sn−1

sup
0≤r<1

∣∣∣∣ ∫
Sn−1

Ω(θ)
1− r2

|rw − θ|n
dσ(θ)

∣∣∣∣ dσ(w).
We say that a function a(·) on Sn−1 is a regular atom if there exist
ε ∈ Sn−1 and ϱ ∈ (0, 2] such that

supp (a) ⊂ Sn−1 ∩B(ε, ϱ),(4.1)

where B(ε, ϱ) = {y ∈ Rn : |y − ε| < ϱ};
∥a∥L∞(Sn−1) ≤ ϱ−n+1;(4.2) ∫
Sn−1

a(y) dσ(y) = 0.(4.3)

Below is the well-known atomic decomposition of the Hardy space.

Lemma 4.1. ([11, 12]). If Ω ∈ H1(Sn−1) satisfies (1.2), then there
exist {cj} ⊂ C and H1 regular atoms {Ωj} such that

Ω =
∑
j

cjΩj and
∑
j

|cj | ≈ ∥Ω∥H1(Sn−1).

Proof of Theorem 1.4. We only prove part (i), since part (ii) may be
obtained from Remark 1.6 (ii) and similar arguments as in Theorem
1.1 (ii). Without loss of generality, we may assume that Ω is a regular
atom satisfying (4.1)–(4.3) with 0 < ϱ < 1/4 and ε = e = (0, . . . , 0, 1).

Next, we give some notation, which is identical to that in [14]. In
what follows, we denote x = (x̃, xn) with x̃ = (x1, . . . , xn−1). Let
N3 = max1≤j≤d deg(Pj). Then there are N ∈ N, integers 0 < l1 <
l2 < · · · < lN ≤ N1 and polynomials Pu

j ∈ Vn,lu , Rj ∈ A1 with
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deg(Rj) ≤ N1 for 1 ≤ u ≤ N , 1 ≤ j ≤ d, such that

P(x) =

N∑
u=1

Pu(x) +R(|x|),

where Pu = (Pu
1 , P

u
2 , . . . , P

u
d ) and R = (R1, R2, . . . , Rd). For j =

1, . . . , d, denote

Pu
j (x) =

∑
|β|=lu

bujβx
β .

For l ∈ N and α ∈ Nn with |α| = l, we choose ηl,α(·) ∈ An−1 such that

|xα − ηl,α(x̃)| ≤ Cϱ4(n−1) for x ∈ Sn−1 ∩B(e, ϱ).

For each u ∈ {1, . . . ,N}, j ∈ {1, . . . , d}, we define quj ∈ An−1 by

quj (x̃) =
∑

|β|=lu

bujβηlu,β(x̃),

and set qu(x̃) = (qu1 (x̃), q
u
2 (x̃), . . . , q

u
d (x̃)). Fixing each u ∈ {1, . . . ,N},

there are positive integers v(u), 0 < hu,1 < · · · < hu,v(u) and polyno-
mials

{Wu
jη : j = 1, . . . , d; η = 1, . . . , v(u)} ⊂ An−1

such that

(a) for j ∈ {1, . . . , d}, η ∈ {1, . . . , v(u)}, Wu
jη(·) is homogeneous of

degree hu,η;
(b) for each η ∈ {1, . . . , v(u)}, there exists at least one j ∈ {1, . . . , d}

such that Wu
jη ̸= 0;

(c) for each j ∈ {1, . . . , d}, there is a vuj ∈ R such that quj (x̃) =∑v(u)
η=1 W

u
jη(x̃) + vuj .

For u ∈ {1, . . . ,N} and η ∈ {1, . . . , v(u)}, we defineRu(x) andWu,η(x̃)
by

Ru(x) = R(|x|) +
∑

u≤k≤N

|x|lk(vk1 , . . . , vkd) +
∑

1≤k≤u−1

Qk(x),

and
Wu,η(x̃) = (Wu

1η(x̃), . . . ,W
u
dη(x̃)).
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Let M(0) = 0,

M(u) =
u∑

k=1

[v(k) + 1] for 1 ≤ u ≤ N ,

and define Γ0, Γ1, . . . ,ΓM(N ) by

ΓM(u−1)+θ(x) = Ru(x) + |x|lu
∑

1≤k≤θ

Wu,k

(
x̃

|x|

)
for 1 ≤ u ≤ N , 0 ≤ θ ≤ M(u)−M(u− 1) and ΓM(m)(x) = Φ(x). Let
d(u) = dim(Vn,lu). For each u ∈ {1, . . . ,N}, write

{β ∈ Nn : |β| = lu} := {β(u, 1), . . . , β(u, d(u))}.

Hence, we can write

Pu
j (x) =

d(u)∑
s=1

b′ujsx
β(u,s),

where b′ujs = bujβ(u,s). Denote by d(u, η) the number of distinct ele-

ments in {ϖ ∈ Nn−1 : |ϖ| = hu,η}. For 1 ≤ u ≤ N , 1 ≤ η ≤ v(u) and
1 ≤ j ≤ d, write

{ϖ : |ϖ| = hu,η} = {ϖ(u, η, 1), . . . , ϖ(u, η, d(u, η))}

and

Wu
jη(x̃) =

d(u,η)∑
s=1

wu,j,η,sx̃
ϖ(u,η,s).

For 1 ≤ u ≤ N , we define Λ1, . . . ,ΛM(N ) ∈ N by

ΛM(u−1)+θ =

{
d(u, θ) if 1 ≤ θ < M(u)−M(u− 1);

d(u) if θ =M(u)−M(u− 1).

Also, we define linear transformations Li : Rd → RΛi for 1 ≤ i ≤M(N )
by

LM(u−1)+θ(ξ) =


(∑d

j=1 wu,j,θ,sξj , . . . ,
∑d

j=1 wu,j,θ,d(u,θ)ξj
)

if 1 ≤ θ < M(u)−M(u− 1);(∑d
j=1 b

′
uj1ξj , . . . ,

∑d
j=1 b

′
ujd(u)ξj

)
if θ =M(u)−M(u− 1).
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For s = 1, . . . ,M(N ), we set
l(s) = lu, δ(s) = hu,θ, γ(s) = 1/(4hu,θluγ

′)

if η ∈ [M(u− 1),M(u));

l(s) = lu, δ(s) = 4lu(n− 1), γ(s) = 1/(8luγ
′)

if η =M(u).

For each k ∈ Z and 0 ≤ s ≤ M(N ), we denote σk,s by σk,µ,Γ,Ω with
Γ(y) = (Γs(y),Ψ(|y|)) and µ = 0. Obviously,

(4.4) Th,Ω,Φ,Ψ(f) =
∑
k∈Z

σk,M(N ) ∗ f.

It is easily verified that

(4.5) σk,0 = 0, |σ̂k,s(ξ, η)| ≤ C.

By a change of variables and Hölder’s inequality,

|σ̂k,s(ξ, η)− σ̂k,s−1(ξ, η)|

(4.6)

≤
2k+1∫
2k

∫
Sn−1

∣∣e−2πiξ·Γs(ty
′) − e−2πiξ·Γs−1(ty

′)
∣∣|Ω(y′)| dσ(y′)|h(t)| dt

t

≤ C2kl(s)ϱδ(s)|Ls(ξ)|.

On the other hand, by [14, Propositions 5.1, 5.3, Remark 5.2], we
get

(4.7) |σ̂k,s(ξ, η)| ≤ C(2kl(s)ϱδ(s)|Ls(ξ)|)−γ(s).

Invoking Lemma 2.4 with µ = 0, we obtain

(4.8)

∥∥∥∥(∑
j∈Z

(∑
k∈Z

|σk,s ∗ gk,j |2
)q/2)1/q∥∥∥∥

Lp(Rd+m)

≤ C

∥∥∥∥(∑
j∈Z

(∑
k∈Z

|gk,j |2
)q/2)1/q∥∥∥∥

Lp(Rd+m)
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for s ∈ {1, . . . ,M(N )} and (1/p, 1/q) ∈ Rγ . For 1 ≤ s ≤M(N ), define

the linear transformation Ls : Rd+m → RΛs by Ls(ξ, η) = ϱδ(s)Ls(ξ).
It follows from (4.4)–(4.8) and Lemma 2.5 that

∥Th,Ω,Φ,Ψ(f)∥Ḟp,q
α (Rd+m) ≤ C∥f∥Ḟp,q

α (Rd+m)

for any α ∈ R and (1/p, 1/q) ∈ Rγ (the point (1/2, 1/2) may be
obtained by interpolation). Thus, we can prove Theorem 1.4 (i) for Ω
an H1 atom on Sn−1 satisfying (4.1)–(4.3). The above result, together
with Lemma 4.1, yields Theorem 1.4 (i). �

5. Additional results. In this section, we highlight more general
results than those previously shown. Let G be the set of all nonnegative
(or non-positive) and monotonic C1(R+) functions ϕ such that Υϕ(t) :=
ϕ(t)/(tϕ′(t)) with |Υϕ(t)| ≤ Cϕ, where Cϕ is a positive constant which
depends only upon ϕ. Let Φ,Ψ and K be as in (1.3), and let φ ∈ G.
Define the singular integral operators Th,Ω,Φ,Ψ,φ by

Th,Ω,Φ,Ψ,φ(f)(x) := p.v.

∫
Rn

(f)(u− Φ(φ(|y|)y′), v −Ψ(φ(|y|))K(y) dy,

(5.1)

(u, v) ∈ Rd × Rm.

In what follows, let Rγ be as in Theorem 1.1. We have the following
general results.

Theorem 5.1. Let n = d, Φ(y) = (P1(|y|)y′1, . . . , Pn(|y|)y′n) with
(P1, . . . , Pd) ∈ (A1)

d, Ψ = (Q1, . . . , Qm) ∈ (A1)
m and φ ∈ G. Suppose

that one of the following conditions holds:

(a) h ∈ ∆γ(R+) for some γ > 1 and Ω ∈ L log+ L(Sn−1) satisfy-
ing (1.2);

(b) h ∈ Hγ(R+) for some γ > 1 and Ω ∈ L(log+ L)1/γ
′
(Sn−1) satisfy-

ing (1.2).

Then,

(i) Th,Ω,Φ,Ψ,φ is bounded on Ḟ p,q
α (Rd+m) for α ∈ R and (1/p, 1/q) ∈

Rγ .
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(ii) Th,Ω,Φ,Ψ,φ is bounded on Ḃp,q
α (Rd+m) for α ∈ R and p, q satisfying

1 < q <∞ and |1/p− 1/2| < min{1/2, 1/γ′}.

Theorem 5.2. Let Φ = (P1, . . . , Pd) ∈ (An)
d, Ψ = (Q1, . . . , Qm) ∈

(A1)
m and φ ∈ G. Suppose that one of the following conditions holds:

(a) h ∈ ∆γ(R+) for some γ > 1 and Ω ∈ H1(Sn−1) satisfying (1.2);

(b) h ∈ Hγ(R+) for some γ > 1 and Ω ∈ L(log+ L)1/γ
′
(Sn−1)

satisfying (1.2).

Then,

(i) Th,Ω,Φ,Ψ,φ is bounded on Ḟ p,q
α (Rd+m) for α ∈ R and (1/p, 1/q) ∈

Rγ .

(ii) Th,Ω,Φ,Ψ,φ is bounded on Ḃp,q
α (Rd+m) for α ∈ R and p, q satisfying

1 < q <∞ and |1/p− 1/2| < min{1/2, 1/γ′}.

The proofs of Theorems 5.1 and 5.2 are based on combining similar
arguments as in the proofs of [13, Theorem 1.1] and [22, Theorem 1.4]
with Theorems 1.1 and 1.4–1.5. We omit the details.

It follows immediately from (1.6)–(1.8) and Theorems 5.1 and 5.2
that

Corollary 5.3. Under the same conditions as Theorems 5.1 and 5.2
with α > 0, the operator Th,Ω,Φ,Ψ,φ is also bounded on F p,q

α (Rd+m) and
Bp,q

α (Rd+m), respectively.
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