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ZETA FUNCTIONS AND
IDEAL CLASSES OF QUATERNION ORDERS

JONATHAN W. SANDS

ABSTRACT. Inspired by Stark’s analytic proof of class
number finiteness of a ring of integers in an algebraic
number field, we give a new proof of the finiteness of the
number of classes of ideals in a maximal order of a totally
definite quaternion algebra over a totally real number field.
Our proof makes use of Epstein zeta function properties.
This approach leads to alternative proofs of Eichler’s mass
formula and even parity of the number of ramified primes in
the quaternion algebra.

1. Introduction. In [10], Stark gives an analytic proof of finiteness
of the number of ideal classes in the ring of integers of an algebraic
number field. Here, we observe that Stark’s method can be applied
to maximal orders in totally definite quaternion algebras over totally
real algebraic number fields, providing a new proof of the standard
result that the number of ideal classes is finite in this situation as
well. The key is Theorem 5.1, stating that a partial zeta function
for a quaternion algebra over a totally real field of degree m may be
expressed as a product of gamma factors, exponential factors and a
function obtained as the average over all v in an m − 1-dimensional
cube of Epstein zeta functions for quadratic forms parameterized by v.
This expression, based on Hecke’s method [7], may be of independent
interest. As another application, we note that it leads to proofs of
Eichler’s mass formula and the even parity of the number of ramified
primes in the quaternion algebra in Theorems 5.3 and 5.4. These results
are standard. Weil provides adelic proofs in [15]. Here we provide an
alternative approach using some classical analytic methods. Note that
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the Jordan-Zassenhaus theorem provides an algebraic proof of a more
general finiteness result, see [9, Chapter 26].

The approach used is first to decompose the zeta function of a
maximal quaternion order into a sum of partial zeta functions, one
for each ideal class. Theorem 5.1 expresses these partial zeta functions
in terms of Epstein zeta functions for quadratic forms attached to ideals
in the quaternion order. Using formulas for the Epstein zeta functions
involving incomplete gamma functions allows showing that their values
at real arguments greater than one are bounded away from zero. This
yields a positive lower bound on the value of each partial zeta function
at such an argument. A determinant computation shows that this lower
bound is independent of the ideal class. Then, since the sum over all
ideal classes is finite, there must be a finite number of ideal classes.
With this background, we are able to equate the zeta function with the
finite sum of partial zeta functions at negative values of the argument
as well. Eichler’s mass formula and the even parity of the number of
ramified primes follow from letting the argument approach zero.

2. Preliminaries on orders. In this section, we review the neces-
sary background, see [9, 13, 14], for details.

2.1. Orders over rings of algebraic integers. Let F be an alge-
braic number field of degree m over Q, and denote its ring of integers
by O = OF . Also, let A be a finite-dimensional, simple F -algebra, and
let Λ be an O-order Λ in A. Then, Λ is left (and right) Noetherian as
a ring and as an O-module.

We may also view A as a Q-algebra; it is finite-dimensional over Q.
Similarly, Λ is a finitely generated, free Z-module. The same applies
for any left ideal I of Λ.

The usual norm map NA/F from A to F is multiplicative, and the
trace TA/F is additive. For γ ∈ Λ, we have that γ is integral over O,
and hence, NA/F and TA/F restrict to maps from Λ to O.

2.2. Ideals in maximal orders. Hereon, we assume that Λ is a fixed
maximal O-order of the simple F -algebra A and that I is a left ideal
of Λ with finite index (Λ : I). Then, I is a right ideal for a possibly
different maximal O-order ΛR(I). The quotient Λ/I is a finite left
module over the Dedekind domain O = OF . By the structure theorem
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for such modules, Λ/I is isomorphic to (⊕iO/ai) for a finite set of non-
zero ideals {ai} of O. We conclude from the multiplicativity of ideal
norms in O that the cardinality

|Λ/I| = (Λ : I) =
∏
i

(O : ai) =

(
O :

∏
i

ai

)
.

The norm of I to O is defined as NA/F (I) =
∏

i ai; thus,

(Λ : I) = (O : NA/F (I)).

The norm NF/Q is multiplicative from ideals of O to ideals of Z and
can be interpreted in a similar way. A may also be viewed as a simple
Q-algebra; therefore, it is easy to see that Λ is also a maximal Z-order
in A. Thus, we have the following.

Proposition 2.1. With Λ and I as specified at the beginning of this
section,

(Λ : I) = (Z : NF/Q(NA/F (I))) = (Z : NA/Q(I)).

Two left ideals I and J of Λ are defined to be in the same ideal class
if I = Jγ for some γ in the multiplicative group A×. The ideal class
of J will be denoted [J ]. The following basic facts will be used later.

Proposition 2.2. For a left ideal J of finite index in Λ and an element
γ ∈ A, we have:

(i) J = Jγ if and only if γ is a unit of ΛR(J).
(ii) If γ is a unit in A and Jγ ⊂ Λ, then

NA/F (Jγ) = NA/F (J)NA/F (γ).

Proof. In order to establish the first statement, suppose that γ is a
unit of ΛR(J) with inverse η. Then Jγ ⊂ J = J · 1 = J · ηγ ⊂ Jγ;
thus, Jγ = J . Conversely, suppose that Jγ = J . Then, by tensoring
over O with F , we have Aγ = A. Thus, γ is a unit of A with inverse η.
Note that it is a two-sided inverse, since A is left Noetherian, see [9,
Theorem 6.4]. Then, J=J ·1=Jγη=Jη, which shows that η ∈ ΛR(J).

For the second statement, see [9, Theorems 24.2–24.5]. �



1280 JONATHAN W. SANDS

We now consider the inverse of the left ideal I of Λ with finite index
(Λ : I) = |Λ/I| = c. Define I−1 = {a ∈ A : Ia ⊂ Λ}. Note that c ∈ I;
thus, cI−1 ⊂ Λ.

Proposition 2.3.

(i) I−1 is a right Λ-module, and cI−1 is a right ideal of Λ of finite
index. Both are left ΛR(I)-modules. They are free Z-modules of
rank equal to the dimension of A as a vector space over Q.

(ii) The O-module consisting of all finite sums of elements of the form
ab with a ∈ I and b ∈ I−1 is I · I−1 = Λ.

(iii) (I−1 : Λ) = (Λ : I).

Proof. For the first two statements, see [9, Theorem 22.7 and the
discussion preceding it]. The third uses [9, Theorem 24.5], giving the
properties of the extension N∗

A/Q of NA/Q to Q-multiples of ideals. �

2.3. Reduced traces and norms in quaternion algebras. Hereon,
we assume that A is the quaternion algebra over F :

A =

(
a, b

F

)
,

where a and b are elements of F . This means that A is the algebra
with center F and F -basis {1, i, j, k} in which i2 = a, j2 = b, and
ji = −ij = −k; thus, k2 = −ab. We can multiply a and b by non-
zero squares in F without changing the isomorphism class of A; thus,
we will also assume that a and b are elements of O = OF . Note
that the Z-rank of Λ or any ideal of finite index in Λ now equals
dimQ(A) = 4[F : Q] = 4m.

Quaternion algebra A has a standard involution sending γ = x +
yi+ zj+wk, with x, y, z, w in F to γ = x− yi− zj−wk. The reduced
trace of γ is the additive function

trd(γ) = γ + γ = 2x ∈ F,

and the reduced norm is the multiplicative function

nrd(γ) = γγ = x2 − ay2 − bz2 + abw2 ∈ F.

Basic relations are TA/F (γ) = 2 trd(γ) and NA/F (γ) = nrd(γ)2. If
γ ∈ Λ, then γ is integral over O, and hence, trd(γ) and nrd(γ) lie in
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O ⊂ Λ. Thus, γ = trd(γ)− γ ∈ Λ. Therefore, the standard involution
also maps Λ to itself.

Proposition 2.4. For an ideal J of Λ of finite index and an element
γ ∈ A× for which Jγ ⊂ Λ, we have (Λ : Jγ) = (Λ : J)NF/Q(nrd(γ))

2.

Proof. Multiplication by a positive integer allows γ ∈ Λ. The result
can then be seen to follow from an application of Propositions 2.1
and 2.2. �

2.4. Units in maximal orders of totally definite quaternion
algebras. Hereon, we assume that F is a totally real field and A is a
totally definite quaternion algebra over F . This means that

A =

(
a, b

F

)
,

where a and b are totally negative elements of F . In particular, A
is a division algebra. The zeta function of the quaternion algebra is
of greatest interest in this case. Now, every non-zero left ideal I of Λ
contains a non-zero principal left ideal. Since there are no zero-divisors,
such an ideal has the same Z-rank as Λ, namely, 4[F : Q] = 4m, and
hence, is of finite index. Thus, every non-zero left ideal is of finite
index.

Units Λ× of Λ map to the units of O = OF via the reduced norm
map, with the kernel denoted Λ×

1 . This leads to the exact sequence

1 −→ Λ×
1

{±1}
−→ Λ×

O× −→ O×

(O×)2
.

From this and the Dirichlet unit theorem for F , we conclude that
|Λ×/O×| divides 2m|Λ×

1 /{±1}|, if the latter is finite. This is indeed
the case in our totally definite quaternion algebra A, as explained
now. Just as O embeds discretely in F ⊗Q R, Λ embeds discretely
in A ⊗Q R ∼= (A ⊗F R) ⊗Q F ∼= (A ⊗F R)m. Now, since a and b are
totally negative,

A⊗F R ∼=
(
a, b

R

)
∼= H,

the Hamiltonian quaternions. Consequently, if we denote the Hamilton-
ian quaternions of reduced norm 1 by H×

1 , then Λ×
1 embeds discretely
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in (H×
1 )

m. Next, H×
1

∼= SU2(C) is a compact group; thus, Λ×
1 is fi-

nite. With this in mind, we see that Λ×
1 /{±1} is isomorphic to a finite

subgroup of H×
1 /{±1} ∼= SO3(R).

Proposition 2.5. There exists a constant Cm dependent only upon m
such that, if Λ is a maximal OF -order in the quaternion division
algebra

A =

(
a, b

F

)
,

where a and b are totally negative elements of a totally real field F with
[F : Q] = m, then ∣∣∣∣Λ×

O×
F

∣∣∣∣ ≤ Cm.

Proof. We may in fact take Cm = 2m+5m2. Since |Λ×/O×| di-
vides 2m|Λ×

1 /{±1}|, it suffices to show that |Λ×
1 /{±1}| ≤ 32m2. Now,

Λ×
1 /{±1} is isomorphic to a finite subgroup of SO3(R). Finite sub-

groups of SO3(R) are either cyclic of order n, dihedral of order 2n or
isomorphic to the symmetry group of a Platonic solid. Suppose that γ
in Λ×

1 has order n. Since γ ∈ A, F [γ] is a field extension of F of rela-
tive degree 1 or 2. Thus, γ is an nth root of unity in a field of degree
2[F : Q] = 2m; thus,

2m ≥ ϕ(n) = n
∏
p|n

p− 1

p
≥ n√

2

∏
p|n

√
p

p

=
n√
2

∏
p|n

1
√
p
≥ n√

2

1√
n

=

√
n

2
.

This yields n ≤ 8m2. Thus, if Λ×
1 /{±1} is cyclic or dihedral, its order is

at most 2n, which is bounded by 16m2; otherwise, its order is bounded
by |A5| = 60. The larger of these two is 16m2 unless F = Q, in which
case we cannot have an element of order n = 5 by considerations similar
to those above. The largest possible group in this case is then S4 of
order 24. Therefore, Λ×

1 /{±1} has order at most 24m2 < 32m2 in all
cases. �
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2.5. Quadratic forms. For our purposes, a key property of the
reduced norm is that it defines a quadratic form from which other
quadratic forms may be obtained. Our assumption that

A =

(
a, b

F

)
,

with two totally negative elements a and b in the totally real field F
implies that the quadratic form is positive-definite. Indeed, set q(γ) =
nrd(γ) for γ ∈ A, and observe that, for 0 ̸= γ = x+ yi+ zj + wk with
x, y, z, w in F , we have q(γ) = x2 − ay2 − bz2 + abw2, which is totally
positive because x2, y2, w2 and z2 are all either totally positive or zero,
but not all zero. Thus, for each embedding σi of F in R, σi(q(γ)) is
a positive-definite quadratic form on the vector space A over Q, with
values in R. Further, a linear combination of quadratic forms is again
a quadratic form, and we note that, if t1, t2, . . . tn are positive real
numbers, then

n∑
i=1

tiσi(q(γ))

is a positive-definite quadratic form on A over Q.

2.6. Completions. For each non-zero prime ideal p of O, let Fp

denote the completion of F at p. The completion of the totally definite
quaternion algebra A at p is Ap = A⊗F Fp. The prime p is defined as
the split in A if Ap is isomorphic to the matrix ring M2(Fp); otherwise,
p is ramified in A. Similarly, let Op denote the completion of O = OF

at p, and let Λp
∼= Λ ⊗O Op denote the corresponding completion of

Λ. It turns out that the prime p is ramified in the maximal order Λ
if and only if Λp is not isomorphic to the ring M2(Op) of two-by-two
matrices with entries in Op. Equivalently, Λp is the unique maximal
Op-order in the unique quaternion division algebra over the complete
local field Fp. There are finitely many ramified primes, and the square
of their product DΛ is the discriminant of Λ. This discriminant does
not depend upon the choice of the amaximal O-order in A; thus, it is
also called the discriminant of A, see [9, Section 25].

3. Zeta functions. We now describe the zeta-functions of quater-
nion orders, Epstein zeta-functions of quadratic forms and a relation
between the two. For the basic theory of zeta-functions of orders, see
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[2, 13, 14]. For a comprehensive treatment in the case of F = Q,
see [4]. For a primer on Epstein zeta-functions, see [12]. As usual in
this setting, s will denote a complex variable and ℜ(s) its real part.
Recall that we are now assuming A = (a, b)/F for totally negative el-
ements a and b in F , although the definition of the zeta-function of A
can be made more generally.

3.1. Zeta functions of maximal orders in quaternion division
algebras. For the fixed maximal OF -order Λ in A, the zeta function
of Λ is defined as

ζΛ(s) =
∑
I

(Λ : I)−s,

where I runs through all left Λ-ideals of finite index. This sum
converges absolutely and defines ζΛ as an analytic function for the real
part of s satisfying ℜ(s) > 1. A proof of the convergence is given in
[2, Chapter VII], for example, but, because it is essential to our main
result, this section includes a sketch of this fact in our case of interest.

Although the ideal theory of Λ requires consideration of other
maximal orders of A, consider the reduced norms of ideals of Λ, which
lie in the Dedekind domain O. (The reduced norm of an ideal is
generated by the reduced norms of its elements.) This allows us to
show that ζΛ has an Euler product expansion, the product being over
non-zero prime ideals p of O. The zeta function of Λp, ζΛp

(s), is defined
in the same way as for Λ: as the sum of the index of each non-zero left
ideal raised to the −s power. For each non-zero ideal m of O, let am
denote the number of left ideals of Λ whose reduced norm is m. Using
completions and the fact that left ideals of Λp are principal for each
prime p allows for anm = anam whenever n and m are relatively prime.
This is sufficient to give

ζΛ(s) =
∏
p

ζΛp
(s).

By direct comparison of Euler factors, a formula involving the Dedekind
zeta function ζF (s) of F is obtained:

(3.1) ζΛ(s) = ζF (2s)ζF (2s− 1)
∏
p|DΛ

(1− (O : p)1−2s).
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By standard comparison with a power of the Riemann zeta function,
the Euler product for the right hand side of this equation converges
absolutely for ℜ(s) > 1, and hence, the same applies for

∏
p ζΛp

(s).

This, in turn, implies that the sum ζΛ(s) =
∑

I(Λ : I)−s converges
absolutely to an analytic function for ℜ(s) > 1, see [13, Chapter III]
or [14, Chapter 17] for details.

3.2. Epstein zeta functions. Let Q be a positive-definite quadratic
form on rational k-space Qk. An element of Qk will be represented by
a column vector v, and vt stands for its transpose. There is a unique
positive-definite symmetric matrix P such that Q(v) = vtPv for all
v ∈ Qk. Thus, P is the matrix of Q.

The Epstein zeta function of Q is of the complex variable s, defined
as

ZQ(s) =
1

2

∑
0̸=v∈Zk

Q(v)−s.

Epstein introduced these zeta functions as generalizations of the Rie-
mann zeta function [5, 6]. They can be used to express Dedekind zeta
functions of number fields, and prove some of their properties, as seen
in [12]. We will show in Theorem 5.1 that they can similarly be used
to express zeta functions of quaternion orders.

We list the following properties, of which the first two are of primary
interest.

Proposition 3.1.

(i) The sum ZQ(s) = (1/2)
∑

0̸=v∈Zk Q(v)−s converges absolutely to

an analytic function for ℜ(s) > k/2.
(ii) Let Γ(s) denote the gamma function and G(s, x) the incomplete

gamma function,

G(s, x) =

∫ ∞

1

ys−1e−xydy,

for x > 0 and all complex s. This yields the expansion

ΦP (s) = π−sΓ(s)ZQ(s) =
det(P )−1/2

2s− k
− 1

2s
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+
1

2

∑
0̸=v∈Zk

(
G(s, πQ(v)) +

G((k/2)− s, πvtP−1v)

det(P )1/2

)
.

(iii) ZQ(s) > πs[(det(P )−1/2)/(2s− k)− 1/2s]/Γ(s) for real s > k/2.
(iv) ZQ(s) has a meromorphic continuation to the complex plane.
(v) ZQ(0) = −1/2, and the only pole of ZQ is at s = k/2. It is a

simple pole with residue (πk/2Γ(k/2))/2
√

det(P ).

(vi) ZQ(s) satisfies the functional equation ΦP (s) = det(P )−1/2ΦP−1

(k/2)− s.

Proof. See [12, Chapter 1]. The last four statements are direct
consequences of the incomplete gamma function expansion. �

3.3. Partial zeta functions. The zeta function of a left ideal class [J ]
in Λ is defined as

(3.2) ζΛ,[J](s) =
∑
I∈[J]

(Λ : I)−s.

By comparison with ζΛ(s), this also converges absolutely for ℜ(s) > 1.
Indeed, the absolute convergence of the sum for ζΛ(s) implies that

(3.3) ζΛ(s) =
∑
[J]

ζΛ,[J](s)

for ℜ(s) > 1. Note that this sum is over all non-zero ideal classes [J ],
and this equality will be used to prove that the number of ideal classes
is finite.

Now, for each I ∈ [J ], we have I = Jγ for some γ ∈ J−1. In
fact, Jγ1 = Jγ2 if and only if γ1 = uγ2 for some u ∈ ΛR(J)

×, by
Proposition 2.2. Let wJ = |ΛR(J)

×/O×|, so wJ < Cm = 2m+5m2, by
Proposition 2.5. Then, if we let J−1/O× denote a set of representatives
for the nonzero elements of J−1 under the equivalence relation for which
the equivalence class of a nonzero γ ∈ J−1 is γO×, there is a wJ -to-one
mapping from J−1/O× onto [J ] defined by γ → Jγ, as ΛR(J)

×γ is a
union of wJ equivalence classes γO× = O×γ. We find that

ζΛ,[J](s) =
1

wJ

∑
γ∈J−1/O×

(Λ : Jγ)−s,

again converging absolutely for ℜ(s) > 1.
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Then, using Proposition 2.4, this becomes

(3.4) ζΛ,[J](s) =
(Λ : J)−s

wJ

∑
γ∈J−1/O×

NF/Q(nrd(γ))
−2s,

converging absolutely for ℜ(s) > 1.

Now, we let {σ1, . . . , σm} denote the set of embeddings of F in R.
Then, we can express

NF/Q(nrd(γ)) =
m∏
i=1

σi(nrd(γ)).

Recall that each σi(nrd(γ)) is positive, as seen in subsection 2.5.

Let R+ denote the positive real numbers and Z+ the positive in-
tegers. For any complex number s with ℜ(s) > 0, any real number
c ∈ R+ and any integer g ∈ Z+, we have a standard relation

(3.5)
Γ(gs)

cgs
=

∫ ∞

0

ygse−cy dy

y
,

in which we set g = 1 and c = σi(nrd(γ)). Thus, for each i,

Γ(s)

σi(nrd(γ))s
=

∫
R+

ysi e
−σi(nrd(γ))yi

dyi
yi

,

and hence, upon multiplying these factors together for i = 1 . . .m, and
using Tonelli’s theorem:

Γ(s)m

NF/Q(nrd(γ))s
=

∫
(R+)m

(y1 · · · ym)se−
∑m

i=1 σi(nrd(γ))yi
dy1 · · · dym
y1 · · · ym

.

Applying Dirichlet’s unit theorem, let ε1, . . . , εm−1 be fundamental
units of O. Following Hecke [7], we change to the variables x ∈ Rm−1

and u ∈ R+ where x has components x1, . . . , xm−1 and

yi = u
m−1∏
j=1

|σi(εj)|2xj = uτi(x),

for each i. Then

∂yi
∂xj

= 2 log |σi(εj)|yi and
∂yi
∂u

=
yi
u
.
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Thus, in the Jacobian matrix, we can factor out yi from the ith row
for each i, factor out a 2 from the jth column for 1 ≤ j ≤ m − 1 and
factor out 1/u from the last column. In the remaining matrix, adding
all of the rows to the last row produces a new matrix whose (i, j) entry
is log |σi(εj)| for 1 ≤ i, j ≤ m− 1, and whose last row has every entry
equal to log | ± 1| = 0 except for a final entry of 1+ · · ·+1 = m. Thus,
the Jacobian determinant is (2m−1m

∏m
i=1 yi/u)RF , where RF is the

regulator of F .

Since ∣∣∣∣∏
i

σi(εj)

∣∣∣∣ = |NF/Q(εj)| = | ± 1| = 1,

the result of this change of variables is:

Γ(s)m

NF/Q(nrd(γ))s
= 2m−1mRF

·
∫
Rm−1

∫
R+

umse−
∑m

i=1 σi(nrd(γ))τi(x)u du

u
dx.

By equation (3.5) with g = m, we can perform the integral over u and
arrive at

Γ(s)m

NF/Q(nrd(γ))s
= 2m−1mRFΓ(ms)

·
∫
Rm−1

( m∑
i=1

σi(nrd(γ))τi(x)

)−ms

dx.

Replacing s by 2s and summing over γ ∈ J−1/O×, we see from this
and equation (3.4) that

Γ(2s)mζΛ,[J](s) =
2m−1mRF

wJ

Γ(2ms)

(Λ : J)s

(3.6)

·
∑

γ∈J−1/O×

∫
Rm−1

( m∑
i=1

σi(nrd(γ))τi(x)

)−2ms

dx,

the sum converging absolutely for ℜ(s) > 1.
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We may write the absolutely convergent integral here as

∑
λ∈Zm−1

∫
[−1/2,1/2]m−1+λ

( m∑
i=1

σi(nrd(γ))τi(x)

)−2ms

dx(3.7)

=
∑

λ∈Zm−1

∫
[−1/2,1/2]m−1

( m∑
i=1

σi(nrd(γ))τi(x+ λ)

)−2ms

dx,

by changing variables via simple translations.

Since

τi(x) =

m−1∏
j=1

|σi(εj)|2xj ,

clearly τi(x + λ) = τi(x)τi(λ) for λ ∈ Zm−1 with components
λ1 · · ·λm−1. Now,

τi(λ) = σi

(∏
j

ε
λj

j

)2

= σi(ε
2
λ),

where ελ =
∏

j ε
λj

j is a unit of O. Since the set {εj} consists of

fundamental units of O, the elements ± ελ run through O× as λ runs
through Zm−1. The integral in equation (3.6) thus becomes

∑
λ∈Zm−1

∫
[−1/2,1/2]m−1

( m∑
i=1

σi(nrd(γ) ε
2
λ)τi(x)

)−2ms

dx(3.8)

=
1

2

∑
ε∈O×

∫
[−1/2,1/2]m−1

( m∑
i=1

σi(nrd(γ) ε
2)τi(x)

)−2ms

dx

=
1

2

∑
ε∈O×

∫
[−1/2,1/2]m−1

( m∑
i=1

σi(nrd(γ ε))τi(x)

)−2ms

dx,

since nrd(γ ε) = nrd(γ)nrd(ε) = nrd(γ) ε2 for ε ∈ O.

Replacing the integral in equation (3.6) by this expression results in

Γ(2s)mζΛ,[J](s) =
2m−2mRF

wJ

Γ(2ms)

(Λ : J)s
·

(3.9)
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∑
γ∈J−1/O×

ε∈O×

∫
[−1/2,1/2]m−1

( m∑
i=1

σi(nrd(γ ε))τi(x)

)−2ms

dx

=
2m−2mRF

wJ

Γ(2ms)

(Λ : J)s
·

∑
γ∈J−1

∫
[−1/2,1/2]m−1

( m∑
i=1

σi(nrd(γ))τi(x)

)−2ms

dx,

again with absolute convergence of the sum for ℜ(s) > 1.

For fixed x, consider the function of γ that appears in equation (3.9):

qx(γ) =
m∑
i=1

σi(nrd(γ))τi(x).

By subsection 2.5, qx is a quadratic form on the Q-space A and is
positive-definite since each ti = τi(x) > 0.

We are interested in the restriction of qx to certain finitely-generated
Z-submodules L of A of rank 4m. These are necessarily isomorphic
to Z4m as Z-modules and will be called full Z-lattices in A, or sim-
ply lattices. Important examples of lattices are Λ, J and J−1, by
Proposition 2.3. Given a lattice L, we choose a Z-module isomorphism
ϕL : Z4m → L. It will be seen that our results do not depend upon the
choice of isomorphism.

Extending scalars toQ, we obtain a quadratic form qx,J−1 = qx◦ϕJ−1

onQ4m. Rewriting equation (3.9) in light of these observations, we have

Γ(2s)mζΛ,[J](s) =
2m−2mRF

wJ
Γ(2ms)(Λ : J)−s(3.10)

·
∑

γ∈J−1

∫
[−1/2,1/2]m−1

qx(γ)
−2msdx

=
2m−2mRF

wJ
Γ(2ms)(Λ : J)−s

·
∑

v∈Z4m

∫
[−1/2,1/2]m−1

qx,J−1(v)−2msdx

=
2m−2mRF

wJ
Γ(2ms)(Λ : J)−s
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·
∫
[−1/2,1/2]m−1

∑
v∈Z4m

qx,J−1(v)−2msdx,

the interchange of limit and summation being justified by the monotone
convergence theorem for real s with s > 1, and hence, for complex s
with ℜ(s) > 1.

Now we note the appearance of an Epstein zeta function in equa-
tion (3.10). In order to normalize it, again let DΛ denote the discrimi-
nant of Λ so that DΛ is an ideal in O. Let dF denote the discriminant
of F such that dF is an integer. Put

dF,Λ =
d4F (O : DΛ)

1/4m

2
,

and define the normalized quadratic form

(3.11) Qx,J−1(v) =
(Λ : J)1/2m

dF,Λ
qx,J−1(v).

We show in the next section (Corollary 4.4) that the symmetric
matrix Px,J−1 of the positive-definite quadratic form Qx,J−1 has deter-
minant 1. This fact is needed to establish a lower bound, independent
of the ideal class, for values of partial zeta functions (Corollary 5.2).
This independence leads to the main Theorem 5.3 on the finiteness of
the number of ideal classes.

4. Computations with determinants and discriminants. In
this section, we compute det(Px,J−1) = 1. One may choose to accept
this result for now and return later to this section. We begin by consi-
dering the matrix px,R of qx,R = qx ◦ ϕR for a particular order R ⊂ A
which is most amenable to computation. In general, we let px,L denote
the matrix representing qx,L = qx ◦ ϕL.

Let R = O ⊕ Oi ⊕ Oj ⊕ Ok, and let {f1, . . . , fm} be an integral
basis of O. Then, {f1, . . . , fm, f1i, . . . , fmi, f1j, . . . , fmj, f1k, . . . , fmk}
is a free basis for R as a Z-module. We use this ordered basis to define
the Z-module isomorphism ϕR : Z4m → R in the standard way.

Since each γ = x + yi + zj + wk, with x, y, z, w in O has reduced
norm

nrdA/F (γ) = γγ = x2 − ay2 − bz2 + abw2 ∈ F,
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we have

qx(γ) =

m∑
i=1

σi(nrd(γ)) τi(x) =

m∑
i=1

σi(x
2 − ay2 − bz2 + abw2) τi(x)

(4.1)

=

m∑
i=1

σi(x
2) τi(x) +

m∑
i=1

σi(−ay2) τi(x)

+
m∑
i=1

σi(−bz2) τi(x) +
m∑
i=1

σi(abw
2) τi(x)

Now, for γ = ϕR(v1, . . . ,+v4m), we have x = v1f1 + · · · + vmfm,
y = vm+1f1 + · · · + v2mfm, z = v2m+1f1 + · · · + v3mfm and w =
v3m+1f1+· · ·+v4mfm. Thus, we find that qx,R = qx◦ϕR is represented
by a matrix px,R consisting of four m-by-m blocks on the diagonal:( m∑

k=1

σk(fi)σk(fj)τk(x)

)
i,j

,

( m∑
k=1

σk(fi)σk(fj)σk(−a)τk(x)

)
i,j

,

( m∑
k=1

σk(fi)σk(fj)σk(−b)τk(x)

)
i,j

,

and ( m∑
k=1

σk(fi)σk(fj)σk(ab)τk(x)

)
i,j

.

The determinant of px,R is the product of these determinants. Each of
these matrices may be factored using M = (σj(fi))i,j and its transpose
M t, along with diagonal matrices C(x, f) having diagonal entries
σk(f)τk(x), for certain fixed f ∈ F . The respective factorizations are
MC(x, 1)M t, MC(x,−a)M t, MC(x,−b)M t and MC(x, ab)M t. The
determinant ofMM t is the discriminant dF of the field F , by definition.
The determinant of C(x, f) is∏

k

σk(f)
∏
k

τk(x) = NF/Q(f)
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since

τk(x) =
m−1∏
j=1

|σk(εj)|2xj

and, for each j, we have∣∣∣∣∏
k

σk(εj)

∣∣∣∣ = |NF/Q(εj)| = | ± 1| = 1.

Multiplying the factors together yields the next result.

Lemma 4.1. det(px,R) = d4FNF/Q(ab)
2.

Now, we relate this to det(px,J−1).

Lemma 4.2. Suppose that L1 ⊂ L2 are Z-modules of rank m in A.
Then, det(px,L1) = (L2 : L1)

2 det(px,L2).

Proof. Each matrix px,Li
is defined by choosing a Z-module isomor-

phism ϕLi : Z4m → Li. Let ι be the inclusion map of L1 in L2. Then
T = ϕ−1

x,L2
◦ ι ◦ ϕx,L1 is a Z-module map from Z4m to Z4m, repre-

sented by a matrix C, and (L2 : L1) = |L2/ι(L1)| = |Z4m/T (Z4m)| =
|Z4m/CZ4m| = | det(C)|. Then,

qx,L1(v) = qx(ι ◦ ϕL1(v)) = qx(ϕL2(T (v))) = qx(ϕL2(Cv))(4.2)

= (Cv)tpx,L2(Cv) = vt(Ctpx,L2C)v,

showing that px,L1 = (Ctpx,L2C). The result follows upon taking
determinants. �

Next, we can compute the determinant of interest. The first expres-
sion we give in the next proposition would be sufficient for our purposes,
but the second is more natural.

Proposition 4.3.

det(px,J−1) =
d4FNF/Q(ab)

2

(Λ : J)2(Λ : R)2
=

d4F (O : DΛ)

(Λ : J)224m
.
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Proof. From Lemmas 4.1 and 4.2, with L1 = R ⊂ Λ and L2 =
J−1 ⊃ Λ, we get

det(px,J−1) =
d4FNF/Q(ab)

2

(J−1 : R)2
=

d4FNF/Q(ab)
2

(J−1 : Λ)2(Λ : R)2
.

Then, Proposition 2.3 gives (J−1 : Λ) = (Λ : J), establishing the first
equality.

For the second, consider the discriminants DR and DΛ of R and Λ,
respectively. These are ideals of O. We have from [9, Chapter 4] or
[14, Chapter 12],

(4.3) (16a2b2) = DR = [Λ : R]2DΛ,

where Λ/R ∼= ⊕iO/ai as an O-module and [Λ : R] =
∏

i ai. Hence,

(Λ : R) = |Λ/R| =
∣∣∣∣⊕

i

O
ai

∣∣∣∣ =
∣∣∣∣∣ O∏

i

ai

∣∣∣∣∣ =
∣∣∣∣ O
[Λ : R]

∣∣∣∣ = (O : [Λ : R]).

This equality and equation (4.3) lead to

16mNF/Q(ab)
2 = NF/Q(16a

2b2) = (O : (16a2b2)) = (O : [Λ : R]2DΛ)

(4.4)

= (O : [Λ : R])2(O : DΛ) = (Λ : R)2(O : DΛ).

Setting NF/Q(ab)
2 = (Λ : R)2(O : DΛ)/2

4m in the first expression for
det(px,J−1) yields the second. �

Corollary 4.4. det(Px,J−1) = 1.

Proof. Since

Qx,J−1 =
(Λ : J)1/2m

dF,Λ
qx,J−1 ,

we have that Qx,J−1 is represented by the 4m× 4m matrix

Px,J−1 =
(Λ : J)1/2m

dF,Λ
px,J−1 .
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It follows that dF,Λ = (d4F (O : DΛ))
1/4m/2, and

(4.5)

det(Px,J−1)=det

(
(Λ : J)1/2m

dF,Λ
px,J−1

)
=

(
(Λ : J)1/2m

dF,Λ

)4m

det(px,J−1)

=
(Λ : J)2

d4mF,Λ

det(px,J−1)=
(Λ : J)224m

d4F (O : DΛ)
det(px,J−1)=1.

The last equality holds by Proposition 4.3. �

5. Main results. We now arrive at the following key result, directly
relating a partial zeta function to Epstein zeta functions.

Theorem 5.1.

(i) For ℜ(s) > 1,

Γ(2s)mζΛ,[J](s) =
2m−2mRF

wJ

Γ(2ms)

d2ms
F,Λ

(5.1)

·
∫
[−1/2,1/2]m−1

∑
v∈Z4m

Qx,J−1(v)−2msdx

=
2m−1mRF

wJ

Γ(2ms)

d2ms
F,Λ

·
∫
[−1/2,1/2]m−1

ZQx,J−1 (2ms) dx.

(ii) The function ζΛ,[J](s) extends to a meromorphic function on
the complex plane with its only poles at s = 1 and at negative integer
multiples of 1/2m.

(iii) The extended function ζΛ,[J](s) has a zero of order m − 1 at
s = 0 and

lim
s→0

ζΛ,[J](s)

sm−1
=

−22m−3RF

wJ
.
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Proof.

(i) These equalities directly follow from (3.10), together with the
definition of Qx,J−1 in (3.11), and the definition of ZQx,J−1 .

(ii) From part (i),
(5.2)

ζΛ,[J](s) =
2m−1mRF

wJ

Γ(2ms)

d2ms
F,Λ Γ(2s)m

∫
[−1/2,1/2]m−1

ZQx,J−1 (2ms) dx,

and ZQx,J−1 (2ms) is meromorphic on the complex plane with a single

pole at s = 1, by Proposition 3.1. For each s ̸= 1, it is a continuous
function of x, so when integrated with respect to x over the compact
region, it yields a meromorphic function with a single pole at s = 1.
Since Γ(s) is also meromorphic on the complex plane with no zeroes and
poles only at s = 0 and negative integers, the expression for ζΛ,[J](s)
represents it as a meromorphic function with the stated properties.

(iii) Using the functional equation for the Gamma function in equa-
tion (5.2) gives

ζΛ,[J](s)

sm−1
=

2m−1mRF

wJsm−1

Γ(2ms+ 1)/(2ms)

d2ms
F,Λ (Γ(2s+ 1)/2s)m

(5.3)

·
∫
[−1/2,1/2]m−1

ZQx,J−1 (2ms) dx

=
2m−1mRF

wJ

Γ(2ms+ 1)

d2ms
F,Λ Γ(2s+ 1)m

2m−1

m

·
∫
[−1/2,1/2]m−1

ZQx,J−1 (2ms) dx.

Now, letting s approach zero and using ZQx,J−1 (0) = −1/2 from Propo-

sition 3.1 gives the result. �

Our main result is obtained by taking s to be a real value greater
than 1. We will use s = 2 to be explicit.

Corollary 5.2. ζΛ,[J](2) > (RF /2
9m2)(π4/6d4F,Λ)

m.
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Proof. Setting s = 2 in Theorem 5.1 and dividing by Γ(4)m = 6m

yield

(5.4) ζΛ,[J](2) =
2m−1mRF

wJ(6d4F,Λ)
m
Γ(4m)

∫
[−1/2,1/2]m−1

ZQx,J−1 (4m) dx,

Since det(Px,J−1) = 1 as shown in Corollary 4.4, Proposition 3.1 (iii)
with s = k = 4m gives

(5.5) ZQx,J−1 (4m) >
π4m

Γ(4m)

(
1

8m− 4m
− 1

8m

)
=

π4m

Γ(4m)

1

8m
.

Using this in equation (5.4), along with wJ < 2m+5m2 from Proposi-
tion 2.5, gives the result. �

We are now positioned to give our proof of the finiteness of the
number of ideal classes.

Theorem 5.3. In a maximal OF -order Λ of a quaternion algebra A
that is ramified at all infinite places over a totally real field F , the
number of left ideal classes [J ] is finite.

Proof. From equation (3.3) with s = 2, we have that

(5.6) ζΛ(2) =
∑
[J]

ζΛ,[J](2),

a sum over all classes of non-zero left ideals of Λ. Now, Corollary 5.2
gives

ζΛ,[J](2) ≥ C(F,Λ),

with a constant C(F,Λ) > 0, independent of [J ]. Since ζΛ(2) is finite,
the sum has a finite number of terms, giving the desired result. �

By considering the equation

ζΛ(s) =
∑
[J]

ζΛ,[J](s)

as s approaches zero, we can now prove the Eichler mass formula ([3])
and the even parity of the number of ramified primes in A over F .
The latter is typically obtained as a consequence of Hilbert reciprocity
for number fields, proved in [11, Section 10, Theorem B]. Analytic
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proofs of these results appear in the literature; however, we wish to
emphasize the use of s approaching zero rather than s approaching 1,
and the ability to determine the behavior at s = 0 directly from explicit
formulas rather than using functional equations.

Theorem 5.4.

(i) Eichler’s mass formula.∑
[J]

1

wJ
=

hF |ζF (−1)|
2m−1

∏
p|DΛ

((O : p)− 1).

In particular, ζF (−1) is rational.

(ii) A special case of Hilbert reciprocity. The number of primes
of F that ramify in A is even.

Proof. Equation (3.3) states that

(5.7) ζΛ(s) =
∑
[J]

ζΛ,[J](s)

for ℜ(s) > 1. Now that the sum on the right is finite, we can
conclude that this equation holds for the meromorphic continuation
of these functions as well. Dividing by sm−1 and taking the limit
as s approaches zero on both sides of this equation with the use of
equation (3.1) and Theorem 5.1, we obtain(

lim
s→0

ζF (2s)

sm−1

)
ζF (−1)

∏
p|DΛ

(1− (O : p)) = lim
s→0

ζΛ(s)

sm−1
(5.8)

=
∑
[J]

lim
s→0

ζΛ,[J](s)

sm−1
= −22m−3RF

∑
[J]

1

wJ
.

The first limit is given by the general “analytic class number for-
mula” in terms of the class number hF and number of roots of unity
wF in F :

lim
s→0

ζF (2s)

sm−1
= 2m−1 lim

s→0

ζF (2s)

(2s)m−1
= 2m−1−hFRF

wF
.
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For the totally real field F , we have wF = 2. After substituting and
canceling in equation (5.8), this yields

(5.9) hF ζF (−1)
∏
p|DΛ

(1− (O : p)) = 2m−1
∑
[J]

1

wJ
.

Taking absolute values now yields (i).

For (ii), we simply consider signs. In equation (5.9), the number
of negative terms in the product equals the number of finite primes
dividing DΛ, which is the number of finite primes of F that ramify in A.
Also, it follows from the analytic continuation formula for ζF that the
sign of ζF (−1) is (−1)m, a product of m negative terms. Now, m is the
number of infinite primes of F that ramify in A, since F is totally real
of degree m and all infinite primes ramify by assumption. Since the
right side of equation (5.9) is positive, we see that the total number of
finite and infinite ramified primes is even. �

Remark 5.5. The Birch-Tate conjecture specifies the exact value of
ζF (−1) for totally real F in terms of the algebraicK-groupK2(OF ) and
a quantity w2(F ) which can be most simply described as the maximum
number of roots of unity in an abelian Galois extension of F whose
Galois group over F has exponent 2. The conjecture that

ζF (−1) = (−1)m
|K2(OF )|
w2(F )

holds for F abelian over Q, and holds up to powers of 2 as consequences
of [8, 16].
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