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POSITIVE SOLUTIONS FOR THE
NONHOMOGENEOUS p-LAPLACIAN

EQUATION IN RN

CAISHENG CHEN AND JING LI

ABSTRACT. In this paper, we study a class of nonhomo-
geneous sublinear-superlinear p-Laplacian equations in RN .
By applying a minimization method on the Nehari manifold
Nα, the existence of positive solutions and the continuity in
the perturbation term are obtained.

1. Introduction and main results. In this paper, we are inter-
ested in the existence of positive solutions for the following nonhomo-
geneous sublinear-superlinear p-Laplacian problem:{

−div(|∇u|p−2∇u) + |u|m−2u = |u|q−2u+ f(x) x ∈ RN ,

u(x) ∈ D1,p(RN ) ∩ Lq(RN ),
(1.1)

where 1 < p < N , 1 < q < p ≤ m < p∗ = pN/(N − p). Problem (1.1)
may be considered as a perturbation of the homogeneous problem{

−div(|∇u|p−2∇u) + |u|m−2u = |u|q−2u x ∈ RN ,

u(x) ∈ D1,p(RN ) ∩ Lq(RN ).
(1.2)

Recently, Lyberopoulos [13] studied the existence of the ground
state solution for the p-Laplacian equation

−div(|∇u|p−2∇u) + V (x)|u|p−2u+H(x)|u|s−2u = h(x)|u|q−2u,

(1.3)

x ∈ RN ,
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where the parameters p, q, s satisfy one of the following assumptions:

(A1) 1 < q < min{p, s} or q > max{p, s};
(A2) s < q < p;
(A3) p < q < s < p∗,

and the nonnegative functions V (x), h(x) and H(x) verify

(A4) there exists a θ ∈ (0, p) such that |x|θV (x) → α > 0 as |x| →
∞;

(A5) (h(x))p
∗−p(V (x))q−p∗ → 0, (H(x))p

∗−p(V (x))p
∗−s → 0 as |x|

→ ∞.

Similarly, Su and Wang [17] investigated the existence of entire
solutions of nonlinear elliptic equations of the form

{
−div(A(|x|)|∇u|p−2∇u) + V (|x|)|u|p−2u = Q(|x|)f(u) x ∈ RN ,

u(x) → 0 as |x| → ∞,

(1.4)

where f(u) = o(|u|µ), µ > p, as u→ 0.

It is worth noting that, as |x| → ∞, the functions satisfy V (x), h(x),
H(x) → 0 in (1.3) and Q(|x|) → 0 in (1.4). Similar studies may be
found in [3, 9, 12, 18, 20, 21] and the references therein.

In striking contrast to the rich variety of the aforementioned studies,
however, very little seems to be known for problem (1.1). A general
method exists for solving the analogue of problem (1.1) in a bounded
domain, see [1, 4, 8]. While in RN , problem (1.1) is not compact, that
is, the minimizing sequence may be bounded, but not pre-compact,
in the Sobolev space W 1,p(RN ). In order to overcome this difficulty,
the authors in [13] used assumptions (A4)–(A5) to obtain the compact
embedding Ep(RN , V ) ↩→ Lq(RN , h) (Ls(RN ,H)) and then proved the
existence of solutions for (1.4), where the weighted Sobolev space
E ≡ Ep(RN , V ) is defined as the completion of C∞

0 (RN ) under the
norm

∥u∥E =

(∫
RN

(|∇u|p + V |u|p) dx
)1/p

.

The other method for dealing with this problem is to work in
weighted Sobolev spaces of radial functions and then establish a com-
pact embedding theorem, see [17, 18]. In this paper, we are moti-
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vated by [3, 13, 17, 18] and study the existence of positive solutions
for (1.1). We shall use the Nehari manifold and the fibering map meth-
ods proposed by Drabek and Pohozaev [6, 14] (also see [2]) to study
problem (1.1).

In order to state our main results, we introduce some Lebesgue
spaces and norms. Let Ls(RN ), s ≥ 1, be the usual Lebesgue spaces
with the norm

∥u∥s =
(∫

RN

|u|sdx
)1/s

and

X = D1,p(RN ) =

{
u ∈ Lp∗

(RN ) | ∂u
∂xi

∈ Lp(RN ), i = 1, 2, . . . , N

}
endowed with the norm ∥u∥X = ∥∇u∥p.

The following Gagliardo-Nirenberg-Sobolev inequality is well known.
There is a constant S > 0, dependent only upon p and N , such that

(1.5) S

(∫
RN

|u|p
∗
dx

)p/p∗

≤
∫
RN

|∇u|pdx for all u ∈ C∞
0 (RN ).

Since C∞
0 (RN ) is a dense subset of X, the embedding inequality (1.5)

holds on X.

For problem (1.1), we introduce the Banach space E ≡ D1,p(RN ) ∩
Lq(RN ) with the norm

(1.6) ∥u∥E = ∥∇u∥p + ∥u∥q.

By (1.5) and the interpolation inequality, there exists an Sr > 0 such
that, for r ∈ [q, p∗],

(1.7) ∥u∥r ≤ Sr∥u∥E for all u ∈ E.

Definition 1.1. A function u ∈ E is said to be a weak solution of (1.1)
if, for any φ ∈ C∞

0 (RN ), the following holds:
(1.8)∫
RN

(|∇u|p−2∇u∇φ+ |u|m−2uφ) dx =

∫
RN

|u|q−2uφdx+

∫
RN

f(x)φdx.
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Let J(u) : E → R be the energy functional associated with prob-
lem (1.1) defined by

(1.9) J(u) =
1

p
∥∇u∥pp +

1

m
∥u∥mm − 1

q
∥u∥qq −

∫
RN

f(x)u dx.

It is easy to see that, for all φ ∈ E, the functional J ∈ C1(E,R) and
its Gateaux derivative are given by

(1.10) J ′(u)φ =

∫
RN

(|∇u|p−2∇u∇φ+ |u|m−2uφ) dx

−
∫
RN

|u|q−2uφdx−
∫
RN

f(x)φdx.

Clearly, the solutions of (1.1) correspond to critical points of J in E.

Our main result in this paper is as follows.

Theorem 1.2. Let 1 < p < N and 1 < q < p ≤ m < p∗ = pN/(N−p).
In addition, suppose that the function f is nontrivial and nonnegative,
and f ∈ Lq′(RN ) ∩ Lγ(RN ), where

q′ =
q

q − 1
, γ =

p∗

p∗ − 1
.

Then, problem (1.1) admits a least positive positive solution u ∈ E
which converges to 0 in E as ∥f∥q′ → 0.

This paper is organized as follows. In Section 2, we set up the
variational framework and derive some lemmas. We give the proof of
Theorem 1.1 in Section 3.

2. Preliminaries. In this section, we make some assumptions re-
garding Theorem 1.1 and establish some lemmas. In order to obtain
solutions of problem (1.1), we look for critical points of the functional J .
Since J is not bounded on E, we introduce the following open subset
of E. Let α > p− 1. Denote

(2.1) Eα =

{
u ∈ E | ∥∇u∥pp + ∥u∥mm >

α

p− 1
∥u∥qq

}



THE NONHOMOGENEOUS p-LAPLACIAN EQUATION 1059

and the Nehari manifold as
(2.2)

Nα =
{
u ∈ Eα | J ′(u)u = ∥∇u∥pp + ∥u∥mm − ∥u∥qq −

∫
RN

fu dx = 0
}
.

For u ∈ E \ {0}, we consider the fibering maps ϕu(t) : [0,∞) → R,
defined by

ϕu(t) = J(tu) =
tp

p
∥∇u∥pp +

tm

m
∥u∥mm − tq

q
∥u∥qq − t

∫
RN

fu dx,

(2.3)

ϕ′u(t) = tp−1∥∇u∥pp + tm−1∥u∥mm − tq−1∥u∥qq −
∫
RN

fu dx,

ϕ′′u(t) = (p− 1)tp−2∥∇u∥pp + (m− 1)tm−2∥u∥mm − (q − 1)tq−2∥u∥qq.

In order to proceed, we first establish the following result.

Lemma 2.1. The Nehari manifold Nα defined by (2.2) is not an empty
set.

Proof. We first prove Eα ̸= ∅. Since f(x) ≥ 0 and f(x) ̸≡ 0
in RN , there exist x0 ∈ RN and r > 0 such that f(x) > 0 for
x ∈ Br(x0) ≡ {x ∈ RN |x − x0| < r}. Then, we take ν(x) ∈ C2

0 (RN )
with supp ν(x) ⊂ Br(x0) such that∫

RN

f(x)ν(σ(x− x0)) dx > 0 for any σ ≥ 1.

Set u(x) = ν(σ(x − x0)). Then, we claim that u ∈ Eα if σ is large
enough. In fact, the inequality∫

RN

|∇u(x)|pdx+

∫
RN

|u(x)|mdx > α

p− 1

∫
RN

|u(x)|qdx

is equivalent to

σp

∫
RN

|∇ν(y)|pdy +
∫
RN

|ν(y)|mdy > α

p− 1

∫
RN

|ν(y)|qdy.

Clearly, it is true if σ is large enough. Therefore, Eα ̸= ∅.
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In the following, we prove Nα ̸= ∅. Denote ϕu(t) = J(tu). Let
t0 > 0 be the unique root of the equation

(2.4) (p− 1)(tp−q
0 ∥∇u∥pp + tm−q

0 ∥u∥mm) = α∥u∥qq.

Then,

ϕ′u(t0) = tp−1
0 ∥∇u∥pp + tm−1

0 ∥u∥mm − tq−1
0 ∥u∥qq −

∫
RN

fu dx(2.5)

=
α− p+ 1

p− 1
tq−1
0 ∥u∥qq −

∫
RN

fu dx.

Note that ∫
RN

|∇u(x)|pdx = σp−N

∫
RN

|∇ν(y)|pdy,(2.6) ∫
RN

|u(x)|sdx = σ−N

∫
RN

|ν(y)|sdy, s = m, q.

We have from (2.4) and (2.6) that t0 ∈ (0, 1] for large σ, and so

t0 ≤
(

α∥u∥qq
(p− 1)(∥∇u∥pp + ∥u∥mm)

)1/(m−q)

(2.7)

=

(
α∥ν∥qq

(p− 1)(σp∥∇ν∥pp + ∥ν∥mm)

)1/(m−q)

≤ C1σ
−p/(m−q),

where C1 is independent of σ. On the other hand, there exists a β0 > 0
independent of σ such that
(2.8)∫
RN

f(x)u(x) dx = σ−N

∫
RN

f(x0+y/σ)ν(y) dy ≥ β0σ
−N for σ large.

Then, it follows from (2.5), (2.7) and (2.8) that
(2.9)

ϕ′u(t0) ≤ σ−N

(
α− p+ 1

p− 1
Cq−1

1 σ−[p(q−1)]/(m−q)−β0
)
< 0 for σ large.

In addition, we note that ϕ′u(t0) < 0 and limt→∞ ϕ′u(t) = ∞. Thus,
there exists a minimum t1 > t0 of ϕu(t) such that

(2.10) 0 = ϕ′u(t1) = tp−1
1 ∥∇u∥pp + tm−1

1 ∥u∥mm − tq−1
0 ∥u∥qq −

∫
RN

fu dx.
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Since

(2.11) t1 > t0 =⇒ (p− 1)(tp−q
1 ∥∇u∥pp + tm−q

1 ∥u∥mm) > α∥u∥qq,

we obtain v = t1u ∈ Nα. This completes the proof. �

Lemma 2.2. Problem (1.2) admits only the trivial solution in E.

Proof. Let u be a solution of problem (1.2). By the Pohozaev
identity for the p-Laplacian equation [7, 10, 15], we have, for any
β ∈ R,

(2.12)

(
N − p

p
− β

)
∥∇u∥pp +

(
N

m
− β

)
∥u∥mm +

(
β − N

q

)
∥u∥qq = 0.

In particular, letting β = N/q gives u = 0, and thus, the conclusion
holds. �

Lemma 2.3. The functional J is bounded below on Nα, where

(2.13) Nα =

{
u ∈ E | J ′(u)u = 0, ∥∇u∥pp + ∥u∥mm ≥ α

p− 1
∥u∥qq

}
.

Proof. Suppose that there exists a sequence {un} ⊂ Nα such that
J(un) → −∞. Since

(2.14) J ′(un)un = ∥∇un∥pp + ∥un∥mm − ∥un∥qq −
∫
RN

fun dx = 0

and
Tn ≡ ∥∇un∥pp + ∥un∥mm ≥ α

p− 1
∥un∥qq,

we have

J(un) =
1− p

p
∥∇un∥pp +

1−m

m
∥un∥mm +

q − 1

q
∥un∥qq(2.15)

≥ 1− p

p
∥∇un∥pp +

1−m

m
∥un∥mm.

This shows that Tn → ∞ as n → ∞. Furthermore, from (2.14), we
obtain

(2.16) 1 =
∥un∥qq
Tn

+

∫
RN fundx

Tn
≤ p− 1

α
+

∫
RN fundx

Tn
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If ∥∇un∥p → ∞ as n→ ∞, we have

T−1
n

∫
RN

|fun| dx ≤ T−1
n ∥un∥p∗∥f∥γ ≤ S−1/p∥∇un∥1−p

p ∥f∥γ −→ 0,

where S is given in (1.6) and γ = p∗/(p∗ − 1). If ∥un∥m → ∞ as
n→ ∞, we have

T−1
n

∫
RN

|fun| dx ≤ T−1
n ∥un∥m∥f∥m′ ≤ ∥un∥1−m

m ∥f∥m′ −→ 0,

with m′ = m/(m− 1). Here, we use the fact that f ∈ Lq′(RN ) ∩
Lγ(RN ) implies f ∈ Lm′

(RN ).

Letting n → ∞ in (2.16), we obtain α ≤ p − 1. This is a
contradiction. Thus, J is bounded below on Nα. This concludes the
proof. �

Lemma 2.4. Assume {un} ⊂ E satisfies J ′(un)un = 0 for any n ∈ N
and {J(un)} is bounded. Then {un} is bounded in E.

Proof. Since J ′(un)un = 0, we see that

−J(un) =
(
1

q
− 1

p

)
∥∇un∥pp +

(
1

q
− 1

m

)
∥un∥mm +

q − 1

q

∫
RN

fun dx.

By Hölder’s and Young’s inequalities with small ε > 0, we have∫
RN

|fun| dx ≤ ε∥un∥mm + Cε∥f∥m
′

m′ ,

and then,

−J(un) ≥
(
1

q
− 1

p

)
∥∇un∥pp +

(
1

q
− 1

m
− ε

)
∥un∥mm − Cε∥f∥m

′

m′ .

The fact that J(un) is bounded gives that the sequences {∥∇un∥p}
and {∥un∥m} are bounded. Furthermore, it follows from (2.14) that
{∥un∥q} is also bounded. Thus, {un} is in E. Hence, the proof is
finished. �

Lemma 2.5. Let α = p− 1 + ϵ with small ϵ > 0. Then

d = inf
Nα

J(u) = inf
Nα

J(u).
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Proof. Assume that there exists a minimizing sequence {un} ⊂ Nα

with J(un) → d, J ′(un)un = 0, and

(2.17) ∥∇un∥pp + ∥un∥mm =
α

p− 1
∥un∥qq.

Clearly, from Lemma 2.4, there is a b > 0 such that ∥un∥qq ≤ b for
all n ∈ N. Then, we obtain from (2.14) and (2.17) that

J(un) =
1− p

p
∥∇un∥pp +

1−m

m
∥un∥mm +

q − 1

q
∥un∥qq(2.18)

=

(
1− 1

q
− α

p

)
∥un∥qq +

(
1

m
− 1

p

)
∥un∥mm

≥
(
1− 1

q
− α

p

)
∥un∥qq +

(
1

m
− 1

p

)
α

p− 1
∥un∥qq

= −η1∥un∥qq ≥ −bη1.

Here, and in the sequel,

η0 =
η1
η2
,

η1 =
1

q
+
α(m− 1)

m(p− 1)
− 1 > 0,

η2 = (p− 1)

(
1

p
− q − 1

qα

)
> 0.

We now take u0 ∈ E such that

(2.19) bη0 ≤ ∥∇u0∥pp + ∥u0∥mm < ∥u0∥qq and

∫
RN

fu0 dx > 0.

This is possible if we choose u0(x) = k|x|−τ for |x| ≥ 1 and u0(x) = k
for |x| < 1, where k is large and τ = ρ + N/q with small ρ > 0.
Furthermore, we let γ(t) = J(tu0), t ≥ 0. Then,

γ′(0) = −
∫
RN

fu0 dx < 0,

γ′(1) = ∥∇u0∥pp + ∥u0∥mm − ∥u0∥qq −
∫
RN

fu0 dx

< −
∫
RN

fu0 dx < 0,
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and γ′(t) → ∞ as t → ∞. Therefore, there exists a t0 > 1 such that
γ′(t0) = 0. This implies that

∥t0∇u0∥pp + ∥t0u0∥mm = ∥t0u0∥qq + t0

∫
RN

fu0 dx >
α

p− 1
∥t0u0∥qq,

(2.20)

where α = p − 1 + ε with small ε > 0. Also, (2.20) shows that the
function v = t0u0 ∈ Eα. Then, it follows from (2.18) and (2.20) that

J(v) =
1

p
∥t0∇u0∥pp +

1

m
∥t0u0∥mm − 1

q
∥t0u0∥qq − t0

∫
RN

fu0 dx

=
1− p

p
∥t0∇u0∥pp +

1−m

m
∥t0u0∥mm +

q − 1

q
∥t0u0∥qq

<
1− p

p
∥t0∇u0∥pp +

1−m

m
∥t0u0∥mm

+
(p− 1)(q − 1)

αq
(∥t0∇u0∥pp + ∥t0u0∥mm)

< −η2(∥t0∇u0∥pp + ∥t0u0∥mm)

< −η2(∥∇u0∥pp + ∥u0∥mm) < −η2η0b
= −bη1 ≤ J(un) −→ d.

Therefore, we have

(2.21) d = inf
u∈Nα

J(u) ≤ J(v) < −bη1 ≤ d.

This is a contradiction. Thus, un ∈ Nα for all n ∈ N. Now the proof
is complete. �

Lemma 2.6. Under the assumptions of Theorem 1.1, problem (1.1)
admits a solution u ∈ Nα with J(u) = d and

(2.22) ∥∇u∥pp + ∥u∥mm ≥ α

p− 1
∥u∥qq.

Proof. By analogy with the proof of Wu [19], we can show that a
minimizing sequence {un} ⊂ Nα exists such that

(2.23) J(un) = d+ o(1) and J ′(un) = o(1) in E∗.

By Lemma 2.5, we assume un ∈ Nα, and thus, J(un) → d and J ′(un)un
= 0. Furthermore, it follows from Lemma 2.4 that {un} is bounded
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in E. Therefore, there exists a u ∈ E such that un ⇀ u in E, un → u
in Lr

loc(RN ), 1 < r < p∗ and un → u almost everywhere in RN , up to
a subsequence.

Since un ∈ Nα, then J ′(un)un = 0, and

(2.24)

∫
RN

fundx = ∥∇un∥pp + ∥un∥mm − ∥un∥qq >
α− p+ 1

p− 1
∥un∥qq.

By the weak lower semi-continuity of the norm, we obtain

(2.25)

∫
RN

fu dx ≥ α− p+ 1

p− 1
lim
n→∞

∥un∥qq ≥ α− p+ 1

p− 1
∥u∥qq.

Thus, it follows from (2.24) that

∥∇u∥pp + ∥u∥mm − ∥u∥qq =

∫
RN

fu dx ≥ α− p+ 1

p− 1
∥u∥qq.

This is (2.22).

Next, we prove J(u) = d. Obviously, it is sufficient to show that
un → u in E. We note that ∥u∥E ≤ limn→∞ ∥un∥E , and the following
claims become evident.

Claim 1. Under the assumptions of Theorem 1.1, the case ∥u∥E <
limn→∞ ∥un∥E is impossible.

First, we prove that an unbounded sequence {yn} ⊂ RN exists such
that

vn(x+ yn) ≡ un(x+ yn)− u(x+ yn)⇀ U(x) ̸= 0

in E as n → ∞. Suppose that, for any {yn} ⊂ RN , vn(x+ yn) ⇀ 0 in
E. Then, for any r > 0,

(2.26) sup
y∈RN

∫
Br(y)

|vn(x)|qdx −→ 0 as n→ ∞,

where Br(y) = {x ∈ RN ||x − y| < r}. By [11, Lemma I.1], it is seen
that vn → 0 in Ls(RN ) for all s ∈ [q, p∗).

On the other hand, assumptions J ′(un) → 0 in E∗ and vn(x) =
un(x)− u(x)⇀ 0 in E yield

J ′(un)vn =

∫
RN

[(|∇un|p−2∇un∇vn + |un|m−2unvn) dx(2.27)

− (|un|q−2un + f(x))vn] dx −→ 0,
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and

An =

∫
RN

(|∇u|p−2∇u∇vn + |u|m−2uvn) dx −→ 0.

Since ∫
RN

|un|q−1|vn| dx ≤ ∥un∥q−1
q ∥vn∥q ≤ C∥vn∥q −→ 0,∫

RN

|fvn| dx ≤ ∥f∥q′∥vn∥q −→ 0,

we have from (2.27) that

Bn =

∫
RN

(|∇un|p−2∇un∇vn + |un|m−2unvn) dx −→ 0.

Note that

Bn −An =

∫
RN

(|∇un|p−2∇un − |∇u|p−2∇u)∇vn dx(2.28)

+

∫
RN

(|un|m−2un − |u|m−2u)vn dx

≥ c0(∥∇(un − u)∥pp + ∥un − u∥mm)

with some constant c0 > 0. Then Bn − An → 0 implies that
∥∇(un−u)∥p → 0 and ∥un∥E → ∥u∥E . This is a contradiction. Hence,
there exists a {yn} ⊂ RN such that vn(x+ yn)⇀ U(x) ̸= 0 in E.

In the following, we show that the sequence {yn} is unbounded.
Suppose that {yn} is bounded. Without loss of generality, we assume
that yn → y in RN . Let φ ∈ C∞

0 (RN ). By yn → y and vn(x) ⇀ 0
in E, it follows that ∫

RN

φ(x− yn)vn(x) dx −→ 0.

Since vn(x+ yn)⇀ U(x) in E, we obtain∫
RN

φ(x− yn)vn(x) dx =

∫
RN

φ(y)vn(y + yn) dy

−→
∫
RN

φ(y)U(y) dy = 0

for all φ ∈ C∞
0 (RN ). Hence, U(x) = 0 almost everywhere in RN . This

is a contradiction. Thus, {yn} is unbounded in RN .
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In the following, we show that U(x) is a solution of (1.2). For this,
we prove un(x + yn) ⇀ U(x) in E. Since u(x + yn) is bounded in E,
there exists a w ∈ E such that u(x+ yn)⇀ w(x) in E and∫

RN

u(x+ yn)φ(x) dx −→
∫
RN

w(x)φ(x) dx for all φ ∈ C∞
0 (RN ).

However, it follows from [3, Lemma 3.5] that∫
RN

u(x+ yn)φ(x) dx =

∫
RN

u(y)φ(y − yn) dy −→ 0

for all φ ∈ C∞
0 (RN ). Hence, we obtain∫

RN

w(x)φ(x) dx = 0 for all φ ∈ C∞
0 (RN )

and w(x) = 0 almost everywhere in RN . We have reached the conclu-
sion that vn(x+ yn) = un(x+ yn)− u(x+ yn)⇀ U(x) in E.

On the other hand, the fact that J ′(un) → 0 in E∗ by (2.23) ensures
that J ′(un)φ(x− yn) → 0, where

J ′(un)φ(x− yn) =

∫
RN

|∇un(x)|p−2∇un(x)∇φ(x− yn) dx

(2.29)

+

∫
RN

|un(x)|m−2un(x)φ(x− yn) dx

−
∫
RN

|un(x)|q−2un(x))φ(x− yn) dx

−
∫
RN

f(x)φ(x− yn) dx

=

∫
RN

|∇un(y + yn)|p−2∇un(y + yn)∇φ(y) dy

+

∫
RN

|un(y + yn)|m−2un(y + yn)φ(y) dy

−
∫
RN

|un(y + yn)|q−2un(y + yn)φ(y) dy

−
∫
RN

f(x)φ(x− yn) dx.
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Similarly, we have from [3, Lemma 3.5] that

(2.30)

∫
RN

f(x)φ(x− yn) dx −→ 0,

and the limit un(x+ yn)⇀ U(x) in E yields

lim
n→∞

∫
RN

(|∇un(y + yn)|p−2∇un(y + yn)∇φ(y)(2.31)

+ |un(y + yn)|m−2un(y + yn)φ(y)) dy

=

∫
RN

(|∇U(y)|p−2∇U(y)∇φ(y) + |U(y)|m−2U(y)φ(y)) dy.

Moreover, we have
(2.32)

lim
n→∞

∫
RN

|un(y + yn)|q−2un(y + yn)φ(y)dy =

∫
RN

|U(y)|q−2U(y)φ(y)dy.

In fact, since un(x + yn) → U(x) in Lq(suppφ), there exists a subse-
quence, still denoted by un, h ∈ Lq(RN ), such that

|un(x+ yn)|q−2un(x+ yn)φ(x) −→ |U(x)|U(x)φ(x)

almost everywhere in RN , and

(2.33) |un(x+ yn)|q−1|φ(x)| ≤ |h(x)|q−1|φ(x)| ∈ L1(RN ).

By the Lebesgue dominated convergence theorem and (2.29)–(2.33), it
follows that

(2.34)

∫
RN

(|∇U(y)|p−2∇U(y)∇φ(y) + |U(y)|m−2U(y)φ(y)) dy

=

∫
RN

|U(y)|q−2U(y)φ(y) dy.

This shows that U(x) is a weak solution of (1.2) in E. By Lemma 2.2,
U(x) = 0 almost everywhere in RN . This is a contradiction. Thus, the
first case ∥u∥E < limn→∞ ∥un∥E does not hold, and the only possible
case is ∥u∥E = limn→∞ ∥un∥E .

Claim 2. If ∥u∥E = limn→∞ ∥un∥E , then we have un → u in
E and J(un) → J(u) = d. Up to a subsequence, we let ∥u∥E =
limn→∞ ∥un∥E . Since

lim
n→∞

∥un∥q = lim
n→∞

(∥∇un∥p + ∥un∥q − ∥∇un∥p)(2.35)
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≤ lim
n→∞

∥un∥E − lim
n→∞

∥∇un∥p

= lim
n→∞

∥un∥E − lim
n→∞

∥∇un∥p

= ∥∇u∥p − lim
n→∞

∥∇un∥p + ∥u∥q ≤ ∥u∥q,

we have

(2.36) ∥u∥q ≤ lim
n→∞

∥un∥q ≤ lim
n→∞

∥un∥q ≤ ∥u∥q.

This shows ∥un∥q → ∥u∥q. By the Brezis-Lieb lemma [5], un →
u in Lq(RN ). On the other hand, since ∥un∥E → ∥u∥E , we obtain
∥∇un∥p → ∥∇u∥p. Again, by the Brezis-Lieb lemma, ∥∇(un − u)∥p →
0. By the Sobolev inequality, this implies ∥un − u∥p∗ ≤ C∥∇(un
− u)∥p → 0.

Since 1 < q < p ≤ m < p∗, there exists a t ∈ (0, 1) such that
m = tq + (1− t)p∗ and

(2.37) ∥un − u∥mm ≤ ∥un − u∥tqq ∥un − u∥(1−t)p∗

p∗ −→ 0.

Similarly, we derive that

(2.38) lim
n→∞

∫
RN

fun dx =

∫
RN

fu dx.

Hence, un → u in E and J(un) → J(u) = d as n→ ∞.

We now prove that u is a critical point for J in E, that is, J ′(u)v = 0
for all v ∈ E, and thus, J ′(u) = 0 in E∗.

For every v ∈ E, we choose ε > 0 such that u + sv ̸= 0 for all
s ∈ (−ε, ε). Define a function φ : (−ε, ε)× (0,∞) → R by

φ(s, t) = J ′(t(u+ sv))t(u+ sv)(2.39)

= tp∥∇(u+ sv)∥pp + tm∥u+ sv∥mm

− tq∥u+ sv∥qq − t

∫
RN

f(u+ sv) dx.

Then,

(2.40) φ(0, 1) = J ′(u)v = ∥∇u∥pp + ∥u∥mm − ∥u∥qq −
∫
RN

fu dx = 0,
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and

∂φ

∂t
(0, 1) = p∥∇u∥pp +m∥u∥mm − q∥u∥qq −

∫
RN

fu dx(2.41)

= (p− 1)∥∇u∥pp + (m− 1)∥u∥mm + (1− q)∥u∥qq
≥ (p− 1)∥∇u∥pp + (m− 1)∥u∥mm

− (q − 1)(p− 1)

α
(∥∇u∥pp + ∥u∥mm)

=
(p− 1)(α− q + 1)

α
∥∇u∥pp

+
α(m− 1)− (p− 1)(q − 1)

α
∥u∥mm > 0.

Thus, by the implicit function theorem, there exists a C1 function
t : (−ε0, ε0) (⊆ (−ε, ε)) → R such that t(0) = 1 and φ(s, t(s)) = 0 for
all s ∈ (−ε0, ε0). This also shows that t(s) ̸= 0, at least for ε0 very
small. Therefore, t(s)(u+ sv) ∈ N . Denote t = t(s) and

ϕ(s) = J(t(u+ sv)) =
1

p
∥∇t(u+ sv)∥pp

+
1

m
∥t(u+ sv)∥mm − 1

q
∥t(u+ sv)∥qq

− t

∫
RN

f(u+ sv) dx.

We see that the function ϕ(s) is differentiable and has a minimum point
at s = 0. Thus,

(2.42) 0 = ϕ′(0) = t′(0)

(
∥∇u∥pp+∥u∥mm−∥u∥qq−

∫
RN

fu dx

)
+J ′(u)v.

It follows from (2.40) that J ′(u)v = 0 for every v ∈ E, and thus,
J ′(u) = 0 in E∗, that is, u is a critical point of J and u is a weak
solution of (1.1) in E. This completes the proof. �

3. Proof of Theorem 1.1. The existence of solution u of prob-
lem (1.1) follows from Lemma 2.6. We now prove that this solution is
positive. Consider the function

(3.1) ψ(t) =
1

p
∥t∇u∥pp +

1

m
∥tu∥mm − 1

q
∥tu∥qq − t

∫
RN

f |u| dx, t ≥ 0.
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Then,

ψ′(0) = −
∫
RN

f |u| dx < 0 and lim
t→+∞

ψ′(t) −→ +∞.

Thus, there exists a t0 > 0 such that ψ′(t0) = 0 and ψ(t0) = inft≥0 ψ(t).

Since ψ′(0) < 0, there exists a t1 > 0 such that ψ′(t) < 0 in
(0, t1), that is, ψ(t) is non-increasing in (0, t1). Similarly, the fact that
ψ′(t) → +∞ as t → +∞ implies that there exists a T1 > t1 such that
ψ′(t) > 0, that is, ψ(t) is increasing in (T1,∞). Therefore, t0 ∈ (t1, T1).
Moreover, the fact that u is a solution of (1.1) gives that

ψ′(1) = ∥∇u∥pp + ∥u∥mm − ∥u∥qq −
∫
RN

f(x)|u| dx(3.2)

=

∫
RN

f(x)u dx−
∫
RN

f(x)|u| dx ≤ 0.

We claim that ψ′(1) = 0. Otherwise, if ψ′(1) < 0, we have t0 > 1. It
follows from (2.22) that

∥t0∇u∥pp + ∥t0u∥mm >
α

p− 1
∥t0u∥qq,

that is, v = t0|u| ∈ Nα. Note that

d ≤ J(v) = ψ(t0) < ψ(1) = J(u) ≤ J(|u|) ≤ J(u) = d.

This is a contradiction. Thus, ψ′(1) = 0 and
∫
RN f(x)(u− |u|) dx = 0.

Furthermore, the assumption f ≥ 0 implies that u = |u| almost
everywhere in RN . Therefore, u is a nonnegative weak solution of
(1.1). By the maximum principle [16], u is a positive solution of (1.1).

Finally, we prove continuity of the solutions. Let f = fn → 0 ∈
Lq′(RN ) in (1.1) as n → ∞, and let un be the solution of (1.1) given
by Lemma 2.6. Since un satisfies (1.1) and un ∈ Nα, we see that

(3.3) ∥un∥qq +
∫
RN

fnun dx = ∥∇un∥pp + ∥un∥mm ≥ α

p− 1
∥un∥qq

and

(3.4)
α− p+ 1

p− 1
∥un∥qq ≤

∫
RN

fnun dx ≤ ∥fn∥q′∥u∥q.
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Therefore,

(3.5) ∥un∥q ≤
(

p− 1

α− p+ 1

)1/(q−1)

∥fn∥1/(q−1)
q′ .

This shows that ∥un∥q → 0 as fn → 0 in Lq′(RN ). Furthermore, it
follows from (3.3) that ∥∇un∥pp → 0 and un → 0 in E. This completes
the proof. �
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