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REMARKS ON REGULARITY CRITERIA FOR 2D
GENERALIZED MHD EQUATIONS

ZHUAN YE

ABSTRACT. In this paper, we establish two regularity
criteria for the two-dimensional (2D) incompressible general-
ized magnetohydrodynamic (GMHD) equations in terms of
only one quantity, namely, the current density j = ∇ × b or
the vorticity ω = ∇ × u. More precisely, it is proved that, if
one of the following holds true:∫ T

0
∥j(t)∥Ḃ0

∞,∞(R2) dt < ∞,∫ T

0
∥ω(t)∥Ḃ0

∞,∞(R2) dt < ∞,

then the solution (u, b) actually remains regular on [0, T ].

1. Introduction. In this paper, we are interested in studying the
following 2D incompressible GMHD equations in the entire space R2:

(1.1)


∂tu+ (u · ∇)u+ νΛ2αu = −∇p+ (b · ∇)b,

∂tb+ (u · ∇)b+ ηΛ2βb = (b · ∇)u,

∇ · u = 0, ∇ · b = 0,

u(x, 0) = u0(x), b(x, 0) = b0(x),

where u = u(x, t) = (u1(x, t), u2(x, t)), b = b(x, t) = (b1(x, t), b2(x, t))
and p = p(x, t) denote the velocity vector, magnetic vector and pressure
scalar fields respectively. Here, α ∈ [0, 2] and β ∈ [0, 2] are real pa-
rameters, while ν > 0, η > 0 are the kinematic viscosity and magnetic
diffusivity, respectively; for simplicity, we set ν = η = 1. The frac-
tional Laplacian operator Λ2α , (−∆)α is defined through the Fourier
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transform, namely,

Λ̂2αf(ξ) = |ξ|2αf̂(ξ)

f̂ the Fourier transform of f given by

f̂(ξ) =

∫
R2

e−ix·ξf(x) dx.

We recall the convention that, by α = 0, it is meant that there is no
dissipation in (1.1)1, and similarly, β = 0 represents that there is no
diffusion in (1.1)2.

When α = β = 1, system (1.1) reduces to the standard magnetohy-
drodynamic (MHD) equations which govern the dynamics of the veloc-
ity and magnetic fields in electrically conducting fluids such as plasmas
and reflect basic physics conservation laws. Due to their physical ap-
plications and mathematical significance, GMHD and MHD equations
have been extensively studied, and important progress has been made.

Let us first briefly review some existence theories of the 2D case.
Global regularity of system (1.1) with both Laplacian dissipation and
magnetic diffusion, namely, α = β = 1, was proven, see, e.g., [9, 26,
30], while the question of whether a solution to completely inviscid
MHD equations (α = β = 0) can develop a finite-time singularity
from smooth initial data with finite energy remains a challenging open
problem. Thus, examination of the intermediate cases has been an
attractive direction of research. Recently, Cao and Wu [3] showed that
smooth solutions are global for 2D MHD equations with mixed partial
and magnetic diffusion, see [8] for more general cases. Very recently,
Wu [33] proved global-in-time regularity as long as the powers α and
β satisfy

α ≥ 1

2
+

n

4
, β > 0, α+ β ≥ 1 +

n

2
,

where n is the spatial dimension. It is a remarkable fact that, when
spatial dimension n = 2, the above conditions can be greatly weakened.
Actually, recent efforts have been devoted to the global regularity
of (1.1) with the smallest possible α ∈ [0, 2] and β ∈ [0, 2] (see
[5, 13, 20, 21, 27, 30, 35, 36, 41, 42] for more details). To the
best of our knowledge, global regularity or finite time singularity for
system (1.1) with (α, β) ∈ M currently is also an unsettled issue, where

(1.2) M ,
{
(α, β) | α ≥ 0, 0 ≤ β < 1, α+ β < 2

}
∪ {(0, 1)}.
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Considerable work has been devoted to studying regularity criteria for
the case (α, β) ∈ M. When α = 1, β = 0, we refer to [14, 19, 40, 48]
for some interesting regularity criteria results. In addition, several
regularity criteria for α > 1, β = 0 may be found in [39].

Now, we mention some results concerning the 3D case. Similarly
to generalized Navier-Stokes equations, when α and β belong to a
suitable range, system (1.1) with large initial data clearly admits a
unique global smooth solution, see, e.g., [28, 30, 33, 37, 38]). Due
to the presence of the Navier-Stokes equations in (1.1), it remains
unknown whether or not 3D MHD equations with large initial data
have a unique globally smooth solution. For this reason, a large amount
of literature is devoted to addressing sufficient conditions with which
to guarantee global regularity of the weak solution. Various regularity
criteria in terms of the velocity and magnetic fields, pressure and their
derivatives have been proposed. We list only a few, with no intention
of comprehensiveness, see [1, 2, 4, 6, 7, 11, 12, 16, 17, 18, 23, 24,
29, 31, 32, 34, 43, 45, 46, 47, 49] and the references therein. It is
noteworthy to point out that both velocity vector field and magnetic
field conditions are needed to characterize the regularity criterion to
completely inviscid MHD equations. In particular, the following are
results from [1, 2, 44], respectively:∫ T

0

(∥ω(t)∥L∞(Rn) + ∥j(t)∥L∞(Rn)) dt < ∞,∫ T

0

(∥ω(t)∥Ḃ0
∞,∞(Rn) + ∥j(t)∥Ḃ0

∞,∞(Rn)) dt < ∞,

lim
ε→0

sup
k∈Z

∫ T

T−ε

(∥∆kω(t)∥L∞(Rn) + ∥∆kj(t)∥L∞(Rn)) dt = δ < M,

for some positive constant M , and ∆k is a frequency localization on
|ξ| ≈ 2k. Of course, these results hold true for system (1.1) with ν,
η > 0.

Since there is no global well-posedness result for system (1.1) with
(α, β) ∈ M, it is natural to examine regularity criteria. In this pa-
per, we establish the regularity criteria in terms of only one quantity,
namely, the velocity or magnetic vector field, when the fractional pow-
ers of the Laplacian for system (1.1) belong to some certain range.
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These results will be useful for further investigations on the global
regularity problem of 2D MHD equations.

We now state our main results as follows. The first result concerns
the Ḃ0

∞,∞ norm of current density j.

Theorem 1.1. Suppose that α + β > 1 with α > 1/2, (α, β) ∈ M
and (u0, b0) ∈ Hs(R2) ×Hs(R2) for any s > 2. Let (u, b) be a locally
smooth solution to system (1.1). Then, (u, b) can be extended beyond
time T , provided that

(1.3)

∫ T

0

∥j(t)∥Ḃ0
∞,∞(R2) dt < ∞.

The last regularity criterion is expressed in terms of the Ḃ0
∞,∞ norm

of vorticity w. More precisely, we have the next theorem.

Theorem 1.2. Suppose that α+β > 1 with (α, β) ∈ M and (u0, b0) ∈
Hs(R2)×Hs(R2) for any s > 2. Let (u, b) be a locally smooth solution
to system (1.1). Then, (u, b) can be extended beyond time T , provided
that ∫ T

0

∥ω(t)∥Ḃ0
∞,∞(R2) dt < ∞.(1.4)

Remark 1.3. In this paper, for simplicity of presentation, we merely
prove Theorems 1.1 and 1.2 for α < 1 and β < 1. When α ≥ 1
or β ≥ 1, the proofs are much easier. Moreover, the global-in-time
regularity solution in cases α = 0, β > 1 and α > 0, β = 1 has been
proved by [5, 13, 21], respectively.

Remark 1.4. At present, we are not able to show that Theorem 1.1
holds true under the condition α+ β > 1 for α ≤ 1/2. The estimation
of (3.10) in Section 3 prevents this possibility.

The general outline of the paper is as follows. In the next section, we
first present some notation we shall use throughout this study, as well as
preliminary inequalities. Section 3 is devoted to proving Theorem 1.1.
In Section 4, we aim at the proof of Theorem 1.2 by using the same
arguments adopted in proving Theorem 1.1.
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2. Preliminaries. In this section, before we state the main results,
we shall present some notation used throughout this study, as well as
preliminary inequalities. Throughout the paper, C stands for some
real positive constants which may differ in each occurrence. We shall
sometimes use the notation A . B, which stands for A ≤ CB. For
brevity, we ∂xi by ∂i for i = 1, 2.

Now, we briefly recall the Calderón-Zygmund estimate which will be
frequently used throughout this paper.

Lemma 2.1. For any smooth divergence-free vector field u with vortic-
ity ω ∈ Lp and p ∈ (1, ∞), an absolute constant C > 0 exists satisfying
the following property:

∥∇u∥Lp ≤ C
p2

p− 1
∥ω∥Lp .

Next, we present the following well-known fractional version of the
Gagliardo-Nirenberg inequality, see [15].

Lemma 2.2 (Gagliardo-Nirenberg inequality). Let 1 < p, q, r < ∞,
0 ≤ θ ≤ 1 and s, s1, s2 ∈ R. Assume that u ∈ C∞

c (R2). Then,

(2.1) ∥Λsu∥Lp ≤ C∥Λs1u∥1−θ
Lq ∥Λs2u∥θLr ,

where

1

p
− s

2
= (1− θ)

(
1

q
− s1

2

)
+ θ

(
1

r
− s2

2

)
, s ≤ (1− θ)s1 + θs2.

In particular, we have the following lemma, see [10, 25].

Lemma 2.3. If the spatial dimension is 2, then an absolute positive
constant C exists such that the following interpolation inequalities hold
true:

∥u∥L∞ ≤ C∥u∥1/2L2 ∥∇2u∥1/2L2 ,

∥∇u∥L4 ≤ C∥u∥1/2L∞∥∇2u∥1/2L2 ,

∥u∥L4 ≤ C∥u∥(2ϱ−1)/(2ϱ)
L2 ∥Λϱu∥1/(2ϱ)L2 , ϱ ≥ 1

2
,
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∥∇f∥L4 ≤ C∥Λδf∥(2δ+1)/4
L2 ∥Λδ∇2f∥(3−2δ)/4

L2 , 0 ≤ δ ≤ 1,

∥∇2g∥L4 ≤ C∥Λγg∥(2γ−1)/4
L2 ∥Λγ∇2g∥(5−2γ)/4

L2 ,
1

2
≤ γ ≤ 5

2
.

Now, we introduce the differential form Gronwall-type inequality to
conclude this section. The proof is quite straightforward and is omitted.

Lemma 2.4. Let f(t) be a nonnegative, absolutely continuous function
on [0, T ] which satisfies, for almost every t the differential inequality,

f ′(t) ≤ g(t)F (f(t)),

where g(t) is a nonnegative, integrable function on [0, T ] and nonneg-
ative function F (s) satisfies the following conditions, for any 0 < a ≤
b < ∞, ∫ b

a

1

F (s)
ds ≤ C < ∞ and

∫ ∞

a

1

F (s)
ds = ∞.

Then, f(t) is bounded for any t ∈ [0, T ].

3. Proof of Theorem 1.1. The existence of locally smooth solu-
tions can easily be obtained, see, for example, [26]. Thus, in order to
complete the proof of Theorem 1.1, it is sufficient to establish a priori
uniformly strong estimates in t ∈ [0, T ). Therefore, in the following,
we assume that solution (u, b) is sufficiently smooth on [0, T ). Keep in
mind that we only consider α < 1 and β < 1.

Proof of Theorem 1.1. The following logarithmic-type Sobolev in-
equality is needed before beginning the proof of Theorem 1.1, see, for
example, [22].

(3.1) ∥∇f∥L∞(Rn)

≤ C
(
1 + ∥f∥L2(Rn) + ∥∇ × f∥Ḃ0

∞,∞(Rn) log(1 + ∥f∥Ẇ s,p(Rn))
)
,

with s > 1 + n/p, f ∈ L2(Rn) ∩ Ẇ s,p(Rn) and ∇ · f = 0.

In order to prove Theorem 1.1, we begin with the following basic
energy estimate.
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Lemma 3.1. Let α ≥ 0 and β ≥ 0. For any corresponding solution
(u, b) of (1.1), some constants C exist such that, for any t ∈ [0, T ],

(3.2) ∥u(t)∥2L2 + ∥b(t)∥2L2 +

∫ T

0

(∥Λαu(t)∥2L2 + ∥Λβb(t)∥2L2) dt ≤ C.

In order to obtain the H1 estimate on (u, b), we first take curls on
the GMHD equation (1.1) to obtain the equation of vorticity ω and the
current density j:

∂tω + (u · ∇)ω + Λ2αω − (b · ∇)j = 0,(3.3)

∂tj + (u · ∇)j + Λ2βj − (b · ∇)w − T (∇u,∇b) = 0,(3.4)

where T (∇u,∇b) = 2∂1b1(∂2u1 + ∂1u2)− 2∂1u1(∂2b1 + ∂1b2).

Taking the inner product of equations (3.3) and (3.4) with ω and j,
respectively, and adding, we deduce:

1

2

d

dt
(∥ω(t)∥2L2 + ∥j(t)∥2L2) + ∥Λαω(t)∥2L2 + ∥Λβj(t)∥2L2(3.5)

≤
∫
R2

|T (∇u,∇b)||j| dx

≤ C∥∇b∥L∞∥∇u∥L2∥j∥L2 ≤ C∥∇b∥L∞(∥ω∥2L2 + ∥j∥2L2).

We denote

M(t) , max
µ∈[T0, t]

(∥∇2ω(µ)∥2L2 + ∥∇2j(µ)∥2L2).

It is an obvious observation that M(t) is a monotonically increasing
function. This observation will be useful later. Let T0 ∈ (0, T ), which
is to be fixed hereafter such that

T − T0 ≤ 1 and log(1 +M(t)) ≥ 1 for all t ∈ [T0, T ].

The goal of this section is to show that, if assumption (1.3) holds, then
the following holds:

lim
t→T−

M(t) ≤ C < ∞,

for some positive constant C that depends only upon u0, b0, T and
M(T0). The above estimate is enough to extend the smooth solution
(u, b) beyond T .
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The logarithmic Sobolev (3.1) and Gronwall inequalities enable us
to deduce that

∥ω(t)∥2L2 + ∥j(t)∥2L2(3.6)

+

∫ t

T0

(∥Λαω(s)∥2L2 + ∥Λβj(s)∥2L2) ds

≤ C(∥ω(T0)∥2L2 + ∥j(T0)∥2L2) exp

[ ∫ t

T0

∥∇b(s)∥L∞ ds

]
≤ C(∥ω(T0)∥2L2 + ∥j(T0)∥2L2)

· exp
[
C

∫ t

T0

(
1 + ∥b∥L2 + ∥j∥Ḃ0

∞,∞
log(1 + ∥b∥Ḣ3

)
(s) ds

]
≤ C exp

[ ∫ t

T0

C(1 + ∥b0∥L2) ds

]
· exp

[
C

(∫ t

T0

∥j(s)∥Ḃ0
∞,∞

ds

)
log(1 +M(t))

]
≤ C exp

[
C

(∫ t

T0

∥j(s)∥Ḃ0
∞,∞

ds

)
log(1 +M(t))

]
,

for all T0 ≤ t < T . Due to∫ T

0

∥j(s)∥Ḃ0
∞,∞

ds < ∞,

we can choose T0 close enough to T such that

C

∫ T

T0

∥j(s)∥Ḃ0
∞,∞

ds ≤ ϵ

for a sufficiently small ϵ > 0, to be chosen hereafter. Therefore, it is
easy to conclude that, for any T0 ≤ t < T ,

(3.7) ∥ω(t)∥2L2 + ∥j(t)∥2L2 +

∫ t

T0

(∥Λαω(s)∥2L2 + ∥Λβj(s)∥2L2) ds

≤ C(1 +M(t))ϵ.

Next, we prove a global a priori bound for H2-estimates on (ω, j).
Applying ∇2 to equations (3.3) and (3.4), taking the L2 inner product
of the so-obtained equations with ∇2ω and ∇2j, respectively, and
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adding, we arrive at:

1

2

d

dt
(∥∇2ω(t)∥2L2 + ∥∇2j(t)∥2L2) + ∥Λα∇2ω(t)∥2L2 + ∥Λβ∇2j(t)∥2L2

(3.8)

=

∫
R2

[
u · ∇∇2ω −∇2(u · ∇ω)

]
∇2ω dx

+

∫
R2

[
∇2(b · ∇j)− b · ∇∇2j

]
∇2ω dx

+

∫
R2

[
u · ∇∇2j −∇2(u · ∇j)

]
∇2j dx

+

∫
R2

[
∇2(b · ∇ω)− b · ∇∇2ω

]
∇2j dx

+

∫
R2

∇2T (∇u, ∇b)∇2j dx

.
∫
R2

|∇2u| |∇ω| |∇2ω| dx+

∫
R2

|∇u| |∇2ω|2 dx

+

∫
R2

|∇2b| |∇j| |∇2ω| dx

+

(∫
R2

|∇2b| |∇ω| |∇2j| dx+

∫
R2

|∇2u| |∇j| |∇2j| dx

+

∫
R2

|∇2u| |∇2b| |∇2j| dx
)

+

(∫
R2

|∇b| |∇2j| |∇2ω| dx+

∫
R2

|∇3u| |∇b| |∇2j| dx
)

+

(∫
R2

|∇u| |∇2j|2 dx+

∫
R2

|∇u| |∇3b| |∇2j| dx
)

, J1 + J2 + · · ·+ J6,

where we used the facts∫
R2

u · ∇∇2ω · ∇2ω dx =

∫
R2

u · ∇∇2j · ∇2j dx = 0

and ∫
R2

b · ∇∇2j · ∇2ω dx+

∫
R2

b · ∇∇2ω · ∇2j dx = 0.
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Now, we estimate the terms on the right-hand side of (3.8) one-by-
one as follows. We begin with an estimate of the term J1. Applying
the Hölder and Gagliardo-Nirenberg inequalities to J1 yields:

J1 . ∥∇2u∥L4∥∇w∥L4∥∇2w∥L2(3.9)

. ∥∇ω∥2L4∥∇2ω∥L2

. ∥Λαω∥(2α+1)/2
L2 ∥Λα∇2ω∥(3−2α)/2

L2 ∥∇2ω∥L2

≤ 1

16
∥Λα∇2ω∥2L2 + C∥Λαω∥2L2∥∇2ω∥4/(2α+1)

L2 .

Note that here and in what follows the Gagliardo-Nirenberg inequality
holds true for α ≤ 1. However, if α > 1, the case can be handled easily
by a similar argument.

By the Hölder and Gagliardo-Nirenberg inequalities, we estimate J2
as:

J2 . ∥∇u∥L2∥∇2ω∥2L4(3.10)

. ∥ω∥L2∥Λαω∥(2α−1)/2
L2 ∥Λα∇2ω∥(5−2α)/2

L2

≤ 1

16
∥Λα∇2ω∥2L2 + C∥ω∥4/(2α−1)

L2 ∥Λαω∥2L2 ,

where we need the restriction α > 1/2. According to the Hölder and
Gagliardo-Nirenberg inequalities, J3 can be bounded as follows:

J3 . ∥∇2b∥L4∥∇j∥L4∥∇2ω∥L2 . ∥∇j∥2L4∥∇2w∥L2(3.11)

. ∥j∥L∞∥∇2j∥L2∥∇2ω∥L2 . ∥∇b∥L∞∥∇2j∥L2∥∇2ω∥L2 .

Due to Lemma 2.1 and α+ β > 1, the following is obtained for J4:

J4 . ∥∇2b∥L4∥∇ω∥L4∥∇2j∥L2 . ∥∇j∥L4∥∇ω∥L4∥∇2j∥L2(3.12)

. ∥Λβj∥(2β+1)/4
L2 ∥Λβ∇2j∥(3−2β)/4

L2 ∥Λαω∥(2α+1)/4
L2

· ∥Λα∇2ω∥(3−2α)/4
L2 ∥∇2j∥L2

≤ 1

16
∥Λα∇2ω∥2L2 +

1

16
∥Λβ∇2j∥2L2

+ C(∥Λαω∥2L2 + ∥Λβj∥2L2)∥∇2j∥4/(1+α+β)
L2 .

For J5, we obtain

J5 ≤ C∥∇b∥L∞∥∇2j∥L2∥∇2ω∥L2 .
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For J6, we directly achieve, for α+ β > 1,

J6 . ∥∇u∥L2/(1−α)∥∇2j∇2j∥L2/(1+α) + ∥∇u∥L2/1−α∥∇3b∇2j∥L2/1+α

(3.13)

. ∥Λαω∥L2∥∇2j∥L2∥∇2j∥L2/α

. ∥Λαω∥L2∥∇2j∥L2∥Λβj∥1−(3−α−β)/2
L2 ∥Λβ∇2j∥(3−α−β)/2

L2

≤ 1

16
∥Λβ∇2j∥2L2 + C(∥Λαω∥2L2 + ∥Λβj∥2L2)∥∇2j∥4/(α+β+1)

L2 .

Combining all of the estimates J1, J2, . . . , J6, we get:

d

dt
(∥∇2ω(t)∥2L2 + ∥∇2j(t)∥2L2) + ∥Λα∇2ω(t)∥2L2 + ∥Λβ∇2j(t)∥2L2

≤ C∥Λαω∥2L2∥∇2ω∥4/(2α+1)
L2 + C∥ω∥4/(2α−1)

L2 ∥Λαω∥2L2

+ C(∥Λαω∥2L2 + ∥Λβj∥2L2)∥∇2j∥4/(1+α+β)
L2

+ C∥∇b∥L∞∥∇2j∥L2∥∇2ω∥L2 .

Using the logarithmic Sobolev inequality (3.1) and ignoring the dissi-
pative term, we can thus deduce from the above inequality that

1

2

d

dt
(∥∇2ω(t)∥2L2 + ∥∇2j(t)∥2L2)(3.14)

≤ C
(
1 + ∥j∥Ḃ0

∞,∞
log(1 + ∥∇2j∥2L2)

)
∥∇2j∥L2∥∇2ω∥L2

+ C∥Λαω∥2L2∥∇2ω∥4/(2α+1)
L2 + C∥ω∥4/(2α−1)

L2 ∥Λαω∥2L2

+ C(∥Λαω∥2L2 + ∥Λβj∥2L2)∥∇2j∥4/(1+α+β)
L2 .

Integrating over interval (T0, t) and observing that M(t) is a monoton-
ically increasing function, it follows that

1 +M(t)−M(T0)

(3.15)

≤ C(T0)

∫ t

T0

(
1 + ∥j∥Ḃ0

∞,∞
log(1 +M(s))

)
(1 +M(s)) ds

+ C(T0)

∫ t

T0

M(s)2/(2α+1)∥Λαω∥2L2 ds
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+ C(T0)

∫ t

T0

∥ω∥4/(2α−1)
L2 ∥Λαω∥2L2 ds

+ C(T0)

∫ t

T0

(
1 +M(s)2/(1+α+β)

)
(∥Λαω∥2L2 + ∥Λβj∥2L2) ds

≤ C(T0)

∫ t

T0

(
1 + ∥j∥Ḃ0

∞,∞
log(1 +M(s))

)
(1 +M(s)) ds

+ C(T0)M(t)2/(2α+1)

∫ t

T0

∥Λαω∥2L2 ds+ C(T0)

·
∫ t

T0

∥ω∥4/(2α−1)
L2 ∥Λαω∥2L2 ds

+ C(T0)M(t)2/(1+α+β)

∫ t

T0

(∥Λαω∥2L2 + ∥Λβj∥2L2) ds

≤ C(T0)

∫ t

T0

(
1 + ∥j∥Ḃ0

∞,∞
log(1 +M(s))

)
(1 +M(s)) ds

+ C(T0)(1 +M(t))2/(2α+1)+ϵ + C(T0)(1 +M(t))[2ϵ/(2α−1)]+ϵ

+ C(T0)
(
1 +M(t)

)2/(1+α+β)
(1 +M(t))ϵ + C(T0).

We remark that estimate (3.7) has been used several times.

Taking

ϵ =
1

2
min

{
2α− 1

2α+ 1
,

2α− 1

4α− 1
,

α+ β − 1

α+ β + 1

}
> 0,

a simple calculation shows that

1 +M(t) ≤ C(T0)

∫ t

T0

(
1 + ∥j(s)∥Ḃ0

∞,∞
log(1 +M(s))

)
(1 +M(s)) ds

(3.16)

+ C(T0)(1 +M(t))γ + C(T0)

≤ C(T0)

∫ t

T0

(
1 + ∥j(s)∥Ḃ0

∞,∞
log(1 +M(s))

)
(1 +M(s)) ds

+
1

2
(1 +M(t)) + C(T0),
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with some γ ∈ (0, 1). Thus, we have

1 +M(t) ≤ C + C

∫ t

T0

(
1 + ∥j(s)∥Ḃ0

∞,∞
log

(
1 +M(s)

))
(1 +M(s)) ds.

For simplicity of exposition, we denote

V (t) , C + C

∫ t

T0

(
1 + ∥j(s)∥Ḃ0

∞,∞
log(1 +M(s))

)
(1 +M(s)) ds.

Thus, we have
1 +M(t) ≤ V (t).

Therefore,

(3.17)

d

dt
V (t) = C

(
1 + ∥j(t)∥Ḃ0

∞,∞
log(1 +M(t))

)
(1 +M(t))

≤ C
(
1 + ∥j(t)∥Ḃ0

∞,∞
log V (t)

)
V (t).

Applying the standard Log-Gronwall type inequality, see Lemma 2.4,
now tells us that M(t) remains bounded for any t ∈ [0, T ], which
implies that

max
0≤t≤T

(∥∇2w(t)∥2L2 + ∥∇2j(t)∥2L2) ≤ C.

Thus, we have completed the proof of Theorem 1.1. �

4. Proof of Theorem 1.2. This section aims at proving Theo-
rem 1.2 which follows the approach used in the proof of Theorem 1.1.
For the sake of completeness, detailed proofs are given as follows.

Proof of Theorem 1.2. To begin, we obtain the following L2 bounds
for (ω, j)

1

2

d

dt
(∥ω(t)∥2L2 + ∥j(t)∥2L2) + ∥Λαω∥2L2 + ∥Λβj∥2L2(4.1)

≤
∫
R2

|T (∇u,∇b)||j| dx

≤ C∥∇u∥L∞∥∇b∥L2∥j∥L2 ≤ C∥∇u∥L∞∥j∥2L2

≤ C∥∇u∥L∞(∥ω∥2L2 + ∥j∥2L2).
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The definition of

M(t) , max
µ∈[T0, t]

(∥∇2ω(µ)∥2L2 + ∥∇2j(µ)∥2L2)

remains the same. We deduce from the logarithmic Sobolev (3.1) and
Gronwall inequalities that

∥ω(t)∥2L2 + ∥j(t)∥2L2 +

∫ t

T0

(∥Λαω(s)∥2L2 + ∥Λβj(s)∥2L2) ds

(4.2)

≤ C(∥ω(T0)∥2L2 + ∥j(T0)∥2L2)

· exp
[ ∫ t

T0

∥∇u(s)∥L∞ ds

]
≤ C(∥ω(T0)∥2L2 + ∥j(T0)∥2L2)

· exp
[
C

∫ t

T0

(
1 + ∥u∥L2 + ∥ω∥Ḃ0

∞,∞
log(1 + ∥u∥Ḣ3)

)
ds

]
≤ C exp

[ ∫ t

T0

C(1 + ∥u0∥L2) ds

]
· exp

[
C

(∫ t

T0

∥ω∥Ḃ0
∞,∞

ds

)
log(1 +M(t))

]
≤ C exp

[
C

(∫ t

T0

∥ω∥Ḃ0
∞,∞

ds

)
log(1 +M(t))

]
, for all T0 ≤ t < T.

Due to ∫ T

0

∥ω(s)∥Ḃ0
∞,∞

ds < ∞,

we can choose T0 close enough to T such that

C

∫ T

T0

∥ω(s)∥Ḃ0
∞,∞

ds ≤ ϵ

for sufficiently small number ϵ > 0 to be chosen later. Thus, we get

(4.3) ∥ω(t)∥2L2 + ∥j(t)∥2L2 +

∫ t

T0

(∥Λαω(s)∥2L2 + ∥Λβj(s)∥2L2) ds

≤ C(1 +M(t))ϵ.
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Noting (3.8), it is sufficient to estimate the terms J1 − J6. The
Gagliardo-Nirenberg inequality tells us that

J1 . ∥∇2u∥L4∥∇w∥L4∥∇2w∥L2(4.4)

. ∥∇ω∥2L4∥∇2ω∥L2

. (∥ω∥L∞∥∇2ω∥L2)∥∇2ω∥L2

. ∥∇u∥L∞∥∇2ω∥2L2 ,

and

(4.5) J2 ≤ ∥∇u∥L∞∥∇2ω∥2L2 .

Due to α+ β > 1, we may choose p1 satisfying

(4.6) max

{
1,

2

1 + α
,

2(2 + α− β)

(2α+ 1)(2− β)

}
< p1 < min

{
2,

2

2− β

}
;

therefore, by using the Gagliardo-Nirenberg and the Young inequalities,
we obtain:

J3 . ∥∇2b∥L2p1∥∇j∥L2p1 ∥∇2ω∥Lp1/(p1−1)

(4.7)

. ∥∇j∥2L2p1∥∇2ω∥Lp1/(p1−1)

. ∥Λβj∥2(1−λ1)
L2 ∥∇2j∥2λ1

L2 ∥∇2ω∥1−λ2

L2 ∥Λα∇2ω∥λ2

L2

≤ 1

16
∥Λα∇2ω∥2L2+C∥Λβj∥[4(1−λ1)]/[2−λ2]

L2 (∥∇2j∥2λ1

L2 ∥∇2ω∥1−λ2

L2 )2/(2−λ2)

≤ 1

16
∥Λα∇2ω∥2L2+C(1+∥Λβj∥2L2)(∥∇2j∥2λ1

L2 ∥∇2ω∥1−λ2

L2 )2/(2−λ2)

≤ 1

16
∥Λα∇2ω∥2L2+C(1+∥Λβj∥2L2)(∥∇2j∥2L2 + ∥∇2ω∥2L2)ν1 ,

where

λ1 = 1− 1

(2− β)p1
, λ2 =

2− p1
αp1

, ν1 =

(
λ1 +

1− λ2

2

)
2

2− λ2
.

It should be noted that, when p satisfies (4.10) it is then easy to check

(4.8) ν1 < 1.

By the Hölder, Gagliardo-Nirenberg and Young inequalities, we obtain

J4 . ∥∇2b∥L2(2+β)∥∇ω∥L[2(2+β)]/(1+β)∥∇2j∥L2(4.9)
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. ∥∇j∥L2(2+β)∥∇ω∥L[2(2+β)]/(1+β)∥∇2j∥L2

. ∥j∥1−[1/(2+β)]
L2 ∥Λβ∇2j∥1/(2+β)

L2

· ∥Λαω∥1−[((1−α)(2+β)+1)/((2−α)(2+β))]
L2

· ∥∇2ω∥[(1−α)(2+β)+1]/[(2−α)(2+β)]
L2 ∥∇2j∥L2

≤ 1

16
∥Λβ∇2j∥2L2 + C∥j∥[2(1+β)]/(3+2β)

L2 ∥Λαω∥1/(2−α)
L2

·
(
∥∇2ω∥[(1−α)(2+β)+1]/[(2−α)(2+β)]

L2 ∥∇2j∥L2

)[2(2+β)]/(3+2β)

≤ 1

16
∥Λβ∇2j∥2L2 + C∥j∥[2(1+β)]/(3+2β)

L2 (1 + ∥Λαω∥2L2)

·
(
∥∇2ω∥2L2 + ∥∇2j∥2L2

)ν2
,

where ν2 is given by

ν2 =
(3− 2α)(2 + β) + 1

(2− α)(3 + 2β)
< 1

due to α + β > 1. Once again, due to α + β > 1, we can take p2
satisfying

(4.10) max

{
0,

1− β

2

}
<

1

p2
< min

{
1

2
,
3− β

2
,
α

2

}
,

which, by making use of the Gagliardo-Nirenberg and Young inequali-
ties, allows us to deduce:

J5 . ∥∇b∥L2∥∇2j∥Lp2 ∥∇2ω∥L(2p2)/(p2−2)

(4.11)

. ∥j∥L2∥∇2j∥Lp2∥∇2ω∥L(2p2)/(p2−2)

. ∥j∥L2∥Λβj∥1−[(3−β)p2−2]/(2p2)
L2 ∥Λβ∇2j∥[(3−β)p2−2]/(2p2)

L2

· ∥∇2ω∥1−[2/(αp2)]
L2 ∥Λα∇2ω∥2/(αp2)

L2

≤ 1

16
∥Λβ∇2j∥2L2 +

1

16
∥Λα∇2ω∥2L2 + C∥b∥[4(2α−1)]/(2β−1)

L2

· ∥∇b∥[4(3−2α)]/(2β−1)
L2 ∥Λβj∥2L2

≤ 1

16
∥Λβ∇2j∥2L2 +

1

16
∥Λα∇2ω∥2L2 + C∥j∥(4αp2)/[α(1+β)p2+2α−4]

L2

· ∥Λβj∥[2α[2−(1−β)p2]]/[α(1+β)p2+2α−4]
L2
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· ∥∇2ω∥[2α[2−(1−β)p]]/[α(1+β)p2+2α−4]
L2

≤ 1

16
∥Λβ∇2j∥2L2 +

1

16
∥Λα∇2ω∥2L2 + C∥j∥(4αp2)/[α(1+β)p2+2α−4]

L2

· (1 + ∥Λβj∥2L2)∥∇2ω∥ν3

L2 ,

where ν3 is given by

ν3 =
2α[2− (1− β)p]

α(1 + β)p2 + 2α− 4
< 1,

due to α+ β > 1. For J6, we directly obtain

(4.12) J6 ≤ C∥∇u∥L∞∥∇2j∥2L2 .

Plugging estimates (4.4)–(4.12) into (3.8) and absorbing the dissipative
terms, we have:

d

dt
(∥∇2ω(t)∥2L2 + ∥∇2j(t)∥2L2) + ∥Λα∇2ω∥2L2 + ∥Λβ∇2j∥2L2

(4.13)

≤ C∥∇u∥L∞(∥∇2ω∥2L2 + ∥∇2j∥2L2)

+ C(1 + ∥Λβj∥2L2)(∥∇2j∥2L2 + ∥∇2ω∥2L2)ν1

+ C∥j∥[2(1+β)]/(3+2β)
L2 (1 + ∥Λαω∥2L2)

(
∥∇2ω∥2L2 + ∥∇2j∥2L2

)ν2

+ C∥j∥[4αp2]/[α(1+β)p2+2α−4]
L2 (1 + ∥Λβj∥2L2)∥∇2ω∥ν3

L2 .

Making use of the logarithmic Sobolev inequality (3.1), we thus get

1

2

d

dt
(∥∇2ω(t)∥2L2 + ∥∇2j(t)∥2L2)(4.14)

≤ C(T0)
(
1 + ∥ω∥Ḃ0

∞,∞
log(1 +M(t))

)
M(t)

+ C(1 + ∥Λβj∥2L2)M(t)ν1

+ C(1 +M(t))(1+β)/(3+2β+ν2)(1 + ∥Λαω∥2L2)

+ C(1 +M(t))(2αp2ϵ)/[α(1+β)p2+2α−4+ν3](1 + ∥Λβj∥2L2).

Integrating over interval (T0, t) and using the monotonicity of M(t), we
thus have
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1 +M(t)−M(T0)

(4.15)

≤ C(T0)

∫ t

T0

(
1 + ∥ω(s)∥Ḃ0

∞,∞
log(1 +M(s))

)
(1 +M(s)) ds

+ C(T0)M(t)ν1

∫ t

T0

(1 + ∥Λβj∥2L2) ds

+ C(T0)(1 +M(t))(1+β)/[3+2β+ν2]

∫ t

T0

(1 + ∥Λαω∥2L2) ds

+ C(T0)(1 +M(t))(2αp2ϵ)/[α(1+β)p2+2α−4+ν3]

∫ t

T0

(1 + ∥Λβj∥2L2) ds

≤ C(T0)

∫ t

T0

(
1 + ∥ω(s)∥Ḃ0

∞,∞
log(1 +M(s))

)
(1 +M(s)) ds

+ C(T0)(1 +M(t))ν1+ϵ + C(T0)(1 +M(t))[(1+β)/(3+2β)]+ν2+ϵ

+ C(T0)(1 +M(t))(2αp2ϵ)/[α(1+β)p2+2α−4]+ν3+ϵ.

Taking

ϵ=
1

2
min

{
1− ν1,

(1− ν2)(3 + 2β)

1 + β
,
(1− ν3)[α(1 + β)p2 + 2α− 4]

α(3 + β)p2 + 2α− 4

}
>0,

we can thus obtain:

1 +M(t)−M(T0)(4.16)

≤ C(T0)

∫ t

T0

(
1 + ∥ω(s)∥Ḃ0

∞,∞
log(1 +M(s))

)
(1 +M(s)) ds

+ C(T0)(1 +M(t))γ + C(T0),

with some γ ∈ (0, 1). Therefore, taking advantage of the same
arguments as used in the proof of Theorem 1.1, it is easy to show
that the desired conclusion holds true. Thus, the proof of Theorem 1.2
is complete. �
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